Browse Source

compiler: implement complex division

This is hard to do correctly, so copy the relevant files from the Go
compiler itself.

For related discussions:
* https://github.com/golang/go/issues/14644
* https://github.com/golang/go/issues/29846
boardsimu
Ayke van Laethem 6 years ago
committed by Ron Evans
parent
commit
4ae4ef5e12
  1. 3
      LICENSE
  2. 14
      compiler/compiler.go
  3. 65
      src/runtime/complex.go
  4. 53
      src/runtime/float.go
  5. 2
      testdata/float.go
  6. 2
      testdata/float.txt

3
LICENSE

@ -1,5 +1,8 @@
Copyright (c) 2018-2019 TinyGo Authors. All rights reserved.
TinyGo includes portions of the Go standard library.
Copyright (c) 2009-2019 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

14
compiler/compiler.go

@ -1856,8 +1856,20 @@ func (c *Compiler) parseBinOp(op token.Token, typ types.Type, x, y llvm.Value, p
cplx = c.builder.CreateInsertValue(cplx, r, 0, "")
cplx = c.builder.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
case token.QUO:
// Complex division.
// Do this in a library call because it's too difficult to do
// inline.
switch r1.Type().TypeKind() {
case llvm.FloatTypeKind:
return c.createRuntimeCall("complex64div", []llvm.Value{x, y}, ""), nil
case llvm.DoubleTypeKind:
return c.createRuntimeCall("complex128div", []llvm.Value{x, y}, ""), nil
default:
panic("unexpected complex type")
}
default:
return llvm.Value{}, c.makeError(pos, "todo: binop on complex number: "+op.String())
panic("binop on complex: " + op.String())
}
} else if typ.Info()&types.IsBoolean != 0 {
// Operations on booleans

65
src/runtime/complex.go

@ -0,0 +1,65 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
// inf2one returns a signed 1 if f is an infinity and a signed 0 otherwise.
// The sign of the result is the sign of f.
func inf2one(f float64) float64 {
g := 0.0
if isInf(f) {
g = 1.0
}
return copysign(g, f)
}
func complex64div(n complex64, m complex64) complex64 {
return complex64(complex128div(complex128(n), complex128(m)))
}
func complex128div(n complex128, m complex128) complex128 {
var e, f float64 // complex(e, f) = n/m
// Algorithm for robust complex division as described in
// Robert L. Smith: Algorithm 116: Complex division. Commun. ACM 5(8): 435 (1962).
if abs(real(m)) >= abs(imag(m)) {
ratio := imag(m) / real(m)
denom := real(m) + ratio*imag(m)
e = (real(n) + imag(n)*ratio) / denom
f = (imag(n) - real(n)*ratio) / denom
} else {
ratio := real(m) / imag(m)
denom := imag(m) + ratio*real(m)
e = (real(n)*ratio + imag(n)) / denom
f = (imag(n)*ratio - real(n)) / denom
}
if isNaN(e) && isNaN(f) {
// Correct final result to infinities and zeros if applicable.
// Matches C99: ISO/IEC 9899:1999 - G.5.1 Multiplicative operators.
a, b := real(n), imag(n)
c, d := real(m), imag(m)
switch {
case m == 0 && (!isNaN(a) || !isNaN(b)):
e = copysign(inf, c) * a
f = copysign(inf, c) * b
case (isInf(a) || isInf(b)) && isFinite(c) && isFinite(d):
a = inf2one(a)
b = inf2one(b)
e = inf * (a*c + b*d)
f = inf * (b*c - a*d)
case (isInf(c) || isInf(d)) && isFinite(a) && isFinite(b):
c = inf2one(c)
d = inf2one(d)
e = 0 * (a*c + b*d)
f = 0 * (b*c - a*d)
}
}
return complex(e, f)
}

53
src/runtime/float.go

@ -0,0 +1,53 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
var inf = float64frombits(0x7FF0000000000000)
// isNaN reports whether f is an IEEE 754 ``not-a-number'' value.
func isNaN(f float64) (is bool) {
// IEEE 754 says that only NaNs satisfy f != f.
return f != f
}
// isFinite reports whether f is neither NaN nor an infinity.
func isFinite(f float64) bool {
return !isNaN(f - f)
}
// isInf reports whether f is an infinity.
func isInf(f float64) bool {
return !isNaN(f) && !isFinite(f)
}
// Abs returns the absolute value of x.
//
// Special cases are:
// Abs(±Inf) = +Inf
// Abs(NaN) = NaN
func abs(x float64) float64 {
const sign = 1 << 63
return float64frombits(float64bits(x) &^ sign)
}
// copysign returns a value with the magnitude
// of x and the sign of y.
func copysign(x, y float64) float64 {
const sign = 1 << 63
return float64frombits(float64bits(x)&^sign | float64bits(y)&sign)
}
// Float64bits returns the IEEE 754 binary representation of f.
func float64bits(f float64) uint64 {
return *(*uint64)(unsafe.Pointer(&f))
}
// Float64frombits returns the floating point number corresponding
// the IEEE 754 binary representation b.
func float64frombits(b uint64) float64 {
return *(*float64)(unsafe.Pointer(&b))
}

2
testdata/float.go

@ -62,8 +62,10 @@ func main() {
println("complex64 add: ", c64 + -3+8i)
println("complex64 sub: ", c64 - -3+8i)
println("complex64 mul: ", c64 * -3+8i)
println("complex64 div: ", c64 / -3+8i)
c128 = -5+2i
println("complex128 add:", c128 + 2+6i)
println("complex128 sub:", c128 - 2+6i)
println("complex128 mul:", c128 * 2+6i)
println("complex128 div:", c128 / 2+6i)
}

2
testdata/float.txt

@ -26,6 +26,8 @@
complex64 add: (+2.000000e+000+1.000000e+001i)
complex64 sub: (+8.000000e+000+1.000000e+001i)
complex64 mul: (-1.500000e+001+2.000000e+000i)
complex64 div: (-1.666667e+000+7.333333e+000i)
complex128 add: (-3.000000e+000+8.000000e+000i)
complex128 sub: (-7.000000e+000+8.000000e+000i)
complex128 mul: (-1.000000e+001+1.000000e+001i)
complex128 div: (-2.500000e+000+7.000000e+000i)

Loading…
Cancel
Save