Browse Source

nucleol552ze: implementation with CLOCK, LED, and UART

pull/1636/head
Kenneth Bell 4 years ago
committed by deadprogram
parent
commit
af02c09b56
  1. 2
      Makefile
  2. 45
      src/machine/board_nucleol552ze.go
  3. 2
      src/machine/i2c.go
  4. 2
      src/machine/machine_stm32_i2c.go
  5. 62
      src/machine/machine_stm32_l5_uart.go
  6. 2
      src/machine/machine_stm32_spi.go
  7. 2
      src/machine/machine_stm32_uart.go
  8. 253
      src/machine/machine_stm32l5.go
  9. 42
      src/machine/machine_stm32l5x2.go
  10. 2
      src/machine/spi.go
  11. 243
      src/runtime/runtime_stm32l5x2.go
  12. 9
      targets/cortex-m33.json
  13. 11
      targets/nucleo-l552ze.json
  14. 10
      targets/stm32l5x2xe.ld

2
Makefile

@ -341,6 +341,8 @@ smoketest:
@$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=nucleo-f722ze examples/blinky1
@$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=nucleo-l552ze examples/blinky1
@$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=p1am-100 examples/blinky1
@$(MD5SUM) test.hex
# test pwm

45
src/machine/board_nucleol552ze.go

@ -0,0 +1,45 @@
// +build nucleol552ze
package machine
import (
"device/stm32"
"runtime/interrupt"
)
const (
LED = LED_BUILTIN
LED_BUILTIN = LED_GREEN
LED_GREEN = PC7
LED_BLUE = PB7
LED_RED = PA9
)
const (
BUTTON = BUTTON_USER
BUTTON_USER = PC13
)
// UART pins
const (
// PG7 and PG8 are connected to the ST-Link Virtual Com Port (VCP)
UART_TX_PIN = PG7
UART_RX_PIN = PG8
UART_ALT_FN = 8 // GPIO_AF8_LPUART1
)
var (
// LPUART1 is the hardware serial port connected to the onboard ST-LINK
// debugger to be exposed as virtual COM port over USB on Nucleo boards.
// Both UART0 and UART1 refer to LPUART1.
UART0 = UART{
Buffer: NewRingBuffer(),
Bus: stm32.LPUART1,
AltFuncSelector: UART_ALT_FN,
}
UART1 = &UART0
)
func init() {
UART0.Interrupt = interrupt.New(stm32.IRQ_LPUART1, UART0.handleInterrupt)
}

2
src/machine/i2c.go

@ -1,4 +1,4 @@
// +build avr nrf sam stm32,!stm32f407,!stm32f7x2,!stm32l0 fe310 k210
// +build avr nrf sam stm32,!stm32f407,!stm32f7x2,!stm32l5x2,!stm32l0 fe310 k210
package machine

2
src/machine/machine_stm32_i2c.go

@ -1,4 +1,4 @@
// +build stm32,!stm32f103,!stm32f407,!stm32f7x2,!stm32l0
// +build stm32,!stm32f103,!stm32f407,!stm32f7x2,!stm32l5x2,!stm32l0
package machine

62
src/machine/machine_stm32_l5_uart.go

@ -0,0 +1,62 @@
// +build stm32,stm32l5x2
package machine
// Peripheral abstraction layer for UARTs on the stm32 family.
import (
"device/stm32"
"runtime/interrupt"
"unsafe"
)
// Configure the UART.
func (uart UART) Configure(config UARTConfig) {
// Default baud rate to 115200.
if config.BaudRate == 0 {
config.BaudRate = 115200
}
// Set the GPIO pins to defaults if they're not set
if config.TX == 0 && config.RX == 0 {
config.TX = UART_TX_PIN
config.RX = UART_RX_PIN
}
// Enable USART clock
enableAltFuncClock(unsafe.Pointer(uart.Bus))
uart.configurePins(config)
// Set baud rate
uart.SetBaudRate(config.BaudRate)
// Enable USART port, tx, rx and rx interrupts
uart.Bus.CR1.Set(stm32.USART_CR1_TE | stm32.USART_CR1_RE | stm32.USART_CR1_RXNEIE | stm32.USART_CR1_UE)
// Enable RX IRQ
uart.Interrupt.SetPriority(0xc0)
uart.Interrupt.Enable()
}
// handleInterrupt should be called from the appropriate interrupt handler for
// this UART instance.
func (uart *UART) handleInterrupt(interrupt.Interrupt) {
uart.Receive(byte((uart.Bus.RDR.Get() & 0xFF)))
}
// SetBaudRate sets the communication speed for the UART. Defer to chip-specific
// routines for calculation
func (uart UART) SetBaudRate(br uint32) {
divider := uart.getBaudRateDivisor(br)
uart.Bus.BRR.Set(divider)
}
// WriteByte writes a byte of data to the UART.
func (uart UART) WriteByte(c byte) error {
uart.Bus.TDR.Set(uint32(c))
for !uart.Bus.ISR.HasBits(stm32.USART_ISR_TXE) {
}
return nil
}

