package compiler import ( "debug/dwarf" "errors" "fmt" "go/ast" "go/constant" "go/token" "go/types" "math/bits" "path/filepath" "sort" "strconv" "strings" "github.com/tinygo-org/tinygo/compiler/llvmutil" "github.com/tinygo-org/tinygo/loader" "golang.org/x/tools/go/ssa" "tinygo.org/x/go-llvm" ) // Version of the compiler pacakge. Must be incremented each time the compiler // package changes in a way that affects the generated LLVM module. // This version is independent of the TinyGo version number. const Version = 16 // last change: fix max slice size func init() { llvm.InitializeAllTargets() llvm.InitializeAllTargetMCs() llvm.InitializeAllTargetInfos() llvm.InitializeAllAsmParsers() llvm.InitializeAllAsmPrinters() } // The TinyGo import path. const tinygoPath = "github.com/tinygo-org/tinygo" // Config is the configuration for the compiler. Most settings should be copied // directly from compileopts.Config, it recreated here to decouple the compiler // package a bit and because it makes caching easier. // // This struct can be used for caching: if one of the flags here changes the // code must be recompiled. type Config struct { // Target and output information. Triple string CPU string Features []string GOOS string GOARCH string CodeModel string RelocationModel string // Various compiler options that determine how code is generated. Scheduler string FuncImplementation string AutomaticStackSize bool DefaultStackSize uint64 NeedsStackObjects bool Debug bool // Whether to emit debug information in the LLVM module. LLVMFeatures string } // compilerContext contains function-independent data that should still be // available while compiling every function. It is not strictly read-only, but // must not contain function-dependent data such as an IR builder. type compilerContext struct { *Config DumpSSA bool mod llvm.Module ctx llvm.Context dibuilder *llvm.DIBuilder cu llvm.Metadata difiles map[string]llvm.Metadata ditypes map[types.Type]llvm.Metadata machine llvm.TargetMachine targetData llvm.TargetData intType llvm.Type i8ptrType llvm.Type // for convenience funcPtrAddrSpace int uintptrType llvm.Type program *ssa.Program diagnostics []error astComments map[string]*ast.CommentGroup runtimePkg *types.Package } // newCompilerContext returns a new compiler context ready for use, most // importantly with a newly created LLVM context and module. func newCompilerContext(moduleName string, machine llvm.TargetMachine, config *Config, dumpSSA bool) *compilerContext { c := &compilerContext{ Config: config, DumpSSA: dumpSSA, difiles: make(map[string]llvm.Metadata), ditypes: make(map[types.Type]llvm.Metadata), machine: machine, targetData: machine.CreateTargetData(), astComments: map[string]*ast.CommentGroup{}, } c.ctx = llvm.NewContext() c.mod = c.ctx.NewModule(moduleName) c.mod.SetTarget(config.Triple) c.mod.SetDataLayout(c.targetData.String()) if c.Debug { c.dibuilder = llvm.NewDIBuilder(c.mod) } c.uintptrType = c.ctx.IntType(c.targetData.PointerSize() * 8) if c.targetData.PointerSize() <= 4 { // 8, 16, 32 bits targets c.intType = c.ctx.Int32Type() } else if c.targetData.PointerSize() == 8 { // 64 bits target c.intType = c.ctx.Int64Type() } else { panic("unknown pointer size") } c.i8ptrType = llvm.PointerType(c.ctx.Int8Type(), 0) dummyFuncType := llvm.FunctionType(c.ctx.VoidType(), nil, false) dummyFunc := llvm.AddFunction(c.mod, "tinygo.dummy", dummyFuncType) c.funcPtrAddrSpace = dummyFunc.Type().PointerAddressSpace() dummyFunc.EraseFromParentAsFunction() return c } // builder contains all information relevant to build a single function. type builder struct { *compilerContext llvm.Builder fn *ssa.Function llvmFn llvm.Value info functionInfo locals map[ssa.Value]llvm.Value // local variables blockEntries map[*ssa.BasicBlock]llvm.BasicBlock // a *ssa.BasicBlock may be split up blockExits map[*ssa.BasicBlock]llvm.BasicBlock // these are the exit blocks currentBlock *ssa.BasicBlock phis []phiNode taskHandle llvm.Value deferPtr llvm.Value difunc llvm.Metadata dilocals map[*types.Var]llvm.Metadata allDeferFuncs []interface{} deferFuncs map[*ssa.Function]int deferInvokeFuncs map[string]int deferClosureFuncs map[*ssa.Function]int deferExprFuncs map[ssa.Value]int selectRecvBuf map[*ssa.Select]llvm.Value deferBuiltinFuncs map[ssa.Value]deferBuiltin } func newBuilder(c *compilerContext, irbuilder llvm.Builder, f *ssa.Function) *builder { return &builder{ compilerContext: c, Builder: irbuilder, fn: f, llvmFn: c.getFunction(f), info: c.getFunctionInfo(f), locals: make(map[ssa.Value]llvm.Value), dilocals: make(map[*types.Var]llvm.Metadata), blockEntries: make(map[*ssa.BasicBlock]llvm.BasicBlock), blockExits: make(map[*ssa.BasicBlock]llvm.BasicBlock), } } type deferBuiltin struct { callName string pos token.Pos argTypes []types.Type callback int } type phiNode struct { ssa *ssa.Phi llvm llvm.Value } // NewTargetMachine returns a new llvm.TargetMachine based on the passed-in // configuration. It is used by the compiler and is needed for machine code // emission. func NewTargetMachine(config *Config) (llvm.TargetMachine, error) { target, err := llvm.GetTargetFromTriple(config.Triple) if err != nil { return llvm.TargetMachine{}, err } feat := config.Features if len(config.LLVMFeatures) > 0 { feat = append(feat, config.LLVMFeatures) } features := strings.Join(feat, ",") var codeModel llvm.CodeModel var relocationModel llvm.RelocMode switch config.CodeModel { case "default": codeModel = llvm.CodeModelDefault case "tiny": codeModel = llvm.CodeModelTiny case "small": codeModel = llvm.CodeModelSmall case "kernel": codeModel = llvm.CodeModelKernel case "medium": codeModel = llvm.CodeModelMedium case "large": codeModel = llvm.CodeModelLarge } switch config.RelocationModel { case "static": relocationModel = llvm.RelocStatic case "pic": relocationModel = llvm.RelocPIC case "dynamicnopic": relocationModel = llvm.RelocDynamicNoPic } machine := target.CreateTargetMachine(config.Triple, config.CPU, features, llvm.CodeGenLevelDefault, relocationModel, codeModel) return machine, nil } // Sizes returns a types.Sizes appropriate for the given target machine. It // includes the correct int size and aligment as is necessary for the Go // typechecker. func Sizes(machine llvm.TargetMachine) types.Sizes { targetData := machine.CreateTargetData() defer targetData.Dispose() intPtrType := targetData.IntPtrType() if intPtrType.IntTypeWidth()/8 <= 32 { } var intWidth int if targetData.PointerSize() <= 4 { // 8, 16, 32 bits targets intWidth = 32 } else if targetData.PointerSize() == 8 { // 64 bits target intWidth = 64 } else { panic("unknown pointer size") } return &stdSizes{ IntSize: int64(intWidth / 8), PtrSize: int64(targetData.PointerSize()), MaxAlign: int64(targetData.PrefTypeAlignment(intPtrType)), } } // CompilePackage compiles a single package to a LLVM module. func CompilePackage(moduleName string, pkg *loader.Package, ssaPkg *ssa.Package, machine llvm.TargetMachine, config *Config, dumpSSA bool) (llvm.Module, []error) { c := newCompilerContext(moduleName, machine, config, dumpSSA) c.runtimePkg = ssaPkg.Prog.ImportedPackage("runtime").Pkg c.program = ssaPkg.Prog // Convert AST to SSA. ssaPkg.Build() // Initialize debug information. if c.Debug { c.cu = c.dibuilder.CreateCompileUnit(llvm.DICompileUnit{ Language: 0xb, // DW_LANG_C99 (0xc, off-by-one?) File: "", Dir: "", Producer: "TinyGo", Optimized: true, }) } // Load comments such as //go:extern on globals. c.loadASTComments(pkg) // Predeclare the runtime.alloc function, which is used by the wordpack // functionality. c.getFunction(c.program.ImportedPackage("runtime").Members["alloc"].(*ssa.Function)) // Compile all functions, methods, and global variables in this package. irbuilder := c.ctx.NewBuilder() defer irbuilder.Dispose() c.createPackage(irbuilder, ssaPkg) // see: https://reviews.llvm.org/D18355 if c.Debug { c.mod.AddNamedMetadataOperand("llvm.module.flags", c.ctx.MDNode([]llvm.Metadata{ llvm.ConstInt(c.ctx.Int32Type(), 1, false).ConstantAsMetadata(), // Error on mismatch c.ctx.MDString("Debug Info Version"), llvm.ConstInt(c.ctx.Int32Type(), 3, false).ConstantAsMetadata(), // DWARF version }), ) c.mod.AddNamedMetadataOperand("llvm.module.flags", c.ctx.MDNode([]llvm.Metadata{ llvm.ConstInt(c.ctx.Int32Type(), 1, false).ConstantAsMetadata(), c.ctx.MDString("Dwarf Version"), llvm.ConstInt(c.ctx.Int32Type(), 4, false).ConstantAsMetadata(), }), ) c.dibuilder.Finalize() } return c.mod, c.diagnostics } // getLLVMRuntimeType obtains a named type from the runtime package and returns // it as a LLVM type, creating it if necessary. It is a shorthand for // getLLVMType(getRuntimeType(name)). func (c *compilerContext) getLLVMRuntimeType(name string) llvm.Type { typ := c.runtimePkg.Scope().Lookup(name).(*types.TypeName).Type() return c.getLLVMType(typ) } // getLLVMType creates and returns a LLVM type for a Go type. In the case of // named struct types (or Go types implemented as named LLVM structs such as // strings) it also creates it first if necessary. func (c *compilerContext) getLLVMType(goType types.Type) llvm.Type { switch typ := goType.(type) { case *types.Array: elemType := c.getLLVMType(typ.Elem()) return llvm.ArrayType(elemType, int(typ.Len())) case *types.Basic: switch typ.Kind() { case types.Bool, types.UntypedBool: return c.ctx.Int1Type() case types.Int8, types.Uint8: return c.ctx.Int8Type() case types.Int16, types.Uint16: return c.ctx.Int16Type() case types.Int32, types.Uint32: return c.ctx.Int32Type() case types.Int, types.Uint: return c.intType case types.Int64, types.Uint64: return c.ctx.Int64Type() case types.Float32: return c.ctx.FloatType() case types.Float64: return c.ctx.DoubleType() case types.Complex64: return c.ctx.StructType([]llvm.Type{c.ctx.FloatType(), c.ctx.FloatType()}, false) case types.Complex128: return c.ctx.StructType([]llvm.Type{c.ctx.DoubleType(), c.ctx.DoubleType()}, false) case types.String, types.UntypedString: return c.getLLVMRuntimeType("_string") case types.Uintptr: return c.uintptrType case types.UnsafePointer: return c.i8ptrType default: panic("unknown basic type: " + typ.String()) } case *types.Chan: return llvm.PointerType(c.getLLVMRuntimeType("channel"), 0) case *types.Interface: return c.getLLVMRuntimeType("_interface") case *types.Map: return llvm.PointerType(c.getLLVMRuntimeType("hashmap"), 0) case *types.Named: if st, ok := typ.Underlying().