TODO: Remove the go.mod/go.sum in internal/tools once doing so doesn't break CI (e.g. once we drop support for go 1.19)
* builder/cc1as.h: fix typo found by 'make spell'
* GNUmakefile: remove exception for inbetween, fix instance now found by 'make spell'
* GNUmakefile: remove exception for programmmer, fix instance now found by 'make spell'
* go.mod: use updated misspell. GNUmakefile: add spellfix target, use it.
* ignore directories properly when invoking spellchecker.
* make spell: give internal/tools its own go.mod, as misspell requires newer go
* make lint: depend on tools and run the installed revive
(which was perhaps implied by the change that added revive to internal/tools,
but not required in GNUmakefile until we gave internal/tools its own temporary go.mod)
* .github: now that 'make spell' works well, run it from CI
* GNUmakefile: make spell now aborts if it finds misspelt words, so what it finds doesn't get lost in CI logs
* GNUmakefile: tools: avoid -C option on go generate to make test-llvm15-go119 circleci job happy, see
2af48cbb7d
* internal/tools/go.mod: fix format of go version to leave out patchlevel, else go complains.
A number of llvm.Const* functions (in particular extractvalue and
insertvalue) were removed in LLVM 15, so we have to use a builder
instead. This builder will create the same constant values, it simply
uses a different API.
For example, this commit moves the 'throw' branch of an assertion (nil
check, slice index check, etc) to the end of the function while
inserting the "continue" branch right after the insert location. This
makes the resulting IR easier to follow.
For some reason, this also reduces code size a bit on average. The
TinyGo smoke tests saw a reduction of 0.22%, mainly from WebAssembly.
The drivers repo saw little average change in code size (-0.01%).
This commit also adds a few compiler tests for the defer keyword.
This PR fixes two bugs at once:
1. Indices were incorrectly extended to a bigger type. Specifically,
unsigned integers were sign extended and signed integers were zero
extended. This commit swaps them around.
2. The getelementptr instruction was given the raw index, even if it
was a uint8 for example. However, getelementptr assumes the indices
are signed, and therefore an index of uint8(200) was interpreted as
an index of int8(-56).
The division and remainder operations were lowered directly to LLVM IR.
This is wrong however because the Go specification defines exactly what
happens on a divide by zero or signed integer overflow and LLVM IR
itself treats those cases as undefined behavior. Therefore, this commit
implements divide by zero and signed integer overflow according to the
Go specification.
This does have an impact on the generated code, but it is surprisingly
small. I've used the drivers repo to test the code before and after, and
to my surprise most driver smoke tests are not changed at all. Those
that are, have only a small increase in code size. At the same time,
this change makes TinyGo more compliant to the Go specification.
This is a loose collection of small fixes flagged by staticcheck:
- dead code
- regexp expressions not using backticks (`foobar` / "foobar")
- redundant types of slice and map initializers
- misc other fixes
Not all of these seem very useful to me, but in particular dead code is
nice to fix. I've fixed them all just so that if there are problems,
they aren't hidden in the noise of less useful issues.
Closure variables are allocated in a parent function and are thus never
nil. Don't do a nil check before reading or modifying the value.
This commit results in a slight reduction in code size in some test
cases: calls.go, channel.go, goroutines.go, json.go, sort.go -
presumably wherever closures are used.
An allocated object is never nil, so there is no need for a nil check.
This probably does not result in any better optimization (the nil check
is easily optimized away by LLVM because the result of runtime.alloc is
marked nonnull) but it makes the slice tests a bit cleaner.
This package was long making the design of the compiler more complicated
than it needs to be. Previously this package implemented several
optimization passes, but those passes have since moved to work directly
with LLVM IR instead of Go SSA. The only remaining pass is the SimpleDCE
pass.
This commit removes the *ir.Function type that permeated the whole
compiler and instead switches to use *ssa.Function directly. The
SimpleDCE pass is kept but is far less tightly coupled to the rest of
the compiler so that it can easily be removed once the switch to
building and caching packages individually happens.
Previously, the compiler used LLVM's shift instructions directly, which have UB whenever the shifts are large or negative.
This commit adds runtime checks for negative shifts, and handles oversized shifts.
This hack was originally introduced in
https://github.com/tinygo-org/tinygo/pull/251 to fix an escape analysis
regression after https://github.com/tinygo-org/tinygo/pull/222
introduced nil checks. Since a new optimization in LLVM (see
https://reviews.llvm.org/D60047) this hack is not necessary anymore and
can be removed.
I've compared all regular tests and smoke tests before and after to
check the size. In most cases this change was an improvement although
there are a few regressions.
The unsafe.Pointer type is used for many low-level operations,
especially in the runtime. It can for example be used to copy the
contents of a slice (in the copy builtin) independent of the slice
element type.
The x/tools/go/ssa package splits slice loads/stores into two
operations. So for code like this:
x = p[3]
It has two instructions:
x_ptr = &p[3]
x = *x_ptr
This makes the IR simpler, but also means we're accidentally inserting
more nil checks than necessary: the slice index operation has
effectively already checked for nil by performing a bounds check.
Therefore, omit nil pointer checks for pointers created by
*ssa.IndexAddr.
This change is necessary to make sure a future removal of runtime.isnil
will not cause the escape analysis pass to regress. Apart from that, it
reduces code size slightly in many smoke tests (with no increases in
code size).
This patch is a combination of two related changes:
1. The compiler now allows other types than `int` when specifying the
size of a channel in a make(chan ..., size) call.
2. The compiler now checks for maximum allowed channel sizes. Such
checks are trivially optimized out in the vast majority of cases as
channel sizes are usually constant.
I discovered this issue when trying out channels on AVR.
Move these asserts into compiler/asserts.go, to keep them together.
The make([]T) asserts aren't moved yet because that code is (still!)
quite ugly and in need of some clean up.
This commit implements nil checks for all platforms. These nil checks
can be optimized on systems with a MMU, but since a major target is
systems without MMU, keep it this way for now.
It implements three checks:
* Nil checks before dereferencing a pointer.
* Nil checks before calculating an address (*ssa.FieldAddr and
*ssa.IndexAddr)
* Nil checks before calling a function pointer.
The first check has by far the biggest impact, with around 5% increase
in code size. The other checks only trigger in only some test cases and
have a minimal impact on code size.
This first nil check is also the one that is easiest to avoid on systems
with MMU, if necessary.