2
src/machine/machine_stm32_spi.go

@ -1,4 +1,4 @@
// +build stm32,!stm32f7x2
// +build stm32,!stm32f7x2,!stm32l5x2
package machine

2
src/machine/machine_stm32_uart.go

@ -1,4 +1,4 @@
// +build stm32,!stm32f7,!stm32l0
// +build stm32,!stm32f7,!stm32l5x2,!stm32l0
package machine

253
src/machine/machine_stm32l5.go

@ -0,0 +1,253 @@
// +build stm32l5
package machine
// Peripheral abstraction layer for the stm32l5
import (
"device/stm32"
"unsafe"
)
const (
PA0 = portA + 0
PA1 = portA + 1
PA2 = portA + 2
PA3 = portA + 3
PA4 = portA + 4
PA5 = portA + 5
PA6 = portA + 6
PA7 = portA + 7
PA8 = portA + 8
PA9 = portA + 9
PA10 = portA + 10
PA11 = portA + 11
PA12 = portA + 12
PA13 = portA + 13
PA14 = portA + 14
PA15 = portA + 15
PB0 = portB + 0
PB1 = portB + 1
PB2 = portB + 2
PB3 = portB + 3
PB4 = portB + 4
PB5 = portB + 5
PB6 = portB + 6
PB7 = portB + 7
PB8 = portB + 8
PB9 = portB + 9
PB10 = portB + 10
PB11 = portB + 11
PB12 = portB + 12
PB13 = portB + 13
PB14 = portB + 14
PB15 = portB + 15
PC0 = portC + 0
PC1 = portC + 1
PC2 = portC + 2
PC3 = portC + 3
PC4 = portC + 4
PC5 = portC + 5
PC6 = portC + 6
PC7 = portC + 7
PC8 = portC + 8
PC9 = portC + 9
PC10 = portC + 10
PC11 = portC + 11
PC12 = portC + 12
PC13 = portC + 13
PC14 = portC + 14
PC15 = portC + 15
PD0 = portD + 0
PD1 = portD + 1
PD2 = portD + 2
PD3 = portD + 3
PD4 = portD + 4
PD5 = portD + 5
PD6 = portD + 6
PD7 = portD + 7
PD8 = portD + 8
PD9 = portD + 9
PD10 = portD + 10
PD11 = portD + 11
PD12 = portD + 12
PD13 = portD + 13
PD14 = portD + 14
PD15 = portD + 15
PE0 = portE + 0
PE1 = portE + 1
PE2 = portE + 2
PE3 = portE + 3
PE4 = portE + 4
PE5 = portE + 5
PE6 = portE + 6
PE7 = portE + 7
PE8 = portE + 8
PE9 = portE + 9
PE10 = portE + 10
PE11 = portE + 11
PE12 = portE + 12
PE13 = portE + 13
PE14 = portE + 14
PE15 = portE + 15
PF0 = portF + 0
PF1 = portF + 1
PF2 = portF + 2
PF3 = portF + 3
PF4 = portF + 4
PF5 = portF + 5
PF6 = portF + 6
PF7 = portF + 7
PF8 = portF + 8
PF9 = portF + 9
PF10 = portF + 10
PF11 = portF + 11
PF12 = portF + 12
PF13 = portF + 13
PF14 = portF + 14
PF15 = portF + 15
PG0 = portG + 0
PG1 = portG + 1
PG2 = portG + 2
PG3 = portG + 3
PG4 = portG + 4
PG5 = portG + 5
PG6 = portG + 6
PG7 = portG + 7
PG8 = portG + 8
PG9 = portG + 9
PG10 = portG + 10
PG11 = portG + 11
PG12 = portG + 12
PG13 = portG + 13
PG14 = portG + 14
PG15 = portG + 15
PH0 = portH + 0
PH1 = portH + 1
)
func (p Pin) getPort() *stm32.GPIO_Type {
switch p / 16 {
case 0:
return stm32.GPIOA
case 1:
return stm32.GPIOB
case 2:
return stm32.GPIOC
case 3:
return stm32.GPIOD
case 4:
return stm32.GPIOE
case 5:
return stm32.GPIOF
case 6:
return stm32.GPIOG
case 7:
return stm32.GPIOH
default:
panic("machine: unknown port")
}
}
// enableClock enables the clock for this desired GPIO port.
func (p Pin) enableClock() {
switch p / 16 {
case 0:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIOAEN)
case 1:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIOBEN)
case 2:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIOCEN)
case 3:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIODEN)
case 4:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIOEEN)
case 5:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIOFEN)
case 6:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIOGEN)
case 7:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIOHEN)
default:
panic("machine: unknown port")
}
}
// Enable peripheral clock
func enableAltFuncClock(bus unsafe.Pointer) {
