mirror of https://github.com/tinygo-org/tinygo.git
Browse Source
This package provides access to an operating system resource (cryptographic numbers) and so needs to be replaced with a TinyGo version that does this in a different way. I've made the following choices while adding this feature: - I'm using the getentropy call whenever possible (most POSIX like systems), because it is easier to use and more reliable. Linux is the exception: it only added getentropy relatively recently. - I've left bare-metal implementations to a future patch. This because it's hard to reliably get cryptographically secure random numbers on embedded devices: most devices do not have a hardware PRNG for this purpose.pull/1738/merge
Ayke van Laethem
3 years ago
committed by
Ron Evans
7 changed files with 298 additions and 15 deletions
@ -0,0 +1,19 @@ |
|||
// Copyright 2010 The Go Authors. All rights reserved.
|
|||
// Use of this source code is governed by a BSD-style
|
|||
// license that can be found in the LICENSE file.
|
|||
|
|||
// Package rand implements a cryptographically secure
|
|||
// random number generator.
|
|||
package rand |
|||
|
|||
import "io" |
|||
|
|||
// Reader is a global, shared instance of a cryptographically
|
|||
// secure random number generator.
|
|||
var Reader io.Reader |
|||
|
|||
// Read is a helper function that calls Reader.Read using io.ReadFull.
|
|||
// On return, n == len(b) if and only if err == nil.
|
|||
func Read(b []byte) (n int, err error) { |
|||
return io.ReadFull(Reader, b) |
|||
} |
@ -0,0 +1,38 @@ |
|||
// +build darwin freebsd wasi
|
|||
|
|||
// This implementation of crypto/rand uses the getentropy system call (available
|
|||
// on both MacOS and WASI) to generate random numbers.
|
|||
|
|||
package rand |
|||
|
|||
import ( |
|||
"errors" |
|||
"unsafe" |
|||
) |
|||
|
|||
var errReadFailed = errors.New("rand: could not read random bytes") |
|||
|
|||
func init() { |
|||
Reader = &reader{} |
|||
} |
|||
|
|||
type reader struct { |
|||
} |
|||
|
|||
func (r *reader) Read(b []byte) (n int, err error) { |
|||
if len(b) != 0 { |
|||
if len(b) > 256 { |
|||
b = b[:256] |
|||
} |
|||
result := libc_getentropy(unsafe.Pointer(&b[0]), len(b)) |
|||
if result < 0 { |
|||
// Maybe we should return a syscall.Errno here?
|
|||
return 0, errReadFailed |
|||
} |
|||
} |
|||
return len(b), nil |
|||
} |
|||
|
|||
// int getentropy(void *buf, size_t buflen);
|
|||
//export getentropy
|
|||
func libc_getentropy(buf unsafe.Pointer, buflen int) int |
@ -0,0 +1,38 @@ |
|||
// +build linux,!baremetal,!wasi
|
|||
|
|||
// This implementation of crypto/rand uses the /dev/urandom pseudo-file to
|
|||
// generate random numbers.
|
|||
// TODO: convert to the getentropy or getrandom libc function on Linux once it
|
|||
// is more widely supported.
|
|||
|
|||
package rand |
|||
|
|||
import ( |
|||
"syscall" |
|||
) |
|||
|
|||
func init() { |
|||
Reader = &reader{} |
|||
} |
|||
|
|||
type reader struct { |
|||
fd int |
|||
} |
|||
|
|||
func (r *reader) Read(b []byte) (n int, err error) { |
|||
if len(b) == 0 { |
|||
return |
|||
} |
|||
|
|||
// Open /dev/urandom first if needed.
|
|||
if r.fd == 0 { |
|||
fd, err := syscall.Open("/dev/urandom", syscall.O_RDONLY, 0) |
|||
if err != nil { |
|||
return 0, err |
|||
} |
|||
r.fd = fd |
|||
} |
|||
|
|||
// Read from the file.
|
|||
return syscall.Read(r.fd, b) |
|||
} |
@ -0,0 +1,143 @@ |
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
|||
// Use of this source code is governed by a BSD-style
|
|||
// license that can be found in the LICENSE file.
|
|||
|
|||
package rand |
|||
|
|||
import ( |
|||
"errors" |
|||
"io" |
|||
"math/big" |
|||
) |
|||
|
|||
// smallPrimes is a list of small, prime numbers that allows us to rapidly
|
|||
// exclude some fraction of composite candidates when searching for a random
|
|||
// prime. This list is truncated at the point where smallPrimesProduct exceeds
|
|||
// a uint64. It does not include two because we ensure that the candidates are
|
|||
// odd by construction.
