Browse Source

avr: add support for the digispark

Blinking the on-board LED works. Nothing else has been tested yet.
pull/87/head
Ayke van Laethem 6 years ago
parent
commit
9392ef900d
No known key found for this signature in database GPG Key ID: E97FF5335DFDFDED
  1. 3
      .travis.yml
  2. 1
      Makefile
  3. 3
      docs/targets.rst
  4. 7
      src/machine/board_digispark.go
  5. 262
      src/machine/machine_atmega.go
  6. 48
      src/machine/machine_attiny.go
  7. 257
      src/machine/machine_avr.go
  8. 35
      src/runtime/runtime_atmega.go
  9. 16
      src/runtime/runtime_attiny.go
  10. 28
      src/runtime/runtime_avr.go
  11. 5
      targets/arduino.json
  12. 5
      targets/avr.json
  13. 17
      targets/digispark.json
  14. 25
      tools/gen-device-avr.py

3
.travis.yml

@ -25,4 +25,5 @@ script:
- tinygo build -o blinky1.nrf51.elf -target=microbit examples/echo
- tinygo build -o test.nrf.elf -target=nrf52840-mdk examples/blinky1
- tinygo build -o blinky1.stm32.elf -target=bluepill examples/blinky1
- tinygo build -o blinky1.avr.o -target=arduino examples/blinky1 # TODO: avr-as/avr-gcc doesn't work
- tinygo build -o blinky1.o -target=arduino examples/blinky1 # TODO: avr-as/avr-gcc doesn't work
- tinygo build -o blinky1.o -target=digispark examples/blinky1

1
Makefile

@ -72,6 +72,7 @@ gen-device: gen-device-avr gen-device-nrf gen-device-stm32
gen-device-avr:
./tools/gen-device-avr.py lib/avr/packs/atmega src/device/avr/
./tools/gen-device-avr.py lib/avr/packs/tiny src/device/avr/
go fmt ./src/device/avr
gen-device-nrf:

3
docs/targets.rst

@ -47,6 +47,9 @@ Note: the AVR backend of LLVM is still experimental so you may encounter bugs.
* `Arduino Uno <https://store.arduino.cc/arduino-uno-rev3>`_ (`ATmega328p
<https://www.microchip.com/wwwproducts/en/ATmega328p>`_)
* `Digispark <http://digistump.com/products/1>`_ (`ATtiny85
<https://www.microchip.com/wwwproducts/en/ATtiny85>`_) |br|
Very limited support at the moment.
WebAssembly

7
src/machine/board_digispark.go

@ -0,0 +1,7 @@
// +build attiny85,digispark
package machine
const (
LED = 1
)