switch bus {
case unsafe.Pointer(stm32.DAC): // DAC interface clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_DAC1EN)
case unsafe.Pointer(stm32.PWR): // Power interface clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_PWREN)
case unsafe.Pointer(stm32.I2C3): // I2C3 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_I2C3EN)
case unsafe.Pointer(stm32.I2C2): // I2C2 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_I2C2EN)
case unsafe.Pointer(stm32.I2C1): // I2C1 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_I2C1EN)
case unsafe.Pointer(stm32.UART5): // UART5 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_UART5EN)
case unsafe.Pointer(stm32.UART4): // UART4 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_UART4EN)
case unsafe.Pointer(stm32.USART3): // USART3 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_USART3EN)
case unsafe.Pointer(stm32.USART2): // USART2 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_USART2EN)
case unsafe.Pointer(stm32.SPI3): // SPI3 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_SP3EN)
case unsafe.Pointer(stm32.SPI2): // SPI2 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_SPI2EN)
case unsafe.Pointer(stm32.WWDG): // Window watchdog clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_WWDGEN)
case unsafe.Pointer(stm32.TIM7): // TIM7 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_TIM7EN)
case unsafe.Pointer(stm32.TIM6): // TIM6 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_TIM6EN)
case unsafe.Pointer(stm32.TIM5): // TIM5 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_TIM5EN)
case unsafe.Pointer(stm32.TIM4): // TIM4 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_TIM4EN)
case unsafe.Pointer(stm32.TIM3): // TIM3 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_TIM3EN)
case unsafe.Pointer(stm32.TIM2): // TIM2 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_TIM2EN)
case unsafe.Pointer(stm32.UCPD1): // UCPD1 clock enable
stm32.RCC.APB1ENR2.SetBits(stm32.RCC_APB1ENR2_UCPD1EN)
case unsafe.Pointer(stm32.FDCAN1): // FDCAN1 clock enable
stm32.RCC.APB1ENR2.SetBits(stm32.RCC_APB1ENR2_FDCAN1EN)
case unsafe.Pointer(stm32.LPTIM3): // LPTIM3 clock enable
stm32.RCC.APB1ENR2.SetBits(stm32.RCC_APB1ENR2_LPTIM3EN)
case unsafe.Pointer(stm32.LPTIM2): // LPTIM2 clock enable
stm32.RCC.APB1ENR2.SetBits(stm32.RCC_APB1ENR2_LPTIM2EN)
case unsafe.Pointer(stm32.I2C4): // I2C4 clock enable
stm32.RCC.APB1ENR2.SetBits(stm32.RCC_APB1ENR2_I2C4EN)
case unsafe.Pointer(stm32.LPUART1): // LPUART1 clock enable
stm32.RCC.APB1ENR2.SetBits(stm32.RCC_APB1ENR2_LPUART1EN)
case unsafe.Pointer(stm32.TIM17): // TIM17 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM17EN)
case unsafe.Pointer(stm32.TIM16): // TIM16 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM16EN)
case unsafe.Pointer(stm32.TIM15): // TIM15 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM15EN)
case unsafe.Pointer(stm32.SYSCFG): // System configuration controller clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_SYSCFGEN)
case unsafe.Pointer(stm32.SPI1): // SPI1 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_SPI1EN)
case unsafe.Pointer(stm32.USART1): // USART1 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_USART1EN)
case unsafe.Pointer(stm32.TIM8): // TIM8 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM8EN)
case unsafe.Pointer(stm32.TIM1): // TIM1 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM1EN)
}
}

