This commit adds support for LLVM 16 and switches to it by default. That
means three LLVM versions are supported at the same time: LLVM 14, 15,
and 16.
This commit includes work by QuLogic:
* Part of this work was based on a PR by QuLogic:
https://github.com/tinygo-org/tinygo/pull/3649
But I also had parts of this already implemented in an old branch I
already made for LLVM 16.
* QuLogic also provided a CGo fix here, which is also incorporated in
this commit:
https://github.com/tinygo-org/tinygo/pull/3869
The difference with the original PR by QuLogic is that this commit is
more complete:
* It switches to LLVM 16 by default.
* It updates some things to also make it work with a self-built LLVM.
* It fixes the CGo bug in a slightly different way, and also fixes
another one not included in the original PR.
* It does not keep compiler tests passing on older LLVM versions. I
have found this to be quite burdensome and therefore don't generally
do this - the smoke tests should hopefully catch most regressions.
The Go tools only consider lowercase .s files to be assembly files. By
renaming these to uppercase .S files they won't be discovered by the Go
toolchain and listed as the SFiles to be assembled.
There is a difference between .s and .S: only uppercase .S will be
passed through the preprocessor. Doing that is normally safe, and
definitely safe in the case of these files.
Switch over to LLVM 14 for static builds. Keep using LLVM 13 for regular
builds for now.
This uses a branch of the upstream Espressif branch to fix an issue,
see: https://github.com/espressif/llvm-project/pull/59
This makes sure that the LLVM target features match the one generated by
Clang:
- This fixes a bug introduced when setting the target CPU for all
targets: Cortex-M4 would now start using floating point operations
while they were disabled in C.
- This will make it possible in the future to inline C functions in Go
and vice versa. This will need some more work though.
There is a code size impact. Cortex-M4 targets are increased slightly in
binary size while Cortex-M0 targets tend to be reduced a little bit.
Other than that, there is little impact.
This is for consistency with Clang, which always adds a CPU flag even if
it's not specified in CFLAGS.
This commit also adds some tests to make sure the Clang target-cpu
matches the CPU property in the JSON files.
This does have an effect on the generated binaries. The effect is very
small though: on average just 0.2% increase in binary size, apparently
because Cortex-M3 and Cortex-M4 are compiled a bit differently. However,
when rebased on top of https://github.com/tinygo-org/tinygo/pull/2218
(minsize), the difference drops to -0.1% (a slight decrease on average).
This results in smaller and likely more efficient code. It does require
some architecture specific code for each architecture, but I've kept the
amount of code as small as possible.
At the moment, all targets use the Clang compiler to compile C and
assembly files. There is no good reason to make this configurable
anymore and in fact it will make future changes more complicated (and
thus more likely to have bugs). Therefore, I've removed support for
setting the compiler.
Note that the same is not true for the linker. While it makes sense to
standardize on the Clang compiler (because if Clang doesn't support a
target, TinyGo is unlikely to support it either), linkers will remain
configurable for the foreseeable future. One example is Xtensa, which is
supported by the Xtensa LLVM fork but doesn't have support in ld.lld
yet.
I've also fixed a bug in compileAndCacheCFile: it wasn't using the right
CFlags for caching purposes. This could lead to using stale caches. This
commit fixes that too.
The -Qunused-arguments flag disables the warning where some flags are
not relevant to a compilation. This commonly happens when compiling
assembly files (.s or .S files) because some flags are specific to C and
not relevant to assembly.
Because practically all baremetal targets need some form of assembly,
this flag is added to most CFlags. This creates a lot of noise. And it
is also added for compiling C code where it might hide bugs (by hiding
the fact a flag is actually unused).
This commit adds the flag to all assembly compilations and removes them
from all target JSON files.
* Heap allocation based on available ram
* Added homebrew launcher parser (for overriden heap)
* Removed unused stuff (moved to gonx)
* Kept require code at minimum to work in a real device
* Moved everything to a single file
The only architecture that actually needs special support for scanning
the stack is WebAssembly. All others allow raw access to the stack with
a small bit of assembly. Therefore, don't manually keep track of all
these objects on the stack manually and instead just use conservative
stack scanning.
This results in a massive code size decrease in the affected targets
(only tested linux/amd64 for code size) - sometimes around 33%. It also
allows for future improvements such as using proper stackful goroutines.