Browse Source

runtime, internal/task: refactor to simplify stack switching

The Cortex-M target isn't much changed, but much of the logic for the
AVR stack switcher that was previously in assembly has now been moved to
Go to make it more maintainable and in fact smaller in code size. Three
functions (tinygo_getCurrentStackPointer, tinygo_switchToTask,
tinygo_switchToScheduler) have been changed to one: tinygo_swapTask.

This reduction in assembly code should make the code more maintainable
and should make it easier to port stack switching to other
architectures.

I've also moved the assembly files to src/internal/task, which seems
like a more appropriate location to me.
pull/1525/head
Ayke van Laethem 4 years ago
committed by Ron Evans
parent
commit
abb09e869e
  1. 29
      src/internal/task/task_stack.go
  2. 99
      src/internal/task/task_stack_avr.S
  3. 49
      src/internal/task/task_stack_avr.go
  4. 11
      src/internal/task/task_stack_cortexm.S
  5. 39
      src/internal/task/task_stack_cortexm.go
  6. 189
      src/runtime/scheduler_avr.S
  7. 13
      src/runtime/scheduler_tasks.go
  8. 4
      targets/avr.json
  9. 4
      targets/cortex-m.json

29
src/internal/task/task_stack.go

@ -45,6 +45,11 @@ func Pause() {
currentTask.state.pause()
}
//export tinygo_pause
func pause() {
Pause()
}
// Resume the task until it pauses or completes.
// This may only be called from the scheduler.
func (t *Task) Resume() {
@ -58,10 +63,32 @@ func (s *state) initialize(fn uintptr, args unsafe.Pointer, stackSize uintptr) {
// Create a stack.
stack := make([]uintptr, stackSize/unsafe.Sizeof(uintptr(0)))
// Set up the stack canary, a random number that should be checked when
// switching from the task back to the scheduler. The stack canary pointer
// points to the first word of the stack. If it has changed between now and
// the next stack switch, there was a stack overflow.
s.canaryPtr = &stack[0]
*s.canaryPtr = stackCanary
// Get a pointer to the top of the stack, where the initial register values
// are stored. They will be popped off the stack on the first stack switch
// to the goroutine, and will start running tinygo_startTask (this setup
// happens in archInit).
r := (*calleeSavedRegs)(unsafe.Pointer(&stack[uintptr(len(stack))-(unsafe.Sizeof(calleeSavedRegs{})/unsafe.Sizeof(uintptr(0)))]))
// Invoke architecture-specific initialization.
s.archInit(stack, fn, args)
s.archInit(r, fn, args)
}
//export tinygo_swapTask
func swapTask(oldStack uintptr, newStack *uintptr)
// startTask is a small wrapper function that sets up the first (and only)
// argument to the new goroutine and makes sure it is exited when the goroutine
// finishes.
//go:extern tinygo_startTask
var startTask [0]uint8
//go:linkname runqueuePushBack runtime.runqueuePushBack
func runqueuePushBack(*Task)

99
src/internal/task/task_stack_avr.S

@ -0,0 +1,99 @@
.section .bss.tinygo_systemStack
.global tinygo_systemStack
.type tinygo_systemStack, %object
tinygo_systemStack:
.short 0
.section .text.tinygo_startTask
.global tinygo_startTask
.type tinygo_startTask, %function
tinygo_startTask:
// Small assembly stub for starting a goroutine. This is already run on the
// new stack, with the callee-saved registers already loaded.
// Most importantly, r2r3 contain the pc of the to-be-started function and
// r4r5 contain the only argument it is given. Multiple arguments are packed
// into one by storing them in a new allocation.
// Set the first argument of the goroutine start wrapper, which contains all
// the arguments.
movw r24, r4
// Branch to the "goroutine start" function. Note that the Z register is
// call-clobbered, so does not need to be restored after use.
movw Z, r2
icall
// After return, exit this goroutine. This is a tail call.
#if __AVR_ARCH__ == 2 || __AVR_ARCH__ == 25
// Small memory devices (8kB flash) that do not have the long call
// instruction availble will need to use rcall instead.
// Note that they will probably not be able to run more than the main
// goroutine anyway, but this file is compiled for all AVRs so it needs to
// compile at least.
rcall tinygo_pause
#else
// Other devices can (and must) use the regular call instruction.
call tinygo_pause
#endif
.global tinygo_swapTask
.type tinygo_swapTask, %function
tinygo_swapTask:
// This function gets the following parameters:
// r24:r25 = newStack uintptr
// r22:r23 = oldStack *uintptr
// Save all call-saved registers:
// https://gcc.gnu.org/wiki/avr-gcc#Call-Saved_Registers
push r29 // Y
push r28 // Y
push r17
push r16
push r15
push r14
push r13
push r12
push r11
push r10
push r9
push r8
push r7
push r6
push r5
push r4
push r3
push r2
// Save the current stack pointer in oldStack.
in r2, 0x3d; SPL
in r3, 0x3e; SPH
movw Y, r22
std Y+0, r2
std Y+1, r3
// Switch to the new stack pointer.
out 0x3d, r24; SPL
out 0x3e, r25; SPH
// Load saved register from the new stack.
pop r2
pop r3
pop r4
pop r5
pop r6
pop r7
pop r8
pop r9
pop r10
pop r11
pop r12
pop r13
pop r14
pop r15
pop r16
pop r17
pop r28 // Y
pop r29 // Y
// Return into the new task, as if tinygo_swapTask was a regular call.
ret