262
src/machine/machine_atmega.go

@ -0,0 +1,262 @@
// +build avr,atmega
package machine
import (
"device/avr"
)
// Configure sets the pin to input or output.
func (p GPIO) Configure(config GPIOConfig) {
if config.Mode == GPIO_OUTPUT { // set output bit
if p.Pin < 8 {
*avr.DDRD |= 1 << p.Pin
} else {
*avr.DDRB |= 1 << (p.Pin - 8)
}
} else { // configure input: clear output bit
if p.Pin < 8 {
*avr.DDRD &^= 1 << p.Pin
} else {
*avr.DDRB &^= 1 << (p.Pin - 8)
}
}
}
// Set changes the value of the GPIO pin. The pin must be configured as output.
func (p GPIO) Set(value bool) {
if value { // set bits
if p.Pin < 8 {
*avr.PORTD |= 1 << p.Pin
} else {
*avr.PORTB |= 1 << (p.Pin - 8)
}
} else { // clear bits
if p.Pin < 8 {
*avr.PORTD &^= 1 << p.Pin
} else {
*avr.PORTB &^= 1 << (p.Pin - 8)
}
}
}
// Get returns the current value of a GPIO pin.
func (p GPIO) Get() bool {
if p.Pin < 8 {
val := *avr.PIND & (1 << p.Pin)
return (val > 0)
} else {
val := *avr.PINB & (1 << (p.Pin - 8))
return (val > 0)
}
}
// InitPWM initializes the registers needed for PWM.
func InitPWM() {
// use waveform generation
*avr.TCCR0A |= avr.TCCR0A_WGM00
// set timer 0 prescale factor to 64
*avr.TCCR0B |= avr.TCCR0B_CS01 | avr.TCCR0B_CS00
// set timer 1 prescale factor to 64
*avr.TCCR1B |= avr.TCCR1B_CS11
// put timer 1 in 8-bit phase correct pwm mode
*avr.TCCR1A |= avr.TCCR1A_WGM10
// set timer 2 prescale factor to 64
*avr.TCCR2B |= avr.TCCR2B_CS22
// configure timer 2 for phase correct pwm (8-bit)
*avr.TCCR2A |= avr.TCCR2A_WGM20
}
// Configure configures a PWM pin for output.
func (pwm PWM) Configure() {
if pwm.Pin < 8 {
*avr.DDRD |= 1 << pwm.Pin
} else {
*avr.DDRB |= 1 << (pwm.Pin - 8)
}
}
// Set turns on the duty cycle for a PWM pin using the provided value. On the AVR this is normally a
// 8-bit value ranging from 0 to 255.
func (pwm PWM) Set(value uint16) {
value8 := value >> 8
switch pwm.Pin {
case 3:
// connect pwm to pin on timer 2, channel B
*avr.TCCR2A |= avr.TCCR2A_COM2B1
*avr.OCR2B = avr.RegValue(value8) // set pwm duty
case 5:
// connect pwm to pin on timer 0, channel B
*avr.TCCR0A |= avr.TCCR0A_COM0B1
*avr.OCR0B = avr.RegValue(value8) // set pwm duty
case 6:
// connect pwm to pin on timer 0, channel A
*avr.TCCR0A |= avr.TCCR0A_COM0A1
*avr.OCR0A = avr.RegValue(value8) // set pwm duty
case 9:
// connect pwm to pin on timer 1, channel A
*avr.TCCR1A |= avr.TCCR1A_COM1A1
// this is a 16-bit value, but we only currently allow the low order bits to be set
*avr.OCR1AL = avr.RegValue(value8) // set pwm duty
case 10:
// connect pwm to pin on timer 1, channel B
*avr.TCCR1A |= avr.TCCR1A_COM1B1
// this is a 16-bit value, but we only currently allow the low order bits to be set
*avr.OCR1BL = avr.RegValue(value8) // set pwm duty
case 11:
// connect pwm to pin on timer 2, channel A
*avr.TCCR2A |= avr.TCCR2A_COM2A1
*avr.OCR2A = avr.RegValue(value8) // set pwm duty
default:
panic("Invalid PWM pin")
}
}
// I2CConfig is used to store config info for I2C.
type I2CConfig struct {
Frequency uint32
}
// Configure is intended to setup the I2C interface.
func (i2c I2C) Configure(config I2CConfig) {
// Default I2C bus speed is 100 kHz.
if config.Frequency == 0 {
config.Frequency = TWI_FREQ_100KHZ
}
// Activate internal pullups for twi.
*avr.PORTC |= (avr.DIDR0_ADC4D | avr.DIDR0_ADC5D)
// Initialize twi prescaler and bit rate.
*avr.TWSR |= (avr.TWSR_TWPS0 | avr.TWSR_TWPS1)
// twi bit rate formula from atmega128 manual pg. 204:
// SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))
// NOTE: TWBR should be 10 or higher for master mode.
// It is 72 for a 16mhz board with 100kHz TWI
*avr.TWBR = avr.RegValue(((CPU_FREQUENCY / config.Frequency) - 16) / 2)
// Enable twi module.
*avr.TWCR = avr.TWCR_TWEN
}
// Tx does a single I2C transaction at the specified address.
// It clocks out the given address, writes the bytes in w, reads back len(r)
// bytes and stores them in r, and generates a stop condition on the bus.
func (i2c I2C) Tx(addr uint16, w, r []byte) error {
if len(w) != 0 {
i2c.start(uint8(addr), true) // start transmission for writing
for _, b := range w {
i2c.writeByte(b)
}
}
if len(r) != 0 {
i2c.start(uint8(addr), false) // re-start transmission for reading
for i := range r { // read each char
r[i] = i2c.readByte()
}
}
if len(w) != 0 || len(r) != 0 {
// Stop the transmission after it has been started.
i2c.stop()
}
return nil
}
// start starts an I2C communication session.
func (i2c I2C) start(address uint8, write bool) {
// Clear TWI interrupt flag, put start condition on SDA, and enable TWI.
*avr.TWCR = (avr.TWCR_TWINT | avr.TWCR_TWSTA | avr.TWCR_TWEN)
// Wait till start condition is transmitted.
for (*avr.TWCR & avr.TWCR_TWINT) == 0 {
}
// Write 7-bit shifted peripheral address.
address <<= 1
if !write {
address |= 1 // set read flag
}
i2c.writeByte(address)
}
// stop ends an I2C communication session.
func (i2c I2C) stop() {
// Send stop condition.
*avr.TWCR = (avr.TWCR_TWEN | avr.TWCR_TWINT | avr.TWCR_TWSTO)
// Wait for stop condition to be executed on bus.
for (*avr.TWCR & avr.TWCR_TWSTO) == 0 {
}
}
// writeByte writes a single byte to the I2C bus.
func (i2c I2C) writeByte(data byte) {
// Write data to register.
*avr.TWDR = avr.RegValue(data)
// Clear TWI interrupt flag and enable TWI.
*avr.TWCR = (avr.TWCR_TWEN | avr.TWCR_TWINT)
// Wait till data is transmitted.
for (*avr.TWCR & avr.TWCR_TWINT) == 0 {
}
}
// readByte reads a single byte from the I2C bus.
func (i2c I2C) readByte() byte {
// Clear TWI interrupt flag and enable TWI.
*avr.TWCR = (avr.TWCR_TWEN | avr.TWCR_TWINT | avr.TWCR_TWEA)
// Wait till read request is transmitted.
for (*avr.TWCR & avr.TWCR_TWINT) == 0 {
}
return byte(*avr.TWDR)
}
// Configure the UART on the AVR. Defaults to 9600 baud on Arduino.
func (uart UART) Configure(config UARTConfig) {
if config.BaudRate == 0 {
config.BaudRate = 9600
}
// Set baud rate based on prescale formula from
// https://www.microchip.com/webdoc/AVRLibcReferenceManual/FAQ_1faq_wrong_baud_rate.html
// ((F_CPU + UART_BAUD_RATE * 8L) / (UART_BAUD_RATE * 16L) - 1)
ps := ((CPU_FREQUENCY+config.BaudRate*8)/(config.BaudRate*16) - 1)
*avr.UBRR0H = avr.RegValue(ps >> 8)
*avr.UBRR0L = avr.RegValue(ps & 0xff)
// enable RX, TX and RX interrupt
*avr.UCSR0B = avr.UCSR0B_RXEN0 | avr.UCSR0B_TXEN0 | avr.UCSR0B_RXCIE0
// 8-bits data
*avr.UCSR0C = avr.UCSR0C_UCSZ01 | avr.UCSR0C_UCSZ00
}
// WriteByte writes a byte of data to the UART.
func (uart UART) WriteByte(c byte) error {
// Wait until UART buffer is not busy.
for (*avr.UCSR0A & avr.UCSR0A_UDRE0) == 0 {
}
*avr.UDR0 = avr.RegValue(c) // send char
return nil
}
//go:interrupt USART_RX_vect
func handleUSART_RX() {
// Read register to clear it.
data := *avr.UDR0
// Ensure no error.
if (*avr.UCSR0A & (avr.UCSR0A_FE0 | avr.UCSR0A_DOR0 | avr.UCSR0A_UPE0)) == 0 {
// Put data from UDR register into buffer.
bufferPut(byte(data))
}
}

