Browse Source

builder: try to determine stack size information at compile time

For now, this is just an extra flag that can be used to print stack
frame information, but this is intended to provide a way to determine
stack sizes for goroutines at compile time in many cases.

Stack sizes are often somewhere around 350 bytes so are in fact not all
that big usually. Once this can be determined at compile time in many
cases, it is possible to use this information when available and as a
result increase the fallback stack size if the size cannot be determined
at compile time. This should reduce stack overflows while at the same
time reducing RAM consumption in many cases.

Interesting output for testdata/channel.go:

    function                                 stack usage (in bytes)
    Reset_Handler                            332
    .Lcommand-line-arguments.fastreceiver    220
    .Lcommand-line-arguments.fastsender      192
    .Lcommand-line-arguments.iterator        192
    .Lcommand-line-arguments.main$1          184
    .Lcommand-line-arguments.main$2          200
    .Lcommand-line-arguments.main$3          200
    .Lcommand-line-arguments.main$4          328
    .Lcommand-line-arguments.receive         176
    .Lcommand-line-arguments.selectDeadlock  72
    .Lcommand-line-arguments.selectNoOp      72
    .Lcommand-line-arguments.send            184
    .Lcommand-line-arguments.sendComplex     192
    .Lcommand-line-arguments.sender          192
    .Lruntime.run$1                          548

This shows that the stack size (if these numbers are correct) can in
fact be determined automatically in many cases, especially for small
goroutines. One of the great things about Go is lightweight goroutines,
and reducing stack sizes is very important to make goroutines
lightweight on microcontrollers.
pull/1235/head
Ayke van Laethem 4 years ago
committed by Ron Evans
parent
commit
d606315515
  1. 94
      builder/build.go
  2. 1
      compileopts/options.go
  3. 2
      main.go
  4. 1
      src/device/arm/cortexm.s
  5. 5
      src/runtime/scheduler_cortexm.S
  6. 280
      stacksize/dwarf.go
  7. 296
      stacksize/stacksize.go
  8. 1
      targets/cortex-m.json
  9. 1
      tools/gen-device-svd/gen-device-svd.go

94
builder/build.go

@ -4,11 +4,13 @@
package builder
import (
"debug/elf"
"errors"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"sort"
"strconv"
"strings"
@ -16,6 +18,7 @@ import (
"github.com/tinygo-org/tinygo/compiler"
"github.com/tinygo-org/tinygo/goenv"
"github.com/tinygo-org/tinygo/interp"
"github.com/tinygo-org/tinygo/stacksize"
"github.com/tinygo-org/tinygo/transform"
"tinygo.org/x/go-llvm"
)
@ -216,6 +219,11 @@ func Build(pkgName, outpath string, config *compileopts.Config, action func(stri
}
}
// Print goroutine stack sizes, as far as possible.
if config.Options.PrintStacks {
printStacks(mod, executable)
}
// Get an Intel .hex file or .bin file from the .elf file.
if outext == ".hex" || outext == ".bin" || outext == ".gba" {
tmppath = filepath.Join(dir, "main"+outext)
@ -234,3 +242,89 @@ func Build(pkgName, outpath string, config *compileopts.Config, action func(stri
return action(tmppath)
}
}
// printStacks prints the maximum stack depth for functions that are started as
// goroutines. Stack sizes cannot always be determined statically, in particular
// recursive functions and functions that call interface methods or function
// pointers may have an unknown stack depth (depending on what the optimizer
// manages to optimize away).
//
// It might print something like the following:
//
// function stack usage (in bytes)
// Reset_Handler 316
// .Lexamples/blinky2.led1 92
// .Lruntime.run$1 300
func printStacks(mod llvm.Module, executable string) {
// Determine which functions call a function pointer.
var callsIndirectFunction []string
for fn := mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
for bb := fn.FirstBasicBlock(); !bb.IsNil(); bb = llvm.NextBasicBlock(bb) {
for inst := bb.FirstInstruction(); !inst.IsNil(); inst = llvm.NextInstruction(inst) {
if inst.IsACallInst().IsNil() {
continue
}
if callee := inst.CalledValue(); callee.IsAFunction().IsNil() && callee.IsAInlineAsm().IsNil() {
callsIndirectFunction = append(callsIndirectFunction, fn.Name())
}
}
}
}
// Load the ELF binary.
f, err := elf.Open(executable)
if err != nil {
fmt.Fprintln(os.Stderr, "could not load executable for stack size analysis:", err)
return
}
defer f.Close()
// Determine the frame size of each function (if available) and the callgraph.
functions, err := stacksize.CallGraph(f, callsIndirectFunction)
if err != nil {
fmt.Fprintln(os.Stderr, "could not parse executable for stack size analysis:", err)
return
}
// Get a list of "go wrappers", small wrapper functions that decode
// parameters when starting a new goroutine.
var gowrappers []string
for name := range functions {
if strings.HasSuffix(name, "$gowrapper") {
gowrappers = append(gowrappers, name)
}
}
sort.Strings(gowrappers)
switch f.Machine {
case elf.EM_ARM:
// Add the reset handler, which runs startup code and is the
// interrupt/scheduler stack with -scheduler=tasks.
// Note that because interrupts happen on this stack, the stack needed
// by just the Reset_Handler is not enough. Stacks needed by interrupt
// handlers should also be taken into account.
gowrappers = append([]string{"Reset_Handler"}, gowrappers...)
}
// Print the sizes of all stacks.
fmt.Printf("%-32s %s\n", "function", "stack usage (in bytes)")
for _, name := range gowrappers {
for _, fn := range functions[name] {
stackSize, stackSizeType, missingStackSize := fn.StackSize()
strippedName := name
if strings.HasSuffix(name, "$gowrapper") {
strippedName = name[:len(name)-len("$gowrapper")]
}
switch stackSizeType {
case stacksize.Bounded:
fmt.Printf("%-32s %d\n", strippedName, stackSize)
case stacksize.Unknown:
fmt.Printf("%-32s unknown, %s does not have stack frame information\n", strippedName, missingStackSize)
case stacksize.Recursive:
fmt.Printf("%-32s recursive, %s may call itself\n", strippedName, missingStackSize)
case stacksize.IndirectCall:
fmt.Printf("%-32s unknown, %s calls a function pointer\n", strippedName, missingStackSize)
}
}
}
}