42
src/machine/machine_stm32l5x2.go

@ -0,0 +1,42 @@
// +build stm32l5x2
package machine
// Peripheral abstraction layer for the stm32f407
import (
"device/stm32"
"runtime/interrupt"
)
func CPUFrequency() uint32 {
return 110000000
}
//---------- UART related types and code
// UART representation
type UART struct {
Buffer *RingBuffer
Bus *stm32.USART_Type
Interrupt interrupt.Interrupt
AltFuncSelector stm32.AltFunc
}
// Configure the UART.
func (uart UART) configurePins(config UARTConfig) {
if config.RX.getPort() == stm32.GPIOG || config.TX.getPort() == stm32.GPIOG {
// Enable VDDIO2 power supply, which is an independant power supply for the PGx pins
stm32.PWR.CR2.SetBits(stm32.PWR_CR2_IOSV)
}
// enable the alternate functions on the TX and RX pins
config.TX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTTX}, uart.AltFuncSelector)
config.RX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTRX}, uart.AltFuncSelector)
}
// UART baudrate calc based on the bus and clockspeed
// NOTE: keep this in sync with the runtime/runtime_stm32l5x2.go clock init code
func (uart UART) getBaudRateDivisor(baudRate uint32) uint32 {
return 256 * (CPUFrequency() / baudRate)
}

2
src/machine/spi.go

@ -1,4 +1,4 @@
// +build !baremetal sam stm32,!stm32f7x2 fe310 k210 atmega
// +build !baremetal sam stm32,!stm32f7x2,!stm32l5x2 fe310 k210 atmega
package machine