48
src/machine/machine_attiny.go

@ -0,0 +1,48 @@
// +build avr,attiny
package machine
import (
"device/avr"
)
// Configure sets the pin to input or output.
func (p GPIO) Configure(config GPIOConfig) {
if config.Mode == GPIO_OUTPUT { // set output bit
*avr.DDRB |= 1 << p.Pin
} else { // configure input: clear output bit
*avr.DDRB &^= 1 << p.Pin
}
}
// Set changes the value of the GPIO pin. The pin must be configured as output.
func (p GPIO) Set(value bool) {
if value { // set bits
*avr.PORTB |= 1 << p.Pin
} else { // clear bits
*avr.PORTB &^= 1 << p.Pin
}
}
// Get returns the current value of a GPIO pin.
func (p GPIO) Get() bool {
val := *avr.PINB & (1 << p.Pin)
return (val > 0)
}
// Configure is a dummy implementation. UART has not been implemented for ATtiny
// devices.
func (uart UART) Configure(config UARTConfig) {
}
// WriteByte is a dummy implementation. UART has not been implemented for ATtiny
// devices.
func (uart UART) WriteByte(c byte) error {
return nil
}
// Tx is a dummy implementation. I2C has not been implemented for ATtiny
// devices.
func (i2c I2C) Tx(addr uint16, w, r []byte) error {
return nil
}