1
compileopts/options.go

@ -25,6 +25,7 @@ type Options struct {
VerifyIR bool
Debug bool
PrintSizes string
PrintStacks bool
CFlags []string
LDFlags []string
Tags string

2
main.go

@ -796,6 +796,7 @@ func main() {
tags := flag.String("tags", "", "a space-separated list of extra build tags")
target := flag.String("target", "", "LLVM target | .json file with TargetSpec")
printSize := flag.String("size", "", "print sizes (none, short, full)")
printStacks := flag.Bool("print-stacks", false, "print stack sizes of goroutines")
nodebug := flag.Bool("no-debug", false, "disable DWARF debug symbol generation")
ocdOutput := flag.Bool("ocd-output", false, "print OCD daemon output during debug")
port := flag.String("port", "", "flash port")
@ -835,6 +836,7 @@ func main() {
VerifyIR: *verifyIR,
Debug: !*nodebug,
PrintSizes: *printSize,
PrintStacks: *printStacks,
Tags: *tags,
WasmAbi: *wasmAbi,
Programmer: *programmer,

1
src/device/arm/cortexm.s

@ -19,6 +19,7 @@ HardFault_Handler:
// Continue handling this error in Go.
bl handleHardFault
.size HardFault_Handler, .-HardFault_Handler
// This is a convenience function for semihosting support.
// At some point, this should be replaced by inline assembly.

5
src/runtime/scheduler_cortexm.S

@ -18,6 +18,7 @@ tinygo_startTask:
// After return, exit this goroutine. This is a tail call.
bl tinygo_pause
.size tinygo_startTask, .-tinygo_startTask
.section .text.tinygo_getSystemStackPointer
.global tinygo_getSystemStackPointer
@ -44,6 +45,7 @@ tinygo_switchToScheduler:
str r1, [r0]
b tinygo_swapTask
.size tinygo_switchToScheduler, .-tinygo_switchToScheduler
.global tinygo_switchToTask
.type tinygo_switchToTask, %function
@ -56,6 +58,7 @@ tinygo_switchToTask:
// Continue executing in the swapTask function, which swaps the stack
// pointer.
.size tinygo_switchToTask, .-tinygo_switchToTask
.global tinygo_swapTask
.type tinygo_swapTask, %function
@ -111,6 +114,7 @@ tinygo_swapTask:
mov r11, r3
pop {pc}
#endif
.size tinygo_swapTask, .-tinygo_swapTask
.section .text.tinygo_scanCurrentStack
.global tinygo_scanCurrentStack
@ -135,3 +139,4 @@ tinygo_scanCurrentStack:
// Restore stack state and return.
add sp, #32
pop {pc}
.size tinygo_scanCurrentStack, .-tinygo_scanCurrentStack

