Browse Source

Add support for nucleol432 board

LED and UART are working
pull/1739/head
Kenneth Bell 4 years ago
committed by Ron Evans
parent
commit
c7bd5405c3
  1. 2
      Makefile
  2. 46
      src/machine/board_nucleol432kc.go
  3. 2
      src/machine/i2c.go
  4. 2
      src/machine/machine_stm32_i2c.go
  5. 2
      src/machine/machine_stm32_spi.go
  6. 184
      src/machine/machine_stm32l4.go
  7. 36
      src/machine/machine_stm32l4x2.go
  8. 2
      src/machine/spi.go
  9. 262
      src/runtime/runtime_stm32l4x2.go
  10. 3
      targets/cortex-m4.json
  11. 11
      targets/nucleo-l432kc.json
  12. 10
      targets/stm32l4x2.ld

2
Makefile

@ -343,6 +343,8 @@ smoketest:
@$(MD5SUM) test.hex @$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=nucleo-l552ze examples/blinky1 $(TINYGO) build -size short -o test.hex -target=nucleo-l552ze examples/blinky1
@$(MD5SUM) test.hex @$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=nucleo-l432kc examples/blinky1
@$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=p1am-100 examples/blinky1 $(TINYGO) build -size short -o test.hex -target=p1am-100 examples/blinky1
@$(MD5SUM) test.hex @$(MD5SUM) test.hex
# test pwm # test pwm

46
src/machine/board_nucleol432kc.go

@ -0,0 +1,46 @@
// +build nucleol432kc
package machine
import (
"device/stm32"
"runtime/interrupt"
)
const (
LED = LED_BUILTIN
LED_BUILTIN = LED_GREEN
LED_GREEN = PB3
)
// UART pins
const (
// PA2 and PA15 are connected to the ST-Link Virtual Com Port (VCP)
UART_TX_PIN = PA2
UART_RX_PIN = PA15
)
// I2C pins
const (
// PB6 and PB7 are mapped to CN4 pin 7 and CN4 pin 8 respectively with the
// default solder bridge settings
I2C0_SCL_PIN = PB6
I2C0_SDA_PIN = PB7
)
var (
// USART2 is the hardware serial port connected to the onboard ST-LINK
// debugger to be exposed as virtual COM port over USB on Nucleo boards.
// Both UART0 and UART1 refer to USART2.
UART0 = UART{
Buffer: NewRingBuffer(),
Bus: stm32.USART2,
TxAltFuncSelector: 7,
RxAltFuncSelector: 3,
}
UART1 = &UART0
)
func init() {
UART0.Interrupt = interrupt.New(stm32.IRQ_USART2, UART0.handleInterrupt)
}

2
src/machine/i2c.go

@ -1,4 +1,4 @@
// +build avr nrf sam stm32,!stm32f7x2,!stm32l5x2,!stm32l0 fe310 k210 // +build avr nrf sam stm32,!stm32f7x2,!stm32l5x2,!stm32l0,!stm32l4x2 fe310 k210
package machine package machine

2
src/machine/machine_stm32_i2c.go

@ -1,4 +1,4 @@
// +build stm32,!stm32f7x2,!stm32l5x2,!stm32l0 // +build stm32,!stm32f7x2,!stm32l5x2,!stm32l0,!stm32l4x2
package machine package machine

2
src/machine/machine_stm32_spi.go

@ -1,4 +1,4 @@
// +build stm32,!stm32f7x2,!stm32l5x2 // +build stm32,!stm32f7x2,!stm32l5x2,!stm32l4x2
package machine package machine

