// Converts firmware files from BIN to UF2 format before flashing. // // For more information about the UF2 firmware file format, please see: // https://github.com/Microsoft/uf2 // // package main import ( "bytes" "encoding/binary" "io/ioutil" ) // ConvertELFFileToUF2File converts an ELF file to a UF2 file. func ConvertELFFileToUF2File(infile, outfile string) error { // Read the .text segment. targetAddress, data, err := ExtractROM(infile) if err != nil { return err } output, _ := ConvertBinToUF2(data, uint32(targetAddress)) return ioutil.WriteFile(outfile, output, 0644) } // ConvertBinToUF2 converts the binary bytes in input to UF2 formatted data. func ConvertBinToUF2(input []byte, targetAddr uint32) ([]byte, int) { blocks := split(input, 256) output := make([]byte, 0) bl := NewUF2Block(targetAddr) bl.SetNumBlocks(len(blocks)) for i := 0; i < len(blocks); i++ { bl.SetBlockNo(i) bl.SetData(blocks[i]) output = append(output, bl.Bytes()...) bl.IncrementAddress(bl.payloadSize) } return output, len(blocks) } const ( uf2MagicStart0 = 0x0A324655 // "UF2\n" uf2MagicStart1 = 0x9E5D5157 // Randomly selected uf2MagicEnd = 0x0AB16F30 // Ditto ) // UF2Block is the structure used for each UF2 code block sent to device. type UF2Block struct { magicStart0 uint32 magicStart1 uint32 flags uint32 targetAddr uint32 payloadSize uint32 blockNo uint32 numBlocks uint32 familyID uint32 data []uint8 magicEnd uint32 } // NewUF2Block returns a new UF2Block struct that has been correctly populated func NewUF2Block(targetAddr uint32) *UF2Block { return &UF2Block{magicStart0: uf2MagicStart0, magicStart1: uf2MagicStart1, magicEnd: uf2MagicEnd, targetAddr: targetAddr, flags: 0x0, familyID: 0x0, payloadSize: 256, data: make([]byte, 476), } } // Bytes converts the UF2Block to a slice of bytes that can be written to file. func (b *UF2Block) Bytes() []byte { buf := bytes.NewBuffer(make([]byte, 0, 512)) binary.Write(buf, binary.LittleEndian, b.magicStart0) binary.Write(buf, binary.LittleEndian, b.magicStart1) binary.Write(buf, binary.LittleEndian, b.flags) binary.Write(buf, binary.LittleEndian, b.targetAddr) binary.Write(buf, binary.LittleEndian, b.payloadSize) binary.Write(buf, binary.LittleEndian, b.blockNo) binary.Write(buf, binary.LittleEndian, b.numBlocks) binary.Write(buf, binary.LittleEndian, b.familyID) binary.Write(buf, binary.LittleEndian, b.data) binary.Write(buf, binary.LittleEndian, b.magicEnd) return buf.Bytes() } // IncrementAddress moves the target address pointer forward by count bytes. func (b *UF2Block) IncrementAddress(count uint32) { b.targetAddr += b.payloadSize } // SetData sets the data to be used for the current block. func (b *UF2Block) SetData(d []byte) { b.data = make([]byte, 476) copy(b.data[:], d) } // SetBlockNo sets the current block number to be used. func (b *UF2Block) SetBlockNo(bn int) { b.blockNo = uint32(bn) } // SetNumBlocks sets the total number of blocks for this UF2 file. func (b *UF2Block) SetNumBlocks(total int) { b.numBlocks = uint32(total) } // split splits a slice of bytes into a slice of byte slices of a specific size limit. func split(input []byte, limit int) [][]byte { var block []byte output := make([][]byte, 0, len(input)/limit+1) for len(input) >= limit { block, input = input[:limit], input[limit:] output = append(output, block) } if len(input) > 0 { output = append(output, input[:len(input)]) } return output }