280
stacksize/dwarf.go

@ -0,0 +1,280 @@
package stacksize
// This file implements parsing DWARF call frame information and interpreting
// the CFI bytecode, or enough of it for most practical code.
import (
"bytes"
"debug/elf"
"encoding/binary"
"fmt"
"io"
)
// dwarfCIE represents one DWARF Call Frame Information structure.
type dwarfCIE struct {
bytecode []byte
codeAlignmentFactor uint64
}
// parseFrames parses all call frame information from a .debug_frame section and
// provides the passed in symbols map with frame size information.
func parseFrames(f *elf.File, data []byte, symbols map[uint64]*CallNode) error {
if f.Class != elf.ELFCLASS32 {
// TODO: ELF64
return fmt.Errorf("expected ELF32")
}
cies := make(map[uint32]*dwarfCIE)
// Read each entity.
r := bytes.NewBuffer(data)
for {
start := len(data) - r.Len()
var length uint32
err := binary.Read(r, binary.LittleEndian, &length)
if err == io.EOF {
return nil
}
if err != nil {
return err
}
var cie uint32
err = binary.Read(r, binary.LittleEndian, &cie)
if err != nil {
return err
}
if cie == 0xffffffff {
// This is a CIE.
var fields struct {
Version uint8
Augmentation uint8
AddressSize uint8
SegmentSize uint8
}
err = binary.Read(r, binary.LittleEndian, &fields)
if err != nil {
return err
}
if fields.Version != 4 {
return fmt.Errorf("unimplemented: .debug_frame version %d", fields.Version)
}
if fields.Augmentation != 0 {
return fmt.Errorf("unimplemented: .debug_frame with augmentation")
}
if fields.SegmentSize != 0 {
return fmt.Errorf("unimplemented: .debug_frame with segment size")
}
codeAlignmentFactor, err := readULEB128(r)
if err != nil {
return err
}
_, err = readSLEB128(r) // data alignment factor
if err != nil {
return err
}
_, err = readULEB128(r) // return address register
if err != nil {
return err
}
rest := (start + int(length) + 4) - (len(data) - r.Len())
bytecode := r.Next(rest)
cies[uint32(start)] = &dwarfCIE{
codeAlignmentFactor: codeAlignmentFactor,
bytecode: bytecode,
}
} else {
// This is a FDE.
var fields struct {
InitialLocation uint32
AddressRange uint32
}
err = binary.Read(r, binary.LittleEndian, &fields)
if err != nil {
return err
}
if _, ok := cies[cie]; !ok {
return fmt.Errorf("could not find CIE 0x%x in .debug_frame section", cie)
}
frame := frameInfo{
cie: cies[cie],
start: uint64(fields.InitialLocation),
loc: uint64(fields.InitialLocation),
length: uint64(fields.AddressRange),
}
rest := (start + int(length) + 4) - (len(data) - r.Len())
bytecode := r.Next(rest)
if frame.start == 0 {
// Not sure where these come from but they don't seem to be
// important.
continue
}
_, err = frame.exec(frame.cie.bytecode)
if err != nil {
return err
}
entries, err := frame.exec(bytecode)
if err != nil {
return err
}
var maxFrameSize uint64
for _, entry := range entries {
switch f.Machine {
case elf.EM_ARM:
if entry.cfaRegister != 13 { // r13 or sp
// something other than a stack pointer (on ARM)
return fmt.Errorf("%08x..%08x: unknown CFA register number %d", frame.start, frame.start+frame.length, entry.cfaRegister)
}
default:
return fmt.Errorf("unknown architecture: %s", f.Machine)
}
if entry.cfaOffset > maxFrameSize {
maxFrameSize = entry.cfaOffset
}
}
node := symbols[frame.start]
if node.Size != frame.length {