49
src/internal/task/task_stack_avr.go

@ -4,9 +4,12 @@ package task
import "unsafe"
//go:extern tinygo_systemStack
var systemStack uintptr
// calleeSavedRegs is the list of registers that must be saved and restored when
// switching between tasks. Also see scheduler_avr.S that relies on the
// exact layout of this struct.
// switching between tasks. Also see task_stack_avr.S that relies on the exact
// layout of this struct.
//
// https://gcc.gnu.org/wiki/avr-gcc#Call-Saved_Registers
type calleeSavedRegs struct {
@ -23,34 +26,15 @@ type calleeSavedRegs struct {
pc uintptr
}
// registers gets a pointer to the registers stored at the top of the stack.
func (s *state) registers() *calleeSavedRegs {
return (*calleeSavedRegs)(unsafe.Pointer(s.sp + 1))
}
// startTask is a small wrapper function that sets up the first (and only)
// argument to the new goroutine and makes sure it is exited when the goroutine
// finishes.
//go:extern tinygo_startTask
var startTask [0]uint8
// archInit runs architecture-specific setup for the goroutine startup.
// Note: adding //go:noinline to work around an AVR backend bug.
//go:noinline
func (s *state) archInit(stack []uintptr, fn uintptr, args unsafe.Pointer) {
// Set up the stack canary, a random number that should be checked when
// switching from the task back to the scheduler. The stack canary pointer
// points to the first word of the stack. If it has changed between now and
// the next stack switch, there was a stack overflow.
s.canaryPtr = &stack[0]
*s.canaryPtr = stackCanary
func (s *state) archInit(r *calleeSavedRegs, fn uintptr, args unsafe.Pointer) {
// Store the initial sp for the startTask function (implemented in assembly).
s.sp = uintptr(unsafe.Pointer(&stack[uintptr(len(stack))-(unsafe.Sizeof(calleeSavedRegs{})/unsafe.Sizeof(uintptr(0)))])) - 1
s.sp = uintptr(unsafe.Pointer(r)) - 1
// Initialize the registers.
// These will be popped off of the stack on the first resume of the goroutine.
r := s.registers()
// Start the function at tinygo_startTask.
startTask := uintptr(unsafe.Pointer(&startTask))
@ -67,20 +51,17 @@ func (s *state) archInit(stack []uintptr, fn uintptr, args unsafe.Pointer) {
}
func (s *state) resume() {
switchToTask(s.sp)
swapTask(s.sp, &systemStack)
}
//export tinygo_switchToTask
func switchToTask(uintptr)
//export tinygo_switchToScheduler
func switchToScheduler(*uintptr)
func (s *state) pause() {
switchToScheduler(&s.sp)
newStack := systemStack
systemStack = 0
swapTask(newStack, &s.sp)
}
//export tinygo_pause
func pause() {
Pause()
// SystemStack returns the system stack pointer when called from a task stack.
// When called from the system stack, it returns 0.
func SystemStack() uintptr {
return systemStack
}

11
src/runtime/scheduler_cortexm.S → src/internal/task/task_stack_cortexm.S

@ -30,17 +30,6 @@ tinygo_startTask:
.cfi_endproc
.size tinygo_startTask, .-tinygo_startTask
.section .text.tinygo_getSystemStackPointer
.global tinygo_getSystemStackPointer
.type tinygo_getSystemStackPointer, %function
tinygo_getSystemStackPointer:
.cfi_startproc
// The system stack pointer is always stored in the MSP register.
mrs r0, MSP
bx lr
.cfi_endproc
.size tinygo_getSystemStackPointer, .-tinygo_getSystemStackPointer
.section .text.tinygo_switchToScheduler
.global tinygo_switchToScheduler
.type tinygo_switchToScheduler, %function