184
src/machine/machine_stm32l4.go

@ -0,0 +1,184 @@
// +build stm32l4
package machine
import (
"device/stm32"
"unsafe"
)
// Peripheral abstraction layer for the stm32l4
const (
PA0 = portA + 0
PA1 = portA + 1
PA2 = portA + 2
PA3 = portA + 3
PA4 = portA + 4
PA5 = portA + 5
PA6 = portA + 6
PA7 = portA + 7
PA8 = portA + 8
PA9 = portA + 9
PA10 = portA + 10
PA11 = portA + 11
PA12 = portA + 12
PA13 = portA + 13
PA14 = portA + 14
PA15 = portA + 15
PB0 = portB + 0
PB1 = portB + 1
PB2 = portB + 2
PB3 = portB + 3
PB4 = portB + 4
PB5 = portB + 5
PB6 = portB + 6
PB7 = portB + 7
PB8 = portB + 8
PB9 = portB + 9
PB10 = portB + 10
PB11 = portB + 11
PB12 = portB + 12
PB13 = portB + 13
PB14 = portB + 14
PB15 = portB + 15
PC0 = portC + 0
PC1 = portC + 1
PC2 = portC + 2
PC3 = portC + 3
PC4 = portC + 4
PC5 = portC + 5
PC6 = portC + 6
PC7 = portC + 7
PC8 = portC + 8
PC9 = portC + 9
PC10 = portC + 10
PC11 = portC + 11
PC12 = portC + 12
PC13 = portC + 13
PC14 = portC + 14
PC15 = portC + 15
PD0 = portD + 0
PD1 = portD + 1
PD2 = portD + 2
PD3 = portD + 3
PD4 = portD + 4
PD5 = portD + 5
PD6 = portD + 6
PD7 = portD + 7
PD8 = portD + 8
PD9 = portD + 9
PD10 = portD + 10
PD11 = portD + 11
PD12 = portD + 12
PD13 = portD + 13
PD14 = portD + 14
PD15 = portD + 15
PE0 = portE + 0
PE1 = portE + 1
PE2 = portE + 2
PE3 = portE + 3
PE4 = portE + 4
PE5 = portE + 5
PE6 = portE + 6
PE7 = portE + 7
PE8 = portE + 8
PE9 = portE + 9
PE10 = portE + 10
PE11 = portE + 11
PE12 = portE + 12
PE13 = portE + 13
PE14 = portE + 14
PE15 = portE + 15
)
func (p Pin) getPort() *stm32.GPIO_Type {
switch p / 16 {
case 0:
return stm32.GPIOA
case 1:
return stm32.GPIOB
case 2:
return stm32.GPIOC
case 3:
return stm32.GPIOD
case 4:
return stm32.GPIOE
default:
panic("machine: unknown port")
}
}
// enableClock enables the clock for this desired GPIO port.
func (p Pin) enableClock() {
switch p / 16 {
case 0:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIOAEN)
case 1:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIOBEN)
case 2:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIOCEN)
case 3:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIODEN)
case 4:
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_GPIOEEN)
default:
panic("machine: unknown port")
}
}
// Enable peripheral clock
func enableAltFuncClock(bus unsafe.Pointer) {
switch bus {
case unsafe.Pointer(stm32.PWR): // Power interface clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_PWREN)
case unsafe.Pointer(stm32.I2C3): // I2C3 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_I2C3EN)
case unsafe.Pointer(stm32.I2C2): // I2C2 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_I2C2EN)
case unsafe.Pointer(stm32.I2C1): // I2C1 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_I2C1EN)
case unsafe.Pointer(stm32.UART4): // UART4 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_UART4EN)
case unsafe.Pointer(stm32.USART3): // USART3 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_USART3EN)
case unsafe.Pointer(stm32.USART2): // USART2 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_USART2EN)
case unsafe.Pointer(stm32.SPI3): // SPI3 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_SPI3EN)
case unsafe.Pointer(stm32.SPI2): // SPI2 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_SPI2EN)
case unsafe.Pointer(stm32.WWDG): // Window watchdog clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_WWDGEN)
case unsafe.Pointer(stm32.TIM7): // TIM7 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_TIM7EN)
case unsafe.Pointer(stm32.TIM6): // TIM6 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_TIM6EN)
case unsafe.Pointer(stm32.TIM3): // TIM3 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_TIM3EN)
case unsafe.Pointer(stm32.TIM2): // TIM2 clock enable
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_TIM2EN)
case unsafe.Pointer(stm32.LPTIM2): // LPTIM2 clock enable
stm32.RCC.APB1ENR2.SetBits(stm32.RCC_APB1ENR2_LPTIM2EN)
case unsafe.Pointer(stm32.I2C4): // I2C4 clock enable
stm32.RCC.APB1ENR2.SetBits(stm32.RCC_APB1ENR2_I2C4EN)
case unsafe.Pointer(stm32.LPUART1): // LPUART1 clock enable
stm32.RCC.APB1ENR2.SetBits(stm32.RCC_APB1ENR2_LPUART1EN)
case unsafe.Pointer(stm32.TIM16): // TIM16 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM16EN)
case unsafe.Pointer(stm32.TIM15): // TIM15 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM15EN)
case unsafe.Pointer(stm32.SYSCFG): // System configuration controller clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_SYSCFGEN)
case unsafe.Pointer(stm32.SPI1): // SPI1 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_SPI1EN)
case unsafe.Pointer(stm32.USART1): // USART1 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_USART1EN)
case unsafe.Pointer(stm32.TIM1): // TIM1 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM1EN)
}
}