return fmt.Errorf("%s: symtab gives symbol length %d while DWARF gives symbol length %d", node, node.Size, frame.length)
}
node.FrameSize = maxFrameSize
node.FrameSizeType = Bounded
if debugPrint {
fmt.Printf("%08x..%08x: frame size %4d %s\n", frame.start, frame.start+frame.length, maxFrameSize, node)
}
}
}
}
// frameInfo contains the state of executing call frame information bytecode.
type frameInfo struct {
cie *dwarfCIE
start uint64
loc uint64
length uint64
cfaRegister uint64
cfaOffset uint64
}
// frameInfoLine represents one line in the frame table (.debug_frame) at one
// point in the execution of the bytecode.
type frameInfoLine struct {
loc uint64
cfaRegister uint64
cfaOffset uint64
}
func (fi *frameInfo) newLine() frameInfoLine {
return frameInfoLine{
loc: fi.loc,
cfaRegister: fi.cfaRegister,
cfaOffset: fi.cfaOffset,
}
}
// exec executes the given bytecode in the CFI. Most CFI bytecode is actually
// very simple and provides a way to determine the maximum call frame size.
//
// The frame size often changes multiple times in a function, for example the
// frame size may be adjusted in the prologue and epilogue. Each frameInfoLine
// may contain such a change.
func (fi *frameInfo) exec(bytecode []byte) ([]frameInfoLine, error) {
var entries []frameInfoLine
r := bytes.NewBuffer(bytecode)
for {
op, err := r.ReadByte()
if err != nil {
if err == io.EOF {
entries = append(entries, fi.newLine())
return entries, nil
}
return nil, err
}
highBits := op >> 6 // high order 2 bits
lowBits := op & 0x1f
switch highBits {
case 1: // DW_CFA_advance_loc
fi.loc += uint64(lowBits) * fi.cie.codeAlignmentFactor
entries = append(entries, fi.newLine())
case 2: // DW_CFA_offset
// This indicates where a register is saved on the stack in the
// prologue. We can ignore that for our purposes.
_, err := readULEB128(r)
if err != nil {
return nil, err
}
case 0:
switch lowBits {
case 0: // DW_CFA_nop
// no operation
case 0x0c: // DW_CFA_def_cfa
register, err := readULEB128(r)
if err != nil {
return nil, err
}
offset, err := readULEB128(r)
if err != nil {
return nil, err
}
fi.cfaRegister = register
fi.cfaOffset = offset
case 0x0e: // DW_CFA_def_cfa_offset
offset, err := readULEB128(r)
if err != nil {
return nil, err
}
fi.cfaOffset = offset
default:
return nil, fmt.Errorf("could not decode .debug_frame bytecode op 0x%x", op)
}
default:
return nil, fmt.Errorf("could not decode .debug_frame bytecode op 0x%x", op)
}
}
}
// Source: https://en.wikipedia.org/wiki/LEB128#Decode_unsigned_integer
func readULEB128(r *bytes.Buffer) (result uint64, err error) {
// TODO: guard against overflowing 64-bit integers.
var shift uint8
for {
b, err := r.ReadByte()
if err != nil {
return 0, err
}
result |= uint64(b&0x7f) << shift
if b&0x80 == 0 {
break
}
shift += 7
}
return
}
// Source: https://en.wikipedia.org/wiki/LEB128#Decode_signed_integer
func readSLEB128(r *bytes.Buffer) (result int64, err error) {
var shift uint8
var b byte
var rawResult uint64
for {
b, err = r.ReadByte()
if err != nil {
return 0, err
}
rawResult |= uint64(b&0x7f) << shift
shift += 7
if b&0x80 == 0 {
break
}
}
// sign bit of byte is second high order bit (0x40)
if shift < 64 && b&0x40 != 0 {
// sign extend
rawResult |= ^uint64(0) << shift
}
result = int64(rawResult)
return
}