257
src/machine/machine_avr.go

@ -13,115 +13,6 @@ const (
GPIO_OUTPUT
)
func (p GPIO) Configure(config GPIOConfig) {
if config.Mode == GPIO_OUTPUT { // set output bit
if p.Pin < 8 {
*avr.DDRD |= 1 << p.Pin
} else {
*avr.DDRB |= 1 << (p.Pin - 8)
}
} else { // configure input: clear output bit
if p.Pin < 8 {
*avr.DDRD &^= 1 << p.Pin
} else {
*avr.DDRB &^= 1 << (p.Pin - 8)
}
}
}
func (p GPIO) Set(value bool) {
if value { // set bits
if p.Pin < 8 {
*avr.PORTD |= 1 << p.Pin
} else {
*avr.PORTB |= 1 << (p.Pin - 8)
}
} else { // clear bits
if p.Pin < 8 {
*avr.PORTD &^= 1 << p.Pin
} else {
*avr.PORTB &^= 1 << (p.Pin - 8)
}
}
}
// Get returns the current value of a GPIO pin.
func (p GPIO) Get() bool {
if p.Pin < 8 {
val := *avr.PIND & (1 << p.Pin)
return (val > 0)
} else {
val := *avr.PINB & (1 << (p.Pin - 8))
return (val > 0)
}
}
// InitPWM initializes the registers needed for PWM.
func InitPWM() {
// use waveform generation
*avr.TCCR0A |= avr.TCCR0A_WGM00
// set timer 0 prescale factor to 64
*avr.TCCR0B |= avr.TCCR0B_CS01 | avr.TCCR0B_CS00
// set timer 1 prescale factor to 64
*avr.TCCR1B |= avr.TCCR1B_CS11
// put timer 1 in 8-bit phase correct pwm mode
*avr.TCCR1A |= avr.TCCR1A_WGM10
// set timer 2 prescale factor to 64
*avr.TCCR2B |= avr.TCCR2B_CS22
// configure timer 2 for phase correct pwm (8-bit)
*avr.TCCR2A |= avr.TCCR2A_WGM20
}
// Configure configures a PWM pin for output.
func (pwm PWM) Configure() {
if pwm.Pin < 8 {
*avr.DDRD |= 1 << pwm.Pin
} else {
*avr.DDRB |= 1 << (pwm.Pin - 8)
}
}
// Set turns on the duty cycle for a PWM pin using the provided value. On the AVR this is normally a
// 8-bit value ranging from 0 to 255.
func (pwm PWM) Set(value uint16) {
value8 := value >> 8
switch pwm.Pin {
case 3:
// connect pwm to pin on timer 2, channel B
*avr.TCCR2A |= avr.TCCR2A_COM2B1
*avr.OCR2B = avr.RegValue(value8) // set pwm duty
case 5:
// connect pwm to pin on timer 0, channel B
*avr.TCCR0A |= avr.TCCR0A_COM0B1
*avr.OCR0B = avr.RegValue(value8) // set pwm duty
case 6:
// connect pwm to pin on timer 0, channel A
*avr.TCCR0A |= avr.TCCR0A_COM0A1
*avr.OCR0A = avr.RegValue(value8) // set pwm duty
case 9:
// connect pwm to pin on timer 1, channel A
*avr.TCCR1A |= avr.TCCR1A_COM1A1
// this is a 16-bit value, but we only currently allow the low order bits to be set
*avr.OCR1AL = avr.RegValue(value8) // set pwm duty
case 10:
// connect pwm to pin on timer 1, channel B
*avr.TCCR1A |= avr.TCCR1A_COM1B1
// this is a 16-bit value, but we only currently allow the low order bits to be set
*avr.OCR1BL = avr.RegValue(value8) // set pwm duty
case 11:
// connect pwm to pin on timer 2, channel A
*avr.TCCR2A |= avr.TCCR2A_COM2A1
*avr.OCR2A = avr.RegValue(value8) // set pwm duty
default:
panic("Invalid PWM pin")
}
}
// InitADC initializes the registers needed for ADC.
func InitADC() {
// set a2d prescaler so we are inside the desired 50-200 KHz range at 16MHz.
@ -158,159 +49,15 @@ func (a ADC) Get() uint16 {
return uint16(low) | uint16(high<<8)
}
// I2C on the Arduino.
// I2C on AVR.
type I2C struct {
}
// I2C0 is the only I2C interface on the Arduino.
// I2C0 is the only I2C interface on most AVRs.
var I2C0 = I2C{}
// I2CConfig is used to store config info for I2C.
type I2CConfig struct {
Frequency uint32
}
// Configure is intended to setup the I2C interface.
func (i2c I2C) Configure(config I2CConfig) {
// Default I2C bus speed is 100 kHz.
if config.Frequency == 0 {
config.Frequency = TWI_FREQ_100KHZ
}
// Activate internal pullups for twi.
*avr.PORTC |= (avr.DIDR0_ADC4D | avr.DIDR0_ADC5D)
// Initialize twi prescaler and bit rate.