(*types.Struct); ok { // Structs are a special case. While other named types are ignored // in LLVM IR, named structs are implemented as named structs in // LLVM. This is because it is otherwise impossible to create // self-referencing types such as linked lists. llvmName := typ.Obj().Pkg().Path() + "." + typ.Obj().Name() llvmType := c.mod.GetTypeByName(llvmName) if llvmType.IsNil() { llvmType = c.ctx.StructCreateNamed(llvmName) underlying := c.getLLVMType(st) llvmType.StructSetBody(underlying.StructElementTypes(), false) } return llvmType } return c.getLLVMType(typ.Underlying()) case *types.Pointer: ptrTo := c.getLLVMType(typ.Elem()) return llvm.PointerType(ptrTo, 0) case *types.Signature: // function value return c.getFuncType(typ) case *types.Slice: elemType := c.getLLVMType(typ.Elem()) members := []llvm.Type{ llvm.PointerType(elemType, 0), c.uintptrType, // len c.uintptrType, // cap } return c.ctx.StructType(members, false) case *types.Struct: members := make([]llvm.Type, typ.NumFields()) for i := 0; i < typ.NumFields(); i++ { members[i] = c.getLLVMType(typ.Field(i).Type()) } return c.ctx.StructType(members, false) case *types.Tuple: members := make([]llvm.Type, typ.Len()) for i := 0; i < typ.Len(); i++ { members[i] = c.getLLVMType(typ.At(i).Type()) } return c.ctx.StructType(members, false) default: panic("unknown type: " + goType.String()) } } // Is this a pointer type of some sort? Can be unsafe.Pointer or any *T pointer. func isPointer(typ types.Type) bool { if _, ok := typ.(*types.Pointer); ok { return true } else if typ, ok := typ.(*types.Basic); ok && typ.Kind() == types.UnsafePointer { return true } else { return false } } // Get the DWARF type for this Go type. func (c *compilerContext) getDIType(typ types.Type) llvm.Metadata { if md, ok := c.ditypes[typ]; ok { return md } md := c.createDIType(typ) c.ditypes[typ] = md return md } // createDIType creates a new DWARF type. Don't call this function directly, // call getDIType instead. func (c *compilerContext) createDIType(typ types.Type) llvm.Metadata { llvmType := c.getLLVMType(typ) sizeInBytes := c.targetData.TypeAllocSize(llvmType) switch typ := typ.(type) { case *types.Array: return c.dibuilder.CreateArrayType(llvm.DIArrayType{ SizeInBits: sizeInBytes * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8, ElementType: c.getDIType(typ.Elem()), Subscripts: []llvm.DISubrange{ llvm.DISubrange{ Lo: 0, Count: typ.Len(), }, }, }) case *types.Basic: var encoding llvm.DwarfTypeEncoding if typ.Info()&types.IsBoolean != 0 { encoding = llvm.DW_ATE_boolean } else if typ.Info()&types.IsFloat != 0 { encoding = llvm.DW_ATE_float } else if typ.Info()&types.IsComplex != 0 { encoding = llvm.DW_ATE_complex_float } else if typ.Info()&types.IsUnsigned != 0 { encoding = llvm.DW_ATE_unsigned } else if typ.Info()&types.IsInteger != 0 { encoding = llvm.DW_ATE_signed } else if typ.Kind() == types.UnsafePointer { return c.dibuilder.CreatePointerType(llvm.DIPointerType{ Name: "unsafe.Pointer", SizeInBits: c.targetData.TypeAllocSize(llvmType) * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8, AddressSpace: 0, }) } else if typ.Info()&types.IsString != 0 { return c.dibuilder.CreateStructType(llvm.Metadata{}, llvm.DIStructType{ Name: "string", SizeInBits: sizeInBytes * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8, Elements: []llvm.Metadata{ c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{ Name: "ptr", SizeInBits: c.targetData.TypeAllocSize(c.i8ptrType) * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(c.i8ptrType)) * 8, OffsetInBits: 0, Type: c.getDIType(types.NewPointer(types.Typ[types.Byte])), }), c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{ Name: "len", SizeInBits: c.targetData.TypeAllocSize(c.uintptrType) * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(c.uintptrType)) * 8, OffsetInBits: c.targetData.ElementOffset(llvmType, 1) * 8, Type: c.getDIType(types.Typ[types.Uintptr]), }), }, }) } else { panic("unknown basic type") } return c.dibuilder.CreateBasicType(llvm.DIBasicType{ Name: typ.String(), SizeInBits: sizeInBytes * 8, Encoding: encoding, }) case *types.Chan: return c.getDIType(types.NewPointer(c.program.ImportedPackage("runtime").Members["channel"].(*ssa.Type).Type())) case *types.Interface: return c.getDIType(c.program.ImportedPackage("runtime").Members["_interface"].(*ssa.Type).Type()) case *types.Map: return c.getDIType(types.NewPointer(c.program.ImportedPackage("runtime").Members["hashmap"].(*ssa.Type).Type())) case *types.Named: return c.dibuilder.CreateTypedef(llvm.DITypedef{ Type: c.getDIType(typ.Underlying()), Name: typ.String(), }) case *types.Pointer: return c.dibuilder.CreatePointerType(llvm.DIPointerType{ Pointee: c.getDIType(typ.Elem()), SizeInBits: c.targetData.TypeAllocSize(llvmType) * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8, AddressSpace: 0, }) case *types.Signature: // actually a closure fields := llvmType.StructElementTypes() return c.dibuilder.CreateStructType(llvm.Metadata{}, llvm.DIStructType{ SizeInBits: sizeInBytes * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8, Elements: []llvm.Metadata{ c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{ Name: "context", SizeInBits: c.targetData.TypeAllocSize(fields[1]) * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(fields[1])) * 8, OffsetInBits: 0, Type: c.getDIType(types.Typ[types.UnsafePointer]), }), c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{ Name: "fn", SizeInBits: c.targetData.TypeAllocSize(fields[0]) * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(fields[0])) * 8, OffsetInBits: c.targetData.ElementOffset(llvmType, 1) * 8, Type: c.getDIType(types.Typ[types.UnsafePointer]), }), }, }) case *types.Slice: fields := llvmType.StructElementTypes() return c.dibuilder.CreateStructType(llvm.Metadata{}, llvm.DIStructType{ Name: typ.String(), SizeInBits: sizeInBytes * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8, Elements: []llvm.Metadata{ c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{ Name: "ptr", SizeInBits: c.targetData.TypeAllocSize(fields[0]) * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(fields[0])) * 8, OffsetInBits: 0, Type: c.getDIType(types.NewPointer(typ.Elem())), }), c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{ Name: "len", SizeInBits: c.targetData.TypeAllocSize(c.uintptrType) * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(c.uintptrType)) * 8, OffsetInBits: c.targetData.ElementOffset(llvmType, 1) * 8, Type: c.getDIType(types.Typ[types.Uintptr]), }), c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{ Name: "cap", SizeInBits: c.targetData.TypeAllocSize(c.uintptrType) * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(c.uintptrType)) * 8, OffsetInBits: c.targetData.ElementOffset(llvmType, 2) * 8, Type: c.getDIType(types.Typ[types.Uintptr]), }), }, }) case *types.Struct: // Placeholder metadata node, to be replaced afterwards. temporaryMDNode := c.dibuilder.CreateReplaceableCompositeType(llvm.Metadata{}, llvm.DIReplaceableCompositeType{ Tag: dwarf.TagStructType, SizeInBits: sizeInBytes * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8, }) c.ditypes[typ] = temporaryMDNode elements := make([]llvm.Metadata, typ.NumFields()) for i := range elements { field := typ.Field(i) fieldType := field.Type() llvmField := c.getLLVMType(fieldType) elements[i] = c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{ Name: field.Name(), SizeInBits: c.targetData.TypeAllocSize(llvmField) * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmField)) * 8, OffsetInBits: c.targetData.ElementOffset(llvmType, i) * 8, Type: c.getDIType(fieldType), }) } md := c.dibuilder.CreateStructType(llvm.Metadata{}, llvm.DIStructType{ SizeInBits: sizeInBytes * 8, AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8, Elements: elements, }) temporaryMDNode.ReplaceAllUsesWith(md) return md default: panic("unknown type while generating DWARF debug type: " + typ.String()) } } // getLocalVariable returns a debug info entry for a local variable, which may // either be a parameter or a regular variable. It will create a new metadata // entry if there isn't one for the variable yet. func (b *builder) getLocalVariable(variable *types.Var) llvm.Metadata { if dilocal, ok := b.dilocals[variable]; ok { // DILocalVariable was already created, return it directly. return dilocal } pos := b.program.Fset.Position(variable.Pos()) // Check whether this is a function parameter. for i, param := range b.fn.Params { if param.Object().(*types.Var) == variable { // Yes it is, create it as a function parameter. dilocal := b.dibuilder.CreateParameterVariable(b.difunc, llvm.DIParameterVariable{ Name: param.Name(), File: b.getDIFile(pos.Filename), Line: pos.Line, Type: b.getDIType(variable.Type()), AlwaysPreserve: true, ArgNo: i + 1, }) b.dilocals[variable] = dilocal return dilocal } } // No, it's not a parameter. Create a regular (auto) variable. dilocal := b.dibuilder.CreateAutoVariable(b.difunc, llvm.DIAutoVariable{ Name: variable.Name(), File: b.getDIFile(pos.Filename), Line: pos.Line, Type: b.getDIType(variable.Type()), AlwaysPreserve: true, }) b.dilocals[variable] = dilocal return dilocal } // attachDebugInfo adds debug info to a function declaration. It returns the // DISubprogram metadata node. func (c *compilerContext) attachDebugInfo(f *ssa.Function) llvm.Metadata { pos := c.program.Fset.Position(f.Syntax().Pos()) return c.attachDebugInfoRaw(f, c.getFunction(f), "", pos.Filename, pos.Line) } // attachDebugInfo adds debug info to a function declaration. It returns the // DISubprogram metadata node. This method allows some more control over how // debug info is added to the function. func (c *compilerContext) attachDebugInfoRaw(f *ssa.Function, llvmFn llvm.Value, suffix, filename string, line int) llvm.Metadata { // Debug info for this function. params := getParams(f.Signature) diparams := make([]llvm.Metadata, 0, len(params)) for _, param := range params { diparams = append(diparams, c.getDIType(param.Type())) } diFuncType := c.dibuilder.CreateSubroutineType(llvm.DISubroutineType{ File: c.getDIFile(filename), Parameters: diparams, Flags: 0, // ? }) difunc := c.dibuilder.CreateFunction(c.getDIFile(filename), llvm.DIFunction{ Name: f.RelString(nil) + suffix, LinkageName: c.getFunctionInfo(f).linkName + suffix, File: c.getDIFile(filename), Line: line, Type: diFuncType, LocalToUnit: true, IsDefinition: true, ScopeLine: 0, Flags: llvm.FlagPrototyped, Optimized: true, }) llvmFn.SetSubprogram(difunc) return difunc } // getDIFile returns a DIFile metadata node for the given filename. It tries to // use one that was already created, otherwise it falls back to creating a new // one. func (c *compilerContext) getDIFile(filename string) llvm.Metadata { if _, ok := c.difiles[filename]; !ok { dir, file := filepath.Split(filename) if dir != "" { dir = dir[:len(dir)-1] } c.difiles[filename] = c.dibuilder.CreateFile(file, dir) } return c.difiles[filename] } // createPackage builds the LLVM IR for all types, methods, and global variables // in the given package. func (c *compilerContext) createPackage(irbuilder llvm.Builder, pkg *ssa.Package) { // Sort by position, so that the order of the functions in the IR matches // the order of functions in the source file. This is useful for testing, // for example. var members []string for name := range pkg.Members { members = append(members, name) } sort.Slice(members, func(i, j int) bool { iPos := pkg.Members[members[i]].Pos() jPos := pkg.Members[members[j]].Pos() if i == j { // Cannot sort by pos, so do it by name. return members[i] < members[j] } return iPos < jPos }) // Define all functions. for _, name := range members { member := pkg.Members[name] switch member := member.