36
src/machine/machine_stm32l4x2.go

@ -0,0 +1,36 @@
// +build stm32l4x2
package machine
// Peripheral abstraction layer for the stm32l4x2
import (
"device/stm32"
)
func CPUFrequency() uint32 {
return 80000000
}
//---------- UART related code
// Configure the UART.
func (uart *UART) configurePins(config UARTConfig) {
// enable the alternate functions on the TX and RX pins
config.TX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTTX}, uart.TxAltFuncSelector)
config.RX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTRX}, uart.RxAltFuncSelector)
}
// UART baudrate calc based on the bus and clockspeed
// NOTE: keep this in sync with the runtime/runtime_stm32l5x2.go clock init code
func (uart *UART) getBaudRateDivisor(baudRate uint32) uint32 {
return (CPUFrequency() / baudRate)
}
// Register names vary by ST processor, these are for STM L5
func (uart *UART) setRegisters() {
uart.rxReg = &uart.Bus.RDR
uart.txReg = &uart.Bus.TDR
uart.statusReg = &uart.Bus.ISR
uart.txEmptyFlag = stm32.USART_ISR_TXE
}

2
src/machine/spi.go

@ -1,4 +1,4 @@
// +build !baremetal stm32,!stm32f7x2,!stm32l5x2 fe310 k210 atmega // +build !baremetal stm32,!stm32f7x2,!stm32l5x2,!stm32l4x2 fe310 k210 atmega
package machine package machine