*avr.TWSR |= (avr.TWSR_TWPS0 | avr.TWSR_TWPS1)
// twi bit rate formula from atmega128 manual pg. 204:
// SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))
// NOTE: TWBR should be 10 or higher for master mode.
// It is 72 for a 16mhz board with 100kHz TWI
*avr.TWBR = avr.RegValue(((CPU_FREQUENCY / config.Frequency) - 16) / 2)
// Enable twi module.
*avr.TWCR = avr.TWCR_TWEN
}
// Tx does a single I2C transaction at the specified address.
// It clocks out the given address, writes the bytes in w, reads back len(r)
// bytes and stores them in r, and generates a stop condition on the bus.
func (i2c I2C) Tx(addr uint16, w, r []byte) error {
if len(w) != 0 {
i2c.start(uint8(addr), true) // start transmission for writing
for _, b := range w {
i2c.writeByte(b)
}
}
if len(r) != 0 {
i2c.start(uint8(addr), false) // re-start transmission for reading
for i := range r { // read each char
r[i] = i2c.readByte()
}
}
if len(w) != 0 || len(r) != 0 {
// Stop the transmission after it has been started.
i2c.stop()
}
return nil
}
// start starts an I2C communication session.
func (i2c I2C) start(address uint8, write bool) {
// Clear TWI interrupt flag, put start condition on SDA, and enable TWI.
*avr.TWCR = (avr.TWCR_TWINT | avr.TWCR_TWSTA | avr.TWCR_TWEN)
// Wait till start condition is transmitted.
for (*avr.TWCR & avr.TWCR_TWINT) == 0 {
}
// Write 7-bit shifted peripheral address.
address <<= 1
if !write {
address |= 1 // set read flag
}
i2c.writeByte(address)
}
// stop ends an I2C communication session.
func (i2c I2C) stop() {
// Send stop condition.
*avr.TWCR = (avr.TWCR_TWEN | avr.TWCR_TWINT | avr.TWCR_TWSTO)
// Wait for stop condition to be executed on bus.
for (*avr.TWCR & avr.TWCR_TWSTO) == 0 {
}
}
// writeByte writes a single byte to the I2C bus.
func (i2c I2C) writeByte(data byte) {
// Write data to register.
*avr.TWDR = avr.RegValue(data)
// Clear TWI interrupt flag and enable TWI.
*avr.TWCR = (avr.TWCR_TWEN | avr.TWCR_TWINT)
// Wait till data is transmitted.
for (*avr.TWCR & avr.TWCR_TWINT) == 0 {
}
}
// readByte reads a single byte from the I2C bus.
func (i2c I2C) readByte() byte {
// Clear TWI interrupt flag and enable TWI.
*avr.TWCR = (avr.TWCR_TWEN | avr.TWCR_TWINT | avr.TWCR_TWEA)
// Wait till read request is transmitted.
for (*avr.TWCR & avr.TWCR_TWINT) == 0 {
}
return byte(*avr.TWDR)
}
// UART
var (
// UART0 is the hardware serial port on the AVR.
UART0 = &UART{}
)
// Configure the UART on the AVR. Defaults to 9600 baud on Arduino.
func (uart UART) Configure(config UARTConfig) {
if config.BaudRate == 0 {
config.BaudRate = 9600
}
// Set baud rate based on prescale formula from
// https://www.microchip.com/webdoc/AVRLibcReferenceManual/FAQ_1faq_wrong_baud_rate.html
// ((F_CPU + UART_BAUD_RATE * 8L) / (UART_BAUD_RATE * 16L) - 1)
ps := ((CPU_FREQUENCY+config.BaudRate*8)/(config.BaudRate*16) - 1)
*avr.UBRR0H = avr.RegValue(ps >> 8)
*avr.UBRR0L = avr.RegValue(ps & 0xff)
// enable RX, TX and RX interrupt
*avr.UCSR0B = avr.UCSR0B_RXEN0 | avr.UCSR0B_TXEN0 | avr.UCSR0B_RXCIE0
// 8-bits data
*avr.UCSR0C = avr.UCSR0C_UCSZ01 | avr.UCSR0C_UCSZ00
}
// WriteByte writes a byte of data to the UART.
func (uart UART) WriteByte(c byte) error {
// Wait until UART buffer is not busy.
for (*avr.UCSR0A & avr.UCSR0A_UDRE0) == 0 {
}
*avr.UDR0 = avr.RegValue(c) // send char
return nil
}
//go:interrupt USART_RX_vect
func handleUSART_RX() {
// Read register to clear it.
data := *avr.UDR0
// Ensure no error.
if (*avr.UCSR0A & (avr.UCSR0A_FE0 | avr.UCSR0A_DOR0 | avr.UCSR0A_UPE0)) == 0 {
// Put data from UDR register into buffer.
bufferPut(byte(data))
}
}