(type) { case *ssa.Function: // Create the function definition. b := newBuilder(c, irbuilder, member) if member.Blocks == nil { continue // external function } b.createFunction() case *ssa.Type: if types.IsInterface(member.Type()) { // Interfaces don't have concrete methods. continue } // Named type. We should make sure all methods are created. // This includes both functions with pointer receivers and those // without. methods := getAllMethods(pkg.Prog, member.Type()) methods = append(methods, getAllMethods(pkg.Prog, types.NewPointer(member.Type()))...) for _, method := range methods { // Parse this method. fn := pkg.Prog.MethodValue(method) if fn.Blocks == nil { continue // external function } if member.Type().String() != member.String() { // This is a member on a type alias. Do not build such a // function. continue } if fn.Synthetic != "" && fn.Synthetic != "package initializer" { // This function is a kind of wrapper function (created by // the ssa package, not appearing in the source code) that // is created by the getFunction method as needed. // Therefore, don't build it here to avoid "function // redeclared" errors. continue } // Create the function definition. b := newBuilder(c, irbuilder, fn) b.createFunction() } case *ssa.Global: // Global variable. info := c.getGlobalInfo(member) global := c.getGlobal(member) if !info.extern { global.SetInitializer(llvm.ConstNull(global.Type().ElementType())) global.SetVisibility(llvm.HiddenVisibility) if info.section != "" { global.SetSection(info.section) } } } } // Add forwarding functions for functions that would otherwise be // implemented in assembly. for _, name := range members { member := pkg.Members[name] switch member := member.(type) { case *ssa.Function: if member.Blocks != nil { continue // external function } info := c.getFunctionInfo(member) if aliasName, ok := stdlibAliases[info.linkName]; ok { alias := c.mod.NamedFunction(aliasName) if alias.IsNil() { // Shouldn't happen, but perhaps best to just ignore. // The error will be a link error, if there is an error. continue } b := newBuilder(c, irbuilder, member) b.createAlias(alias) } } } } // createFunction builds the LLVM IR implementation for this function. The // function must not yet be defined, otherwise this function will create a // diagnostic. func (b *builder) createFunction() { if b.DumpSSA { fmt.Printf("\nfunc %s:\n", b.fn) } if !b.llvmFn.IsDeclaration() { errValue := b.llvmFn.Name() + " redeclared in this program" fnPos := getPosition(b.llvmFn) if fnPos.IsValid() { errValue += "\n\tprevious declaration at " + fnPos.String() } b.addError(b.fn.Pos(), errValue) return } if !b.info.exported { b.llvmFn.SetVisibility(llvm.HiddenVisibility) b.llvmFn.SetUnnamedAddr(true) } if b.info.section != "" { b.llvmFn.SetSection(b.info.section) } if b.info.exported && strings.HasPrefix(b.Triple, "wasm") { // Set the exported name. This is necessary for WebAssembly because // otherwise the function is not exported. functionAttr := b.ctx.CreateStringAttribute("wasm-export-name", b.info.linkName) b.llvmFn.AddFunctionAttr(functionAttr) } // Some functions have a pragma controlling the inlining level. switch b.info.inline { case inlineHint: // Add LLVM inline hint to functions with //go:inline pragma. inline := b.ctx.CreateEnumAttribute(llvm.AttributeKindID("inlinehint"), 0) b.llvmFn.AddFunctionAttr(inline) case inlineNone: // Add LLVM attribute to always avoid inlining this function. noinline := b.ctx.CreateEnumAttribute(llvm.AttributeKindID("noinline"), 0) b.llvmFn.AddFunctionAttr(noinline) } // Add debug info, if needed. if b.Debug { if b.fn.Synthetic == "package initializer" { // Package initializers have no debug info. Create some fake debug // info to at least have *something*. filename := b.fn.Package().Pkg.Path() + "/" b.difunc = b.attachDebugInfoRaw(b.fn, b.llvmFn, "", filename, 0) } else if b.fn.Syntax() != nil { // Create debug info file if needed. b.difunc = b.attachDebugInfo(b.fn) } pos := b.program.Fset.Position(b.fn.Pos()) b.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), b.difunc, llvm.Metadata{}) } // Pre-create all basic blocks in the function. for _, block := range b.fn.DomPreorder() { llvmBlock := b.ctx.AddBasicBlock(b.llvmFn, block.Comment) b.blockEntries[block] = llvmBlock b.blockExits[block] = llvmBlock } entryBlock := b.blockEntries[b.fn.Blocks[0]] b.SetInsertPointAtEnd(entryBlock) // Load function parameters llvmParamIndex := 0 for _, param := range b.fn.Params { llvmType := b.getLLVMType(param.Type()) fields := make([]llvm.Value, 0, 1) for _, info := range b.expandFormalParamType(llvmType, param.Name(), param.Type()) { param := b.llvmFn.Param(llvmParamIndex) param.SetName(info.name) fields = append(fields, param) llvmParamIndex++ } b.locals[param] = b.collapseFormalParam(llvmType, fields) // Add debug information to this parameter (if available) if b.Debug && b.fn.Syntax() != nil { dbgParam := b.getLocalVariable(param.Object().