296
stacksize/stacksize.go

@ -0,0 +1,296 @@
// Package stacksize tries to determine the call graph for ELF binaries and
// tries to parse stack size information from DWARF call frame information.
package stacksize
import (
"debug/elf"
"encoding/binary"
"errors"
"fmt"
"os"
"sort"
)
// set to true to print information useful for debugging
const debugPrint = false
type sizeType uint8
// Results after trying to determine the stack size of a function in the call
// graph. The goal is to find a maximum (bounded) stack size, but sometimes this
// is not possible for some reasons such as recursion or indirect calls.
const (
Undefined sizeType = iota // not yet calculated
Unknown // child has unknown stack size
Bounded // stack size is fixed at compile time (no recursion etc)
Recursive
IndirectCall
)
// CallNode is a node in the call graph (that is, a function). Because this is
// determined after linking, there may be multiple names for a single function
// (due to aliases). It is also possible multiple functions have the same name
// (but are in fact different), for example for static functions in C.
type CallNode struct {
Names []string
Address uint64 // address at which the function is linked (without T bit on ARM)
Size uint64 // symbol size, in bytes
Children []*CallNode // functions this function calls
FrameSize uint64 // frame size, if FrameSizeType is Bounded
FrameSizeType sizeType // can be Undefined or Bounded
stackSize uint64
stackSizeType sizeType
missingFrameInfo *CallNode // the child function that is the cause for not being able to determine the stack size
}
func (n *CallNode) String() string {
if n == nil {
return "<nil>"
}
return n.Names[0]
}
// CallGraph parses the ELF file and reads DWARF call frame information to
// determine frame sizes for each function, as far as that's possible. Because
// at this point it is not possible to determine indirect calls, a list of
// indirect function calling functions needs to be supplied separately.
//
// This function does not attempt to determine the stack size for functions.
// This is done by calling StackSize on a function in the call graph.
func CallGraph(f *elf.File, callsIndirectFunction []string) (map[string][]*CallNode, error) {
// Sanity check that there is exactly one symbol table.
// Multiple symbol tables are possible, but aren't yet supported below.
numSymbolTables := 0
for _, section := range f.Sections {
if section.Type == elf.SHT_SYMTAB {
numSymbolTables++
}
}
if numSymbolTables != 1 {
return nil, fmt.Errorf("expected exactly one symbol table, got %d", numSymbolTables)
}
// Collect all symbols in the executable.
symbols := make(map[uint64]*CallNode)
symbolList := make([]*CallNode, 0)
symbolNames := make(map[string][]*CallNode)
elfSymbols, err := f.Symbols()
if err != nil {
return nil, err
}
for _, elfSymbol := range elfSymbols {
if elf.ST_TYPE(elfSymbol.Info) != elf.STT_FUNC {
continue
}
address := elfSymbol.Value
if f.Machine == elf.EM_ARM {
address = address &^ 1
}
var node *CallNode
if n, ok := symbols[address]; ok {
// Existing symbol.
if n.Size != elfSymbol.Size {
return nil, fmt.Errorf("symbol at 0x%x has inconsistent size (%d for %s and %d for %s)", address, n.Size, n.Names[0], elfSymbol.Size, elfSymbol.Name)
}
node = n
node.Names = append(node.Names, elfSymbol.Name)
} else {
// New symbol.
node = &CallNode{
Names: []string{elfSymbol.Name},
Address: address,
Size: elfSymbol.Size,
}
symbols[address] = node
symbolList = append(symbolList, node)
}
symbolNames[elfSymbol.Name] = append(symbolNames[elfSymbol.Name], node)
}
// Sort symbols by address, for binary searching.
sort.Slice(symbolList, func(i, j int) bool {
return symbolList[i].Address < symbolList[j].Address
})
// Load relocations and construct the call graph.
for _, section := range f.Sections {
if section.Type != elf.SHT_REL {
continue
}
if section.Entsize != 8 {
// Assume ELF32, this should be fixed.
return nil, fmt.Errorf("only ELF32 is supported at this time")
}
data, err := section.Data()
if err != nil {
return nil, err
}
for i := uint64(0); i < section.Size/section.Entsize; i++ {
offset := binary.LittleEndian.Uint32(data[i*section.Entsize:])
info := binary.LittleEndian.Uint32(data[i*section.Entsize+4:])
if elf.R_SYM32(info) == 0 {
continue
}
elfSymbol := elfSymbols[elf.R_SYM32(info)-1]
if elf.ST_TYPE(elfSymbol.Info) != elf.STT_FUNC {
continue
}
address := elfSymbol.Value
if f.Machine == elf.EM_ARM {
address = address &^ 1
}
childSym := symbols[address]
switch f.Machine {
case elf.EM_ARM:
relocType := elf.R_ARM(elf.R_TYPE32(info))
parentSym := findSymbol(symbolList, uint64(offset))
if debugPrint {
fmt.Fprintf(os.Stderr, "found relocation %-24s at %s (0x%x) to %s (0x%x)\n", relocType, parentSym, offset, childSym, childSym.Address)