35
src/runtime/runtime_atmega.go

@ -0,0 +1,35 @@
// +build avr,atmega
package runtime
import (
"device/avr"
)
// Sleep for a given period. The period is defined by the WDT peripheral, and is
// on most chips (at least) 3 bits wide, in powers of two from 16ms to 2s
// (0=16ms, 1=32ms, 2=64ms...). Note that the WDT is not very accurate: it can
// be off by a large margin depending on temperature and supply voltage.
//
// TODO: disable more peripherals etc. to reduce sleep current.
func sleepWDT(period uint8) {
// Configure WDT
avr.Asm("cli")
avr.Asm("wdr")
// Start timed sequence.
*avr.WDTCSR |= avr.WDTCSR_WDCE | avr.WDTCSR_WDE
// Enable WDT and set new timeout
*avr.WDTCSR = avr.WDTCSR_WDIE | avr.RegValue(period)
avr.Asm("sei")
// Set sleep mode to idle and enable sleep mode.
// Note: when using something other than idle, the UART won't work
// correctly. This needs to be fixed, though, so we can truly sleep.
*avr.SMCR = (0 << 1) | avr.SMCR_SE
// go to sleep
avr.Asm("sleep")
// disable sleep
*avr.SMCR = 0
}

16
src/runtime/runtime_attiny.go

@ -0,0 +1,16 @@
// +build avr,attiny
package runtime
import (
"device/avr"
)
func sleepWDT(period uint8) {
// TODO: use the watchdog timer instead of a busy loop.
for i := 0x45; i != 0; i-- {
for i := 0xff; i != 0; i-- {
avr.Asm("nop")
}
}
}

28
src/runtime/runtime_avr.go

@ -83,34 +83,6 @@ func sleepTicks(d timeUnit) {
}
}
// Sleep for a given period. The period is defined by the WDT peripheral, and is
// on most chips (at least) 3 bits wide, in powers of two from 16ms to 2s
// (0=16ms, 1=32ms, 2=64ms...). Note that the WDT is not very accurate: it can
// be off by a large margin depending on temperature and supply voltage.
//
// TODO: disable more peripherals etc. to reduce sleep current.
func sleepWDT(period uint8) {
// Configure WDT
avr.Asm("cli")
avr.Asm("wdr")
// Start timed sequence.
*avr.WDTCSR |= avr.WDTCSR_WDCE | avr.WDTCSR_WDE
// Enable WDT and set new timeout (0.5s)
*avr.WDTCSR = avr.WDTCSR_WDIE | avr.RegValue(period)
avr.Asm("sei")
// Set sleep mode to idle and enable sleep mode.
// Note: when using something other than idle, the UART won't work
// correctly. This needs to be fixed, though, so we can truly sleep.
*avr.SMCR = (0 << 1) | avr.SMCR_SE
// go to sleep
avr.Asm("sleep")
// disable sleep
*avr.SMCR = 0
}
func ticks() timeUnit {
return currentTime
}