(*types.Var)) loc := b.GetCurrentDebugLocation() if len(fields) == 1 { expr := b.dibuilder.CreateExpression(nil) b.dibuilder.InsertValueAtEnd(fields[0], dbgParam, expr, loc, entryBlock) } else { fieldOffsets := b.expandFormalParamOffsets(llvmType) for i, field := range fields { expr := b.dibuilder.CreateExpression([]int64{ 0x1000, // DW_OP_LLVM_fragment int64(fieldOffsets[i]) * 8, // offset in bits int64(b.targetData.TypeAllocSize(field.Type())) * 8, // size in bits }) b.dibuilder.InsertValueAtEnd(field, dbgParam, expr, loc, entryBlock) } } } } // Load free variables from the context. This is a closure (or bound // method). var context llvm.Value if !b.info.exported { parentHandle := b.llvmFn.LastParam() parentHandle.SetName("parentHandle") context = llvm.PrevParam(parentHandle) context.SetName("context") } if len(b.fn.FreeVars) != 0 { // Get a list of all variable types in the context. freeVarTypes := make([]llvm.Type, len(b.fn.FreeVars)) for i, freeVar := range b.fn.FreeVars { freeVarTypes[i] = b.getLLVMType(freeVar.Type()) } // Load each free variable from the context pointer. // A free variable is always a pointer when this is a closure, but it // can be another type when it is a wrapper for a bound method (these // wrappers are generated by the ssa package). for i, val := range b.emitPointerUnpack(context, freeVarTypes) { b.locals[b.fn.FreeVars[i]] = val } } if b.fn.Recover != nil { // This function has deferred function calls. Set some things up for // them. b.deferInitFunc() } // Fill blocks with instructions. for _, block := range b.fn.DomPreorder() { if b.DumpSSA { fmt.Printf("%d: %s:\n", block.Index, block.Comment) } b.SetInsertPointAtEnd(b.blockEntries[block]) b.currentBlock = block for _, instr := range block.Instrs { if instr, ok := instr.(*ssa.DebugRef); ok { if !b.Debug { continue } object := instr.Object() variable, ok := object.(*types.Var) if !ok { // Not a local variable. continue } if instr.IsAddr { // TODO, this may happen for *ssa.Alloc and *ssa.FieldAddr // for example. continue } dbgVar := b.getLocalVariable(variable) pos := b.program.Fset.Position(instr.Pos()) b.dibuilder.InsertValueAtEnd(b.getValue(instr.X), dbgVar, b.dibuilder.CreateExpression(nil), llvm.DebugLoc{ Line: uint(pos.Line), Col: uint(pos.Column), Scope: b.difunc, }, b.GetInsertBlock()) continue } if b.DumpSSA { if val, ok := instr.(ssa.Value); ok && val.Name() != "" { fmt.Printf("\t%s = %s\n", val.Name(), val.String()) } else { fmt.Printf("\t%s\n", instr.String()) } } b.createInstruction(instr) } if b.fn.Name() == "init" && len(block.Instrs) == 0 { b.CreateRetVoid() } } // Resolve phi nodes for _, phi := range b.phis { block := phi.ssa.Block() for i, edge := range phi.ssa.Edges { llvmVal := b.getValue(edge) llvmBlock := b.blockExits[block.Preds[i]] phi.llvm.AddIncoming([]llvm.Value{llvmVal}, []llvm.BasicBlock{llvmBlock}) } } if b.NeedsStackObjects { // Track phi nodes. for _, phi := range b.phis { insertPoint := llvm.NextInstruction(phi.llvm) for !insertPoint.IsAPHINode().IsNil() { insertPoint = llvm.NextInstruction(insertPoint) } b.SetInsertPointBefore(insertPoint) b.trackValue(phi.llvm) } } // Create anonymous functions (closures etc.). for _, sub := range b.fn.AnonFuncs { b := newBuilder(b.compilerContext, b.Builder, sub) b.createFunction() } } // posser is an interface that's implemented by both ssa.Value and // ssa.Instruction. It is implemented by everything that has a Pos() method, // which is all that getPos() needs. type posser interface { Pos() token.Pos } // getPos returns position information for a ssa.Value or ssa.Instruction. // // Not all instructions have position information, especially when they're // implicit (such as implicit casts or implicit returns at the end of a // function). In these cases, it makes sense to try a bit harder to guess what // the position really should be. func getPos(val posser) token.Pos { pos := val.Pos() if pos != token.NoPos { // Easy: position is known. return pos } // No position information is known. switch val := val.(type) { case *ssa.MakeInterface: return getPos(val.X) case *ssa.MakeClosure: return val.Fn.(*ssa.Function).Pos() case *ssa.Return: syntax := val.Parent().Syntax() if syntax != nil { // non-synthetic return syntax.End() } return token.NoPos case *ssa.FieldAddr: return getPos(val.X) case *ssa.IndexAddr: return getPos(val.X) case *ssa.Slice: return getPos(val.X) case *ssa.Store: return getPos(val.Addr) case *ssa.Extract: return getPos(val.Tuple) default: // This is reachable, for example with *ssa.Const, *ssa.If, and // *ssa.Jump. They might be implemented in some way in the future. return token.NoPos } } // createInstruction builds the LLVM IR equivalent instructions for the // particular Go SSA instruction. func (b *builder) createInstruction(instr ssa.Instruction) { if b.Debug { pos := b.program.Fset.Position(getPos(instr)) b.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), b.difunc, llvm.Metadata{}) } switch instr := instr.