39
src/internal/task/task_stack_cortexm.go

@ -2,10 +2,13 @@
package task
import "unsafe"
import (
"device/arm"
"unsafe"
)
// calleeSavedRegs is the list of registers that must be saved and restored when
// switching between tasks. Also see scheduler_cortexm.S that relies on the
// switching between tasks. Also see task_stack_cortexm.S that relies on the
// exact layout of this struct.
type calleeSavedRegs struct {
r4 uintptr
@ -20,34 +23,15 @@ type calleeSavedRegs struct {
pc uintptr
}
// registers gets a pointer to the registers stored at the top of the stack.
func (s *state) registers() *calleeSavedRegs {
return (*calleeSavedRegs)(unsafe.Pointer(s.sp))
}
// startTask is a small wrapper function that sets up the first (and only)
// argument to the new goroutine and makes sure it is exited when the goroutine
// finishes.
//go:extern tinygo_startTask
var startTask [0]uint8
// archInit runs architecture-specific setup for the goroutine startup.
func (s *state) archInit(stack []uintptr, fn uintptr, args unsafe.Pointer) {
// Set up the stack canary, a random number that should be checked when
// switching from the task back to the scheduler. The stack canary pointer
// points to the first word of the stack. If it has changed between now and
// the next stack switch, there was a stack overflow.
s.canaryPtr = &stack[0]
*s.canaryPtr = stackCanary
func (s *state) archInit(r *calleeSavedRegs, fn uintptr, args unsafe.Pointer) {
// Store the initial sp for the startTask function (implemented in assembly).
s.sp = uintptr(unsafe.Pointer(&stack[uintptr(len(stack))-(unsafe.Sizeof(calleeSavedRegs{})/unsafe.Sizeof(uintptr(0)))]))
s.sp = uintptr(unsafe.Pointer(r))
// Initialize the registers.
// These will be popped off of the stack on the first resume of the goroutine.
r := s.registers()
// Start the function at tinygo_startTask (defined in src/runtime/scheduler_cortexm.S).
// Start the function at tinygo_startTask (defined in src/internal/task/task_stack_cortexm.S).
// This assembly code calls a function (passed in r4) with a single argument (passed in r5).
// After the function returns, it calls Pause().
r.pc = uintptr(unsafe.Pointer(&startTask))
@ -75,7 +59,8 @@ func (s *state) pause() {
switchToScheduler(&s.sp)
}
//export tinygo_pause
func pause() {
Pause()
// SystemStack returns the system stack pointer. On Cortex-M, it is always
// available.
func SystemStack() uintptr {
return arm.AsmFull("mrs {}, MSP", nil)
}