5
targets/arduino.json

@ -1,7 +1,7 @@
{
"inherits": ["avr"],
"llvm-target": "avr-atmel-none",
"build-tags": ["arduino", "atmega328p", "atmega", "avr5", "avr", "js", "wasm"],
"linker": "avr-gcc",
"build-tags": ["arduino", "atmega328p", "atmega", "avr5"],
"pre-link-args": [
"-nostartfiles",
"-mmcu=avr5",
@ -13,6 +13,5 @@
"targets/avr.S",
"src/device/avr/atmega328p.s"
],
"objcopy": "avr-objcopy",
"flash": "avrdude -c arduino -p atmega328p -P {port} -U flash:w:{hex}"
}

5
targets/avr.json

@ -0,0 +1,5 @@
{
"build-tags": ["avr", "js", "wasm"],
"linker": "avr-gcc",
"objcopy": "avr-objcopy"
}

17
targets/digispark.json

@ -0,0 +1,17 @@
{
"inherits": ["avr"],
"llvm-target": "avr-atmel-none",
"build-tags": ["digispark", "attiny85", "attiny", "avr2", "avr25"],
"pre-link-args": [
"-nostartfiles",
"-mmcu=attiny85",
"-Wl,--defsym=_bootloader_size=2180",
"-Wl,--defsym=_stack_size=128",
"-T", "src/device/avr/attiny85.ld",
"-T", "targets/avr.ld",
"-Wl,--gc-sections",
"targets/avr.S",
"src/device/avr/attiny85.s"
],
"flash": "micronucleus --run {hex}"
}

25
tools/gen-device-avr.py

@ -93,10 +93,16 @@ def readATDF(path):
continue
for bitfieldEl in regEl.getElementsByTagName('bitfield'):
mask = bitfieldEl.getAttribute('mask')
if len(mask) == 2:
# Two devices (ATtiny102 and ATtiny104) appear to have
# an error in the bitfields, leaving out the '0x'
# prefix.
mask = '0x' + mask
reg['bitfields'].append({
'name': regName + '_' + bitfieldEl.getAttribute('name'),
'description': bitfieldEl.getAttribute('caption'),
'value': int(bitfieldEl.getAttribute('mask'), 0),
'value': int(mask, 0),
})
if regName in allRegisters:
@ -112,6 +118,11 @@ def readATDF(path):
peripheral['registers'].append(reg)
ramSize = 0 # for devices with no RAM
for ramSegmentName in ['IRAM', 'INTERNAL_SRAM', 'SRAM']:
if ramSegmentName in memorySizes['data']['segments']:
ramSize = memorySizes['data']['segments'][ramSegmentName]
device.metadata = {
'file': os.path.basename(path),
'descriptorSource': 'http://packs.download.atmel.com/',
@ -121,7 +132,7 @@ def readATDF(path):
'arch': arch,
'family': family,
'flashSize': memorySizes['prog']['size'],
'ramSize': memorySizes['data']['segments'].get('IRAM', memorySizes['data']['segments'].get('INTERNAL_SRAM')),
'ramSize': ramSize,
'numInterrupts': len(device.interrupts),
}
@ -228,15 +239,21 @@ __vector_default:
'''.format(**device.metadata))
num = 0
for intr in device.interrupts:
jmp = 'jmp'
if device.metadata['flashSize'] <= 8 * 1024:
# When a device has 8kB or less flash, rjmp (2 bytes) must be used
# instead of jmp (4 bytes).
# https://www.avrfreaks.net/forum/rjmp-versus-jmp
jmp = 'rjmp'
if intr['index'] < num:
# Some devices have duplicate interrupts, probably for historical
# reasons.
continue
while intr['index'] > num:
out.write(' jmp __vector_default\n')
out.write(' {jmp} __vector_default\n'.format(jmp=jmp))
num += 1
num += 1
out.write(' jmp __vector_{name}\n'.format(**intr))
out.write(' {jmp} __vector_{name}\n'.format(jmp=jmp, **intr))
out.write('''
; Define default implementations for interrupts, redirecting to

Loading…
Cancel
Save