(type) { case ssa.Value: if value, err := b.createExpr(instr); err != nil { // This expression could not be parsed. Add the error to the list // of diagnostics and continue with an undef value. // The resulting IR will be incorrect (but valid). However, // compilation can proceed which is useful because there may be // more compilation errors which can then all be shown together to // the user. b.diagnostics = append(b.diagnostics, err) b.locals[instr] = llvm.Undef(b.getLLVMType(instr.Type())) } else { b.locals[instr] = value if len(*instr.Referrers()) != 0 && b.NeedsStackObjects { b.trackExpr(instr, value) } } case *ssa.DebugRef: // ignore case *ssa.Defer: b.createDefer(instr) case *ssa.Go: // Start a new goroutine. b.createGo(instr) case *ssa.If: cond := b.getValue(instr.Cond) block := instr.Block() blockThen := b.blockEntries[block.Succs[0]] blockElse := b.blockEntries[block.Succs[1]] b.CreateCondBr(cond, blockThen, blockElse) case *ssa.Jump: blockJump := b.blockEntries[instr.Block().Succs[0]] b.CreateBr(blockJump) case *ssa.MapUpdate: m := b.getValue(instr.Map) key := b.getValue(instr.Key) value := b.getValue(instr.Value) mapType := instr.Map.Type().Underlying().(*types.Map) b.createMapUpdate(mapType.Key(), m, key, value, instr.Pos()) case *ssa.Panic: value := b.getValue(instr.X) b.createRuntimeCall("_panic", []llvm.Value{value}, "") b.CreateUnreachable() case *ssa.Return: if len(instr.Results) == 0 { b.CreateRetVoid() } else if len(instr.Results) == 1 { b.CreateRet(b.getValue(instr.Results[0])) } else { // Multiple return values. Put them all in a struct. retVal := llvm.ConstNull(b.llvmFn.Type().ElementType().ReturnType()) for i, result := range instr.Results { val := b.getValue(result) retVal = b.CreateInsertValue(retVal, val, i, "") } b.CreateRet(retVal) } case *ssa.RunDefers: b.createRunDefers() case *ssa.Send: b.createChanSend(instr) case *ssa.Store: llvmAddr := b.getValue(instr.Addr) llvmVal := b.getValue(instr.Val) b.createNilCheck(instr.Addr, llvmAddr, "store") if b.targetData.TypeAllocSize(llvmVal.Type()) == 0 { // nothing to store return } b.CreateStore(llvmVal, llvmAddr) default: b.addError(instr.Pos(), "unknown instruction: "+instr.String()) } } // createBuiltin lowers a builtin Go function (append, close, delete, etc.) to // LLVM IR. It uses runtime calls for some builtins. func (b *builder) createBuiltin(argTypes []types.Type, argValues []llvm.Value, callName string, pos token.Pos) (llvm.Value, error) { switch callName { case "append": src := argValues[0] elems := argValues[1] srcBuf := b.CreateExtractValue(src, 0, "append.srcBuf") srcPtr := b.CreateBitCast(srcBuf, b.i8ptrType, "append.srcPtr") srcLen := b.CreateExtractValue(src, 1, "append.srcLen") srcCap := b.CreateExtractValue(src, 2, "append.srcCap") elemsBuf := b.CreateExtractValue(elems, 0, "append.elemsBuf") elemsPtr := b.CreateBitCast(elemsBuf, b.i8ptrType, "append.srcPtr") elemsLen := b.CreateExtractValue(elems, 1, "append.elemsLen") elemType := srcBuf.Type().ElementType() elemSize := llvm.ConstInt(b.uintptrType, b.targetData.TypeAllocSize(elemType), false) result := b.createRuntimeCall("sliceAppend", []llvm.Value{srcPtr, elemsPtr, srcLen, srcCap, elemsLen, elemSize}, "append.new") newPtr := b.CreateExtractValue(result, 0, "append.newPtr") newBuf := b.CreateBitCast(newPtr, srcBuf.Type(), "append.newBuf") newLen := b.CreateExtractValue(result, 1, "append.newLen") newCap := b.CreateExtractValue(result, 2, "append.newCap") newSlice := llvm.Undef(src.Type()) newSlice = b.CreateInsertValue(newSlice, newBuf, 0, "") newSlice = b.CreateInsertValue(newSlice, newLen, 1, "") newSlice = b.CreateInsertValue(newSlice, newCap, 2, "") return newSlice, nil case "cap": value := argValues[0] var llvmCap llvm.Value switch argTypes[0].(type) { case *types.Chan: llvmCap = b.createRuntimeCall("chanCap", []llvm.Value{value}, "cap") case *types.Slice: llvmCap = b.CreateExtractValue(value, 2, "cap") default: return llvm.Value{}, b.makeError(pos, "todo: cap: unknown type") } if b.targetData.TypeAllocSize(llvmCap.Type()) < b.targetData.TypeAllocSize(b.intType) { llvmCap = b.CreateZExt(llvmCap, b.intType, "len.int") } return llvmCap, nil case "close": b.createChanClose(argValues[0]) return llvm.Value{}, nil case "complex": r := argValues[0] i := argValues[1] t := argTypes[0].Underlying().(*types.Basic) var cplx llvm.Value switch t.Kind() { case types.Float32: cplx = llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.FloatType(), b.ctx.FloatType()}, false)) case types.Float64: cplx = llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.DoubleType(), b.ctx.DoubleType()}, false)) default: return llvm.Value{}, b.makeError(pos, "unsupported type in complex builtin: "+t.String()) } cplx = b.CreateInsertValue(cplx, r, 0, "") cplx = b.CreateInsertValue(cplx, i, 1, "") return cplx, nil case "copy": dst := argValues[0] src := argValues[1] dstLen := b.CreateExtractValue(dst, 1, "copy.dstLen") srcLen := b.CreateExtractValue(src, 1, "copy.srcLen") dstBuf := b.CreateExtractValue(dst, 0, "copy.dstArray") srcBuf := b.CreateExtractValue(src, 0, "copy.srcArray") elemType := dstBuf.Type().ElementType() dstBuf = b.CreateBitCast(dstBuf, b.i8ptrType, "copy.dstPtr") srcBuf = b.CreateBitCast(srcBuf, b.i8ptrType, "copy.srcPtr") elemSize := llvm.ConstInt(b.uintptrType, b.targetData.TypeAllocSize(elemType), false) return b.createRuntimeCall("sliceCopy", []llvm.Value{dstBuf, srcBuf, dstLen, srcLen, elemSize}, "copy.n"), nil case "delete": m := argValues[0] key := argValues[1] return llvm.Value{}, b.createMapDelete(argTypes[1], m, key, pos) case "imag": cplx := argValues[0] return b.CreateExtractValue(cplx, 1, "imag"), nil case "len": value := argValues[0] var llvmLen llvm.Value switch argTypes[0].Underlying().