262
src/runtime/runtime_stm32l4x2.go

@ -0,0 +1,262 @@
// +build stm32,stm32l4x2
package runtime
import (
"device/stm32"
"machine"
)
/*
clock settings
+-------------+-----------+
| LSE | 32.768khz |
| SYSCLK | 80mhz |
| HCLK | 80mhz |
| APB1(PCLK1) | 80mhz |
| APB2(PCLK2) | 80mhz |
+-------------+-----------+
*/
const (
HSE_STARTUP_TIMEOUT = 0x0500
PLL_M = 1
PLL_N = 40
PLL_P = RCC_PLLP_DIV7
PLL_Q = RCC_PLLQ_DIV2
PLL_R = RCC_PLLR_DIV2
MSIRANGE = stm32.RCC_CR_MSIRANGE_Range4M
PWR_CR1_VOS_0 = 1 << stm32.PWR_CR1_VOS_Pos
PWR_CR1_VOS_1 = 2 << stm32.PWR_CR1_VOS_Pos
PWR_REGULATOR_VOLTAGE_SCALE1 = PWR_CR1_VOS_0
PWR_REGULATOR_VOLTAGE_SCALE2 = PWR_CR1_VOS_1
FLASH_LATENCY_0 = 0
FLASH_LATENCY_1 = 1
FLASH_LATENCY_2 = 2
FLASH_LATENCY_3 = 3
FLASH_LATENCY_4 = 4
RCC_PLLP_DIV7 = 7
RCC_PLLQ_DIV2 = 2
RCC_PLLR_DIV2 = 2
RCC_CFGR_SWS_MSI = 0x0
RCC_CFGR_SWS_PLL = 0xC
RCC_PLLSOURCE_MSI = 1
RCC_PLL_SYSCLK = stm32.RCC_PLLCFGR_PLLREN
)
/*
timer settings used for tick and sleep.
note: TICK_TIMER_FREQ and SLEEP_TIMER_FREQ are controlled by PLL / clock
settings above, so must be kept in sync if the clock settings are changed.
*/
const (
TICK_RATE = 1000 // 1 KHz
TICK_TIMER_IRQ = stm32.IRQ_TIM1_UP_TIM16
TICK_TIMER_FREQ = 80000000 // 80 MHz
SLEEP_TIMER_IRQ = stm32.IRQ_TIM1_BRK_TIM15
SLEEP_TIMER_FREQ = 80000000 // 84 MHz
)
type arrtype = uint32
const asyncScheduler = false
func init() {
initCLK()
initSleepTimer(&timerInfo{
EnableRegister: &stm32.RCC.APB2ENR,
EnableFlag: stm32.RCC_APB2ENR_TIM15EN,
Device: stm32.TIM15,
})
machine.UART0.Configure(machine.UARTConfig{})
initTickTimer(&timerInfo{
EnableRegister: &stm32.RCC.APB2ENR,
EnableFlag: stm32.RCC_APB2ENR_TIM16EN,
Device: stm32.TIM16,
})
}
func putchar(c byte) {
machine.UART0.WriteByte(c)
}
func initCLK() {
// PWR_CLK_ENABLE
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_PWREN)
_ = stm32.RCC.APB1ENR1.Get()
// Disable Backup domain protection
if !stm32.PWR.CR1.HasBits(stm32.PWR_CR1_DBP) {
stm32.PWR.CR1.SetBits(stm32.PWR_CR1_DBP)
for !stm32.PWR.CR1.HasBits(stm32.PWR_CR1_DBP) {
}
}
// Set LSE Drive to LOW
stm32.RCC.BDCR.ReplaceBits(0, stm32.RCC_BDCR_LSEDRV_Msk, 0)
// Initialize the High-Speed External Oscillator
initOsc()
// PWR_VOLTAGESCALING_CONFIG
stm32.PWR.CR1.ReplaceBits(0, stm32.PWR_CR1_VOS_Msk, 0)
_ = stm32.PWR.CR1.Get()
// Set flash wait states (min 5 latency units) based on clock
if (stm32.FLASH.ACR.Get() & 0xF) < 5 {
stm32.FLASH.ACR.ReplaceBits(5, 0xF, 0)
}
// Ensure HCLK does not exceed max during transition
stm32.RCC.CFGR.ReplaceBits(8<<stm32.RCC_CFGR_HPRE_Pos, stm32.RCC_CFGR_HPRE_Msk, 0)
// Set SYSCLK source and wait
// (3 = RCC_SYSCLKSOURCE_PLLCLK, 2=RCC_CFGR_SWS_Pos)
stm32.RCC.CFGR.ReplaceBits(3, stm32.RCC_CFGR_SW_Msk, 0)
for stm32.RCC.CFGR.Get()&(3<<2) != (3 << 2) {
}
// Set HCLK
// (0 = RCC_SYSCLKSOURCE_PLLCLK)
stm32.RCC.CFGR.ReplaceBits(0, stm32.RCC_CFGR_HPRE_Msk, 0)
// Set flash wait states (max 5 latency units) based on clock
if (stm32.FLASH.ACR.Get() & 0xF) > 5 {
stm32.FLASH.ACR.ReplaceBits(5, 0xF, 0)
}
// Set APB1 and APB2 clocks (0 = DIV1)
stm32.RCC.CFGR.ReplaceBits(0, stm32.RCC_CFGR_PPRE1_Msk, 0)
stm32.RCC.CFGR.ReplaceBits(0, stm32.RCC_CFGR_PPRE2_Msk, 0)
}
func initOsc() {
sysclkSource := stm32.RCC.CFGR.Get() & stm32.RCC_CFGR_SWS_Msk
pllConfig := stm32.RCC.PLLCFGR.Get() & stm32.RCC_PLLCFGR_PLLSRC_Msk
// Enable MSI, adjusting flash latency
if sysclkSource == RCC_CFGR_SWS_MSI ||
(sysclkSource == RCC_CFGR_SWS_PLL && pllConfig == RCC_PLLSOURCE_MSI) {
if MSIRANGE > getMSIRange() {
setFlashLatencyFromMSIRange(MSIRANGE)
setMSIFreq(MSIRANGE, 0)
} else {
setMSIFreq(MSIRANGE, 0)
if sysclkSource == RCC_CFGR_SWS_MSI {