|
|||
var smallPrimes = []uint8{ |
|||
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, |
|||
} |
|||
|
|||
// smallPrimesProduct is the product of the values in smallPrimes and allows us
|
|||
// to reduce a candidate prime by this number and then determine whether it's
|
|||
// coprime to all the elements of smallPrimes without further big.Int
|
|||
// operations.
|
|||
var smallPrimesProduct = new(big.Int).SetUint64(16294579238595022365) |
|||
|
|||
// Prime returns a number, p, of the given size, such that p is prime
|
|||
// with high probability.
|
|||
// Prime will return error for any error returned by rand.Read or if bits < 2.
|
|||
func Prime(rand io.Reader, bits int) (p *big.Int, err error) { |
|||
if bits < 2 { |
|||
err = errors.New("crypto/rand: prime size must be at least 2-bit") |
|||
return |
|||
} |
|||
|
|||
b := uint(bits % 8) |
|||
if b == 0 { |
|||
b = 8 |
|||
} |
|||
|
|||
bytes := make([]byte, (bits+7)/8) |
|||
p = new(big.Int) |
|||
|
|||
bigMod := new(big.Int) |
|||
|
|||
for { |
|||
_, err = io.ReadFull(rand, bytes) |
|||
if err != nil { |
|||
return nil, err |
|||
} |
|||
|
|||
// Clear bits in the first byte to make sure the candidate has a size <= bits.
|
|||
bytes[0] &= uint8(int(1<<b) - 1) |
|||
// Don't let the value be too small, i.e, set the most significant two bits.
|
|||
// Setting the top two bits, rather than just the top bit,
|
|||
// means that when two of these values are multiplied together,
|
|||
// the result isn't ever one bit short.
|
|||
if b >= 2 { |
|||
bytes[0] |= 3 << (b - 2) |
|||
} else { |
|||
// Here b==1, because b cannot be zero.
|
|||
bytes[0] |= 1 |
|||
if len(bytes) > 1 { |
|||
bytes[1] |= 0x80 |
|||
} |
|||
} |
|||
// Make the value odd since an even number this large certainly isn't prime.
|
|||
bytes[len(bytes)-1] |= 1 |
|||
|
|||
p.SetBytes(bytes) |
|||
|
|||
// Calculate the value mod the product of smallPrimes. If it's
|
|||
// a multiple of any of these primes we add two until it isn't.
|
|||
// The probability of overflowing is minimal and can be ignored
|
|||
// because we still perform Miller-Rabin tests on the result.
|
|||
bigMod.Mod(p, smallPrimesProduct) |
|||
mod := bigMod.Uint64() |
|||
|
|||
NextDelta: |
|||
for delta := uint64(0); delta < 1<<20; delta += 2 { |
|||
m := mod + delta |
|||
for _, prime := range smallPrimes { |
|||
if m%uint64(prime) == 0 && (bits > 6 || m != uint64(prime)) { |
|||
continue NextDelta |
|||
} |
|||
} |
|||
|
|||
if delta > 0 { |
|||
bigMod.SetUint64(delta) |
|||
p.Add(p, bigMod) |
|||
} |
|||
break |
|||
} |
|||
|
|||
// There is a tiny possibility that, by adding delta, we caused
|
|||
// the number to be one bit too long. Thus we check BitLen
|
|||
// here.
|
|||
if p.ProbablyPrime(20) && p.BitLen() == bits { |
|||
return |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Int returns a uniform random value in [0, max). It panics if max <= 0.
|
|||
func Int(rand io.Reader, max *big.Int) (n *big.Int, err error) { |
|||
if max.Sign() <= 0 { |
|||
panic("crypto/rand: argument to Int is <= 0") |
|||
} |
|||
n = new(big.Int) |
|||
n.Sub(max, n.SetUint64(1)) |
|||
// bitLen is the maximum bit length needed to encode a value < max.
|
|||
bitLen := n.BitLen() |
|||
if bitLen == 0 { |
|||
// the only valid result is 0
|
|||
return |
|||
} |
|||
// k is the maximum byte length needed to encode a value < max.
|
|||
k := (bitLen + 7) / 8 |
|||
// b is the number of bits in the most significant byte of max-1.
|
|||
b := uint(bitLen % 8) |
|||
if b == 0 { |
|||
b = 8 |
|||
} |
|||
|
|||
bytes := make([]byte, k) |
|||
|
|||
for { |
|||
_, err = io.ReadFull(rand, bytes) |
|||
if err != nil { |
|||
return nil, err |
|||
} |
|||
|
|||
// Clear bits in the first byte to increase the probability
|
|||
// that the candidate is < max.
|
|||
bytes[0] &= uint8(int(1<<b) - 1) |
|||
|
|||
n.SetBytes(bytes) |
|||
if n.Cmp(max) < 0 { |
|||
return |
|||
} |
|||
} |
|||
} |
Loading…
Reference in new issue