189
src/runtime/scheduler_avr.S

@ -1,189 +0,0 @@
.section .bss.tinygo_systemStack
.global tinygo_systemStack
.type tinygo_systemStack, %object
tinygo_systemStack:
.short 0
.section .text.tinygo_startTask
.global tinygo_startTask
.type tinygo_startTask, %function
tinygo_startTask:
// Small assembly stub for starting a goroutine. This is already run on the
// new stack, with the callee-saved registers already loaded.
// Most importantly, r2r3 contain the pc of the to-be-started function and
// r4r5 contain the only argument it is given. Multiple arguments are packed
// into one by storing them in a new allocation.
// Set the first argument of the goroutine start wrapper, which contains all
// the arguments.
movw r24, r4
// Branch to the "goroutine start" function. Note that the Z register is
// call-clobbered, so does not need to be restored after use.
movw Z, r2
icall
// After return, exit this goroutine. This is a tail call.
#if __AVR_ARCH__ == 2 || __AVR_ARCH__ == 25
// Small memory devices (8kB flash) that do not have the long call
// instruction availble will need to use rcall instead.
// Note that they will probably not be able to run more than the main
// goroutine anyway, but this file is compiled for all AVRs so it needs to
// compile at least.
rcall tinygo_pause
#else
// Other devices can (and must) use the regular call instruction.
call tinygo_pause
#endif
// Get the system stack pointer, independent of whether we're currently on the
// system stack or a task stack.
.global tinygo_getSystemStackPointer
.type tinygo_getSystemStackPointer, %function
tinygo_getSystemStackPointer:
// Load system stack pointer.
lds r24, tinygo_systemStack
lds r25, tinygo_systemStack+1
// Compare against 0.
cp r24, r1
cpc r25, r1
// Branch (and then return) if tinygo_systemStack has a non-zero value.
brne 1f
// tinygo_systemStack is zero, so return the current stack pointer.
in r24, 0x3d; SPL
in r25, 0x3e; SPH
1:
ret
.global tinygo_switchToTask
.type tinygo_switchToTask, %function
tinygo_switchToTask:
// The sp parameter is the only parameter, so it will take up r24:r25.
// r24:r25 = sp uintptr
// Save all call-saved registers:
// https://gcc.gnu.org/wiki/avr-gcc#Call-Saved_Registers
push r29 // Y
push r28 // Y
push r17
push r16
push r15
push r14
push r13
push r12
push r11
push r10
push r9
push r8
push r7
push r6
push r5
push r4
push r3
push r2
// Save the system stack pointer in a global.
in r2, 0x3d; SPL
in r3, 0x3e; SPH
sts tinygo_systemStack+0, r2
sts tinygo_systemStack+1, r3
// Switch to the task stack pointer.
out 0x3d, r24; SPL
out 0x3e, r25; SPH
// Load saved register from the task stack.
pop r2
pop r3
pop r4
pop r5
pop r6
pop r7
pop r8
pop r9
pop r10
pop r11
pop r12
pop r13
pop r14
pop r15
pop r16
pop r17
pop r28 // Y
pop r29 // Y
// Return into the new task, as if tinygo_switchToScheduler was a regular
// call.
ret
.global tinygo_switchToScheduler
.type tinygo_switchToScheduler, %function
tinygo_switchToScheduler:
// The sp parameter is the only parameter, so it will take up r24:r25.
// r24:r25 = sp *uintptr
// Save all call-saved registers on the task stack:
// https://gcc.gnu.org/wiki/avr-gcc#Call-Saved_Registers
push r29 // Y
push r28 // Y
push r17
push r16
push r15
push r14
push r13
push r12
push r11
push r10
push r9
push r8
push r7
push r6
push r5
push r4
push r3
push r2
// Save the task stack.
in r2, 0x3d; SPL
in r3, 0x3e; SPH
movw Y, r24
std Y+0, r2
std Y+1, r3
// Switch to the system stack.
lds r2, tinygo_systemStack
lds r3, tinygo_systemStack+1
out 0x3d, r2; SPL
out 0x3e, r3; SPH
// Clear tinygo_systemStack to make sure tinygo_getSystemStackPointer knows
// which pointer to return.
sts tinygo_systemStack+0, r1
sts tinygo_systemStack+1, r1
// Load saved register from the system stack.
pop r2
pop r3
pop r4
pop r5
pop r6
pop r7
pop r8
pop r9
pop r10
pop r11
pop r12
pop r13
pop r14
pop r15
pop r16
pop r17
pop r28 // Y
pop r29 // Y
// Return into the scheduler, as if tinygo_switchToTask was a regular call.
ret

13
src/runtime/scheduler_tasks.go

@ -2,7 +2,16 @@
package runtime
import "internal/task"
// getSystemStackPointer returns the current stack pointer of the system stack.
// This is not necessarily the same as the current stack pointer.
//export tinygo_getSystemStackPointer
func getSystemStackPointer() uintptr
func getSystemStackPointer() uintptr {
// TODO: this always returns the correct stack on Cortex-M, so don't bother
// comparing against 0.
sp := task.SystemStack()
if sp == 0 {
sp = getCurrentStackPointer()
}
return sp
}

4
targets/avr.json

@ -13,7 +13,7 @@
"-Wl,--gc-sections"
],
"extra-files": [
"src/runtime/gc_avr.S",
"src/runtime/scheduler_avr.S"
"src/internal/task/task_stack_avr.S",
"src/runtime/gc_avr.S"
]
}

4
targets/cortex-m.json

@ -25,8 +25,8 @@
],
"extra-files": [
"src/device/arm/cortexm.s",
"src/runtime/gc_arm.S",
"src/runtime/scheduler_cortexm.S"
"src/internal/task/task_stack_cortexm.S",
"src/runtime/gc_arm.S"
],
"gdb": "gdb-multiarch"
}

Loading…
Cancel
Save