setFlashLatencyFromMSIRange(MSIRANGE)
}
}
} else {
stm32.RCC.CR.SetBits(stm32.RCC_CR_MSION)
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_MSIRDY) {
}
setMSIFreq(MSIRANGE, 0)
}
// Enable LSE, wait until ready
stm32.RCC.BDCR.SetBits(stm32.RCC_BDCR_LSEON)
for !stm32.RCC.BDCR.HasBits(stm32.RCC_BDCR_LSEON) {
}
// Disable the PLL, wait until disabled
stm32.RCC.CR.ClearBits(stm32.RCC_CR_PLLON)
for stm32.RCC.CR.HasBits(stm32.RCC_CR_PLLRDY) {
}
// Configure the PLL
stm32.RCC.PLLCFGR.ReplaceBits(
(1)| // 1 = RCC_PLLSOURCE_MSI
(PLL_M-1)<<stm32.RCC_PLLCFGR_PLLM_Pos|
(PLL_N<<stm32.RCC_PLLCFGR_PLLN_Pos)|
(((PLL_Q>>1)-1)<<stm32.RCC_PLLCFGR_PLLQ_Pos)|
(((PLL_R>>1)-1)<<stm32.RCC_PLLCFGR_PLLR_Pos)|
(PLL_P<<stm32.RCC_PLLCFGR_PLLPDIV_Pos),
stm32.RCC_PLLCFGR_PLLSRC_Msk|stm32.RCC_PLLCFGR_PLLM_Msk|
stm32.RCC_PLLCFGR_PLLN_Msk|stm32.RCC_PLLCFGR_PLLP_Msk|
stm32.RCC_PLLCFGR_PLLR_Msk|stm32.RCC_PLLCFGR_PLLPDIV_Msk,
0)
// Enable the PLL and PLL System Clock Output, wait until ready
stm32.RCC.CR.SetBits(stm32.RCC_CR_PLLON)
stm32.RCC.PLLCFGR.SetBits(stm32.RCC_PLLCFGR_PLLREN) // = RCC_PLL_SYSCLK
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_PLLRDY) {
}
// Enable system clock output
stm32.RCC.PLLCFGR.SetBits(RCC_PLL_SYSCLK)
}
func getMSIRange() uint32 {
if stm32.RCC.CR.HasBits(stm32.RCC_CR_MSIRGSEL) {
return (stm32.RCC.CR.Get() & stm32.RCC_CR_MSIRANGE_Msk) >> stm32.RCC_CR_MSIRANGE_Pos
}
return (stm32.RCC.CSR.Get() & stm32.RCC_CSR_MSISRANGE_Msk) >> stm32.RCC_CSR_MSISRANGE_Pos
}
func setMSIFreq(r uint32, calibration uint32) {
stm32.RCC.CR.SetBits(stm32.RCC_CR_MSIRGSEL)
stm32.RCC.CR.ReplaceBits(r<<stm32.RCC_CR_MSIRANGE_Pos, stm32.RCC_CR_MSIRANGE_Msk, 0)
stm32.RCC.ICSCR.ReplaceBits(calibration<<stm32.RCC_ICSCR_MSITRIM_Pos, stm32.RCC_ICSCR_MSITRIM_Msk, 0)
}
func setFlashLatencyFromMSIRange(r uint32) {
var vos uint32
if pwrIsClkEnabled() {
vos = pwrExGetVoltageRange()
} else {
pwrClkEnable()
vos = pwrExGetVoltageRange()
pwrClkDisable()
}
latency := uint32(FLASH_LATENCY_0)
if vos == PWR_REGULATOR_VOLTAGE_SCALE1 {
if r > stm32.RCC_CR_MSIRANGE_Range16M {
if r > stm32.RCC_CR_MSIRANGE_Range32M {
latency = FLASH_LATENCY_2
} else {
latency = FLASH_LATENCY_1
}
}
} else if r > stm32.RCC_CR_MSIRANGE_Range16M {
latency = FLASH_LATENCY_3
} else {
if r == stm32.RCC_CR_MSIRANGE_Range16M {
latency = FLASH_LATENCY_2
} else if r == stm32.RCC_CR_MSIRANGE_Range8M {
latency = FLASH_LATENCY_1
}
}
stm32.FLASH.ACR.ReplaceBits(latency, stm32.Flash_ACR_LATENCY_Msk, 0)
}
func pwrIsClkEnabled() bool {
return stm32.RCC.APB1ENR1.HasBits(stm32.RCC_APB1ENR1_PWREN)
}
func pwrClkEnable() {
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_PWREN)
}
func pwrClkDisable() {
stm32.RCC.APB1ENR1.ClearBits(stm32.RCC_APB1ENR1_PWREN)
}
func pwrExGetVoltageRange() uint32 {
return stm32.PWR.CR1.Get() & stm32.PWR_CR1_VOS_Msk
}

3
targets/cortex-m4.json

@ -3,6 +3,7 @@
"llvm-target": "armv7em-none-eabi", "llvm-target": "armv7em-none-eabi",
"cflags": [ "cflags": [
"--target=armv7em-none-eabi", "--target=armv7em-none-eabi",
"-mfloat-abi=soft" "-mfloat-abi=soft",
"-Qunused-arguments"
] ]
} }

11
targets/nucleo-l432kc.json

@ -0,0 +1,11 @@
{
"inherits": ["cortex-m4"],
"build-tags": ["nucleol432kc", "stm32l432", "stm32l4x2", "stm32l4", "stm32"],
"linkerscript": "targets/stm32l4x2.ld",
"extra-files": [
"src/device/stm32/stm32l4x2.s"
],
"flash-method": "openocd",
"openocd-interface": "stlink-v2-1",
"openocd-target": "stm32l4x"
}

10
targets/stm32l4x2.ld

@ -0,0 +1,10 @@
MEMORY
{
FLASH_TEXT (rx) : ORIGIN = 0x08000000, LENGTH = 256K
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 64K
}
_stack_size = 4K;
INCLUDE "targets/arm.ld"
Loading…
Cancel
Save