243
src/runtime/runtime_stm32l5x2.go

@ -0,0 +1,243 @@
// +build stm32,stm32l5x2
package runtime
import (
"device/arm"
"device/stm32"
"machine"
"runtime/interrupt"
"runtime/volatile"
)
func init() {
initCLK()
initTIM15()
machine.UART0.Configure(machine.UARTConfig{})
initTIM16()
}
func putchar(c byte) {
machine.UART0.WriteByte(c)
}
const (
HSE_STARTUP_TIMEOUT = 0x0500
PLL_M = 1
PLL_N = 55
PLL_P = 7 // RCC_PLLP_DIV7
PLL_Q = 2 // RCC_PLLQ_DIV2
PLL_R = 2 // RCC_PLLR_DIV2
)
/*
clock settings
+-------------+-----------+
| LSE | 32.768khz |
| SYSCLK | 110mhz |
| HCLK | 110mhz |
| APB1(PCLK1) | 110mhz |
| APB2(PCLK2) | 110mhz |
+-------------+-----------+
*/
func initCLK() {
// PWR_CLK_ENABLE
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_PWREN)
_ = stm32.RCC.APB1ENR1.Get()
// PWR_VOLTAGESCALING_CONFIG
stm32.PWR.CR1.ReplaceBits(0, stm32.PWR_CR1_VOS_Msk, 0)
_ = stm32.PWR.CR1.Get()
// Initialize the High-Speed External Oscillator
initOsc()
// Set flash wait states (min 5 latency units) based on clock
if (stm32.FLASH.ACR.Get() & 0xF) < 5 {
stm32.FLASH.ACR.ReplaceBits(5, 0xF, 0)
}
// Ensure HCLK does not exceed max during transition
stm32.RCC.CFGR.ReplaceBits(8<<stm32.RCC_CFGR_HPRE_Pos, stm32.RCC_CFGR_HPRE_Msk, 0)
// Set SYSCLK source and wait
// (3 = RCC_SYSCLKSOURCE_PLLCLK, 2=RCC_CFGR_SWS_Pos)
stm32.RCC.CFGR.ReplaceBits(3, stm32.RCC_CFGR_SW_Msk, 0)
for stm32.RCC.CFGR.Get()&(3<<2) != (3 << 2) {
}
// Set HCLK
// (0 = RCC_SYSCLKSOURCE_PLLCLK)
stm32.RCC.CFGR.ReplaceBits(0, stm32.RCC_CFGR_HPRE_Msk, 0)
// Set flash wait states (max 5 latency units) based on clock
if (stm32.FLASH.ACR.Get() & 0xF) > 5 {
stm32.FLASH.ACR.ReplaceBits(5, 0xF, 0)
}
// Set APB1 and APB2 clocks (0 = DIV1)
stm32.RCC.CFGR.ReplaceBits(0, stm32.RCC_CFGR_PPRE1_Msk, 0)
stm32.RCC.CFGR.ReplaceBits(0, stm32.RCC_CFGR_PPRE2_Msk, 0)
}
func initOsc() {
// Enable HSI, wait until ready
stm32.RCC.CR.SetBits(stm32.RCC_CR_HSION)
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_HSIRDY) {
}
// Disable Backup domain protection
if !stm32.PWR.CR1.HasBits(stm32.PWR_CR1_DBP) {
stm32.PWR.CR1.SetBits(stm32.PWR_CR1_DBP)
for !stm32.PWR.CR1.HasBits(stm32.PWR_CR1_DBP) {
}
}
// Set LSE Drive to LOW
stm32.RCC.BDCR.ReplaceBits(0, stm32.RCC_BDCR_LSEDRV_Msk, 0)
// Enable LSE, wait until ready
stm32.RCC.BDCR.SetBits(stm32.RCC_BDCR_LSEON)
for !stm32.RCC.BDCR.HasBits(stm32.RCC_BDCR_LSEON) {
}
// Ensure LSESYS disabled
stm32.RCC.BDCR.ClearBits(stm32.RCC_BDCR_LSESYSEN)
for stm32.RCC.BDCR.HasBits(stm32.RCC_BDCR_LSESYSEN) {
}
// Enable HSI48, wait until ready
stm32.RCC.CRRCR.SetBits(stm32.RCC_CRRCR_HSI48ON)
for !stm32.RCC.CRRCR.HasBits(stm32.RCC_CRRCR_HSI48ON) {
}
// Disable the PLL, wait until disabled
stm32.RCC.CR.ClearBits(stm32.RCC_CR_PLLON)
for stm32.RCC.CR.HasBits(stm32.RCC_CR_PLLRDY) {
}
// Configure the PLL
stm32.RCC.PLLCFGR.ReplaceBits(
(1)| // 1 = RCC_PLLSOURCE_MSI
(PLL_M-1)<<stm32.RCC_PLLCFGR_PLLM_Pos|
(PLL_N<<stm32.RCC_PLLCFGR_PLLN_Pos)|
(((PLL_Q>>1)-1)<<stm32.RCC_PLLCFGR_PLLQ_Pos)|
(((PLL_R>>1)-1)<<stm32.RCC_PLLCFGR_PLLR_Pos)|
(PLL_P<<stm32.RCC_PLLCFGR_PLLPDIV_Pos),
stm32.RCC_PLLCFGR_PLLSRC_Msk|stm32.RCC_PLLCFGR_PLLM_Msk|
stm32.RCC_PLLCFGR_PLLN_Msk|stm32.RCC_PLLCFGR_PLLP_Msk|
stm32.RCC_PLLCFGR_PLLR_Msk|stm32.RCC_PLLCFGR_PLLPDIV_Msk,
0)