}
isCall := true
switch relocType {
case elf.R_ARM_THM_PC22: // actually R_ARM_THM_CALL
// used for bl calls
case elf.R_ARM_THM_JUMP24:
// used for b.w jumps
isCall = parentSym != childSym
case elf.R_ARM_THM_JUMP11:
// used for b.n jumps
isCall = parentSym != childSym
case elf.R_ARM_THM_MOVW_ABS_NC, elf.R_ARM_THM_MOVT_ABS:
// used for getting a function pointer
isCall = false
case elf.R_ARM_ABS32:
// used in the reset vector for pointers
isCall = false
default:
return nil, fmt.Errorf("unknown relocation: %s", relocType)
}
if isCall {
if parentSym != nil {
parentSym.Children = append(parentSym.Children, childSym)
}
}
default:
return nil, fmt.Errorf("unknown architecture: %s", f.Machine)
}
}
}
// Set fixed frame size information, depending on the architecture.
switch f.Machine {
case elf.EM_ARM:
knownFrameSizes := map[string]uint64{
// implemented in assembly in TinyGo
"tinygo_startTask": 0, // thunk
"tinygo_getSystemStackPointer": 0, // getter
"tinygo_switchToScheduler": 0, // calls tinygo_swapTask
"tinygo_switchToTask": 0, // calls tinygo_swapTask
"tinygo_swapTask": 9 * 4, // 9 registers saved
"tinygo_scanCurrentStack": 9 * 4, // 9 registers saved
// implemented with assembly in compiler-rt
"__aeabi_uidivmod": 3 * 4, // 3 registers on thumb1 but 1 register on thumb2
}
for name, size := range knownFrameSizes {
if sym, ok := symbolNames[name]; ok {
if len(sym) > 1 {
return nil, fmt.Errorf("expected zero or one occurence of the symbol %s, found %d", name, len(sym))
}
sym[0].FrameSize = size
sym[0].FrameSizeType = Bounded
}
}
}
// Mark functions that do indirect calls (which cannot be determined
// directly from ELF/DWARF information).
for _, name := range callsIndirectFunction {
for _, fn := range symbolNames[name] {
fn.stackSizeType = IndirectCall
fn.missingFrameInfo = fn
}
}
// Read the .debug_frame section.
section := f.Section(".debug_frame")
if section == nil {
return nil, errors.New("no .debug_frame section present, binary was compiled without debug information")
}
data, err := section.Data()
if err != nil {
return nil, fmt.Errorf("could not read .debug_frame section: %w", err)
}
err = parseFrames(f, data, symbols)
if err != nil {
return nil, err
}
return symbolNames, nil
}
// findSymbol determines in which symbol the given address lies.
func findSymbol(symbolList []*CallNode, address uint64) *CallNode {
// TODO: binary search
for _, sym := range symbolList {
if address >= sym.Address && address < sym.Address+sym.Size {
return sym
}
}
return nil
}
// StackSize tries to determine the stack size of the given call graph node. It
// returns the maximum stack size, whether this size can be known at compile
// time and the call node responsible for failing to determine the maximum stack
// usage. The stack size is only valid if sizeType is Bounded.
func (node *CallNode) StackSize() (uint64, sizeType, *CallNode) {
if node.stackSizeType == Undefined {
node.determineStackSize(make(map[*CallNode]struct{}))
}
return node.stackSize, node.stackSizeType, node.missingFrameInfo
}
// determineStackSize tries to determine the maximum stack size for this
// function, recursively.
func (node *CallNode) determineStackSize(parents map[*CallNode]struct{}) {
if _, ok := parents[node]; ok {
// The function calls itself (directly or indirectly).
node.stackSizeType = Recursive
node.missingFrameInfo = node
return
}
parents[node] = struct{}{}
defer func() {
delete(parents, node)
}()
switch node.FrameSizeType {
case Bounded:
// Determine the stack size recursively.
childMaxStackSize := uint64(0)
for _, child := range node.Children {
if child.stackSizeType == Undefined {
child.determineStackSize(parents)
}
switch child.stackSizeType {
case Bounded:
if child.stackSize > childMaxStackSize {
childMaxStackSize = child.stackSize
}
case Unknown, Recursive, IndirectCall:
node.stackSizeType = child.stackSizeType
node.missingFrameInfo = child.missingFrameInfo
return
default:
panic("unknown child stack size type")
}
}
node.stackSize = node.FrameSize + childMaxStackSize
node.stackSizeType = Bounded
case Undefined:
node.stackSizeType = Unknown
node.missingFrameInfo = node
default:
panic("unknown frame size type") // unreachable
}
}

1
targets/cortex-m.json

@ -18,6 +18,7 @@
"-ffunction-sections", "-fdata-sections"
],
"ldflags": [
"--emit-relocs",
"--gc-sections"
],
"extra-files": [

1
tools/gen-device-svd/gen-device-svd.go

@ -916,6 +916,7 @@ func writeAsm(outdir string, device *Device) error {
Default_Handler:
wfe
b Default_Handler
.size Default_Handler, .-Default_Handler
// Avoid the need for repeated .weak and .set instructions.
.macro IRQ handler

Loading…
Cancel
Save