// Enable the PLL and PLL System Clock Output, wait until ready
stm32.RCC.CR.SetBits(stm32.RCC_CR_PLLON)
stm32.RCC.PLLCFGR.SetBits(stm32.RCC_PLLCFGR_PLLREN) // = RCC_PLL_SYSCLK
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_PLLRDY) {
}
}
var (
// tick in milliseconds
tickCount timeUnit
)
var timerWakeup volatile.Register8
func ticksToNanoseconds(ticks timeUnit) int64 {
return int64(ticks) * 1000
}
func nanosecondsToTicks(ns int64) timeUnit {
return timeUnit(ns / 1000)
}
// Enable the TIM15 clock.(sleep count)
func initTIM15() {
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM15EN)
intr := interrupt.New(stm32.IRQ_TIM15, handleTIM15)
intr.SetPriority(0xc3)
intr.Enable()
}
// Enable the TIM16 clock.(tick count)
func initTIM16() {
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM16EN)
// CK_INT = APB1 = 110mhz
stm32.TIM16.PSC.Set(110000000/10000 - 1) // 110mhz to 10khz(0.1ms)
stm32.TIM16.ARR.Set(10 - 1) // interrupt per 1ms
// Enable the hardware interrupt.
stm32.TIM16.DIER.SetBits(stm32.TIM_DIER_UIE)
// Enable the timer.
stm32.TIM16.CR1.SetBits(stm32.TIM_CR1_CEN)
intr := interrupt.New(stm32.IRQ_TIM16, handleTIM16)
intr.SetPriority(0xc1)
intr.Enable()
}
const asyncScheduler = false
// sleepTicks should sleep for specific number of microseconds.
func sleepTicks(d timeUnit) {
timerSleep(uint32(d))
}
// number of ticks (microseconds) since start.
func ticks() timeUnit {
// milliseconds to microseconds
return tickCount * 1000
}
// ticks are in microseconds
func timerSleep(ticks uint32) {
timerWakeup.Set(0)
// CK_INT = APB1 = 110mhz
// prescale counter down from 110mhz to 10khz aka 0.1 ms frequency.
stm32.TIM15.PSC.Set(110000000/10000 - 1)
// set duty aka duration
arr := (ticks / 100) - 1 // convert from microseconds to 0.1 ms
if arr == 0 {
arr = 1 // avoid blocking
}
stm32.TIM15.ARR.Set(arr)
// Enable the hardware interrupt.
stm32.TIM15.DIER.SetBits(stm32.TIM_DIER_UIE)
// Enable the timer.
stm32.TIM15.CR1.SetBits(stm32.TIM_CR1_CEN)
// wait till timer wakes up
for timerWakeup.Get() == 0 {
arm.Asm("wfi")
}
}
func handleTIM15(interrupt.Interrupt) {
if stm32.TIM15.SR.HasBits(stm32.TIM_SR_UIF) {
// Disable the timer.
stm32.TIM15.CR1.ClearBits(stm32.TIM_CR1_CEN)
// clear the update flag
stm32.TIM15.SR.ClearBits(stm32.TIM_SR_UIF)
// timer was triggered
timerWakeup.Set(1)
}
}
func handleTIM16(interrupt.Interrupt) {
if stm32.TIM16.SR.HasBits(stm32.TIM_SR_UIF) {
// clear the update flag
stm32.TIM16.SR.ClearBits(stm32.TIM_SR_UIF)
tickCount++
}
}

9
targets/cortex-m33.json

@ -0,0 +1,9 @@
{
"inherits": ["cortex-m"],
"llvm-target": "armv7m-none-eabi",
"cflags": [
"--target=armv7m-none-eabi",
"-mfloat-abi=soft",
"-Qunused-arguments"
]
}

11
targets/nucleo-l552ze.json

@ -0,0 +1,11 @@
{
"inherits": ["cortex-m33"],
"build-tags": ["nucleol552ze", "stm32l552", "stm32l5x2", "stm32l5", "stm32"],
"linkerscript": "targets/stm32l5x2xe.ld",
"extra-files": [
"src/device/stm32/stm32l552.s"
],
"flash-method": "openocd",
"openocd-interface": "stlink-v2-1",
"openocd-target": "stm32l5x"
}

10
targets/stm32l5x2xe.ld

@ -0,0 +1,10 @@
MEMORY
{
FLASH_TEXT (rx) : ORIGIN = 0x08000000, LENGTH = 512K
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 192K
}
_stack_size = 4K;
INCLUDE "targets/arm.ld"
Loading…
Cancel
Save