(type) { case *types.Basic, *types.Slice: // string or slice llvmLen = b.CreateExtractValue(value, 1, "len") case *types.Chan: llvmLen = b.createRuntimeCall("chanLen", []llvm.Value{value}, "len") case *types.Map: llvmLen = b.createRuntimeCall("hashmapLen", []llvm.Value{value}, "len") default: return llvm.Value{}, b.makeError(pos, "todo: len: unknown type") } if b.targetData.TypeAllocSize(llvmLen.Type()) < b.targetData.TypeAllocSize(b.intType) { llvmLen = b.CreateZExt(llvmLen, b.intType, "len.int") } return llvmLen, nil case "print", "println": for i, value := range argValues { if i >= 1 && callName == "println" { b.createRuntimeCall("printspace", nil, "") } typ := argTypes[i].Underlying() switch typ := typ.(type) { case *types.Basic: switch typ.Kind() { case types.String, types.UntypedString: b.createRuntimeCall("printstring", []llvm.Value{value}, "") case types.Uintptr: b.createRuntimeCall("printptr", []llvm.Value{value}, "") case types.UnsafePointer: ptrValue := b.CreatePtrToInt(value, b.uintptrType, "") b.createRuntimeCall("printptr", []llvm.Value{ptrValue}, "") default: // runtime.print{int,uint}{8,16,32,64} if typ.Info()&types.IsInteger != 0 { name := "print" if typ.Info()&types.IsUnsigned != 0 { name += "uint" } else { name += "int" } name += strconv.FormatUint(b.targetData.TypeAllocSize(value.Type())*8, 10) b.createRuntimeCall(name, []llvm.Value{value}, "") } else if typ.Kind() == types.Bool { b.createRuntimeCall("printbool", []llvm.Value{value}, "") } else if typ.Kind() == types.Float32 { b.createRuntimeCall("printfloat32", []llvm.Value{value}, "") } else if typ.Kind() == types.Float64 { b.createRuntimeCall("printfloat64", []llvm.Value{value}, "") } else if typ.Kind() == types.Complex64 { b.createRuntimeCall("printcomplex64", []llvm.Value{value}, "") } else if typ.Kind() == types.Complex128 { b.createRuntimeCall("printcomplex128", []llvm.Value{value}, "") } else { return llvm.Value{}, b.makeError(pos, "unknown basic arg type: "+typ.String()) } } case *types.Interface: b.createRuntimeCall("printitf", []llvm.Value{value}, "") case *types.Map: b.createRuntimeCall("printmap", []llvm.Value{value}, "") case *types.Pointer: ptrValue := b.CreatePtrToInt(value, b.uintptrType, "") b.createRuntimeCall("printptr", []llvm.Value{ptrValue}, "") default: return llvm.Value{}, b.makeError(pos, "unknown arg type: "+typ.String()) } } if callName == "println" { b.createRuntimeCall("printnl", nil, "") } return llvm.Value{}, nil // print() or println() returns void case "real": cplx := argValues[0] return b.CreateExtractValue(cplx, 0, "real"), nil case "recover": return b.createRuntimeCall("_recover", nil, ""), nil case "ssa:wrapnilchk": // TODO: do an actual nil check? return argValues[0], nil default: return llvm.Value{}, b.makeError(pos, "todo: builtin: "+callName) } } // createFunctionCall lowers a Go SSA call instruction (to a simple function, // closure, function pointer, builtin, method, etc.) to LLVM IR, usually a call // instruction. // // This is also where compiler intrinsics are implemented. func (b *builder) createFunctionCall(instr *ssa.CallCommon) (llvm.Value, error) { if instr.IsInvoke() { fnCast, args := b.getInvokeCall(instr) return b.createCall(fnCast, args, ""), nil } // Try to call the function directly for trivially static calls. var callee, context llvm.Value exported := false if fn := instr.StaticCallee(); fn != nil { // Direct function call, either to a named or anonymous (directly // applied) function call. If it is anonymous, it may be a closure. name := fn.RelString(nil) switch { case name == "runtime.memcpy" || name == "runtime.memmove" || name == "reflect.memcpy": return b.createMemoryCopyCall(fn, instr.Args) case name == "runtime.memzero": return b.createMemoryZeroCall(instr.Args) case name == "math.Ceil" || name == "math.Floor" || name == "math.Sqrt" || name == "math.Trunc": result, ok := b.createMathOp(instr) if ok { return result, nil } case name == "device.Asm" || name == "device/arm.Asm" || name == "device/arm64.Asm" || name == "device/avr.Asm" || name == "device/riscv.Asm": return b.createInlineAsm(instr.Args) case name == "device.AsmFull" || name == "device/arm.AsmFull" || name == "device/arm64.AsmFull" || name == "device/avr.AsmFull" || name == "device/riscv.AsmFull": return b.createInlineAsmFull(instr) case strings.HasPrefix(name, "device/arm.SVCall"): return b.emitSVCall(instr.Args) case strings.HasPrefix(name, "device/arm64.SVCall"): return b.emitSV64Call(instr.Args) case strings.HasPrefix(name, "(device/riscv.CSR)."): return b.emitCSROperation(instr) case strings.HasPrefix(name, "syscall.Syscall"): return b.createSyscall(instr) case strings.HasPrefix(name, "syscall.rawSyscallNoError"): return b.createRawSyscallNoError(instr) case strings.HasPrefix(name, "runtime/volatile.Load"): return b.createVolatileLoad(instr) case strings.HasPrefix(name, "runtime/volatile.Store"): return b.createVolatileStore(instr) case strings.HasPrefix(name, "sync/atomic."): val, ok := b.createAtomicOp(instr) if ok { // This call could be lowered as an atomic operation. return val, nil } // This call couldn't be lowered as an atomic operation, it's // probably something else. Continue as usual. case name == "runtime/interrupt.New": return b.createInterruptGlobal(instr) } callee = b.getFunction(fn) info := b.getFunctionInfo(fn) if callee.IsNil() { return llvm.Value{}, b.makeError(instr.Pos(), "undefined function: "+info.linkName) } switch value := instr.Value.(type) { case *ssa.Function: // Regular function call. No context is necessary. context = llvm.Undef(b.i8ptrType) case *ssa.MakeClosure: // A call on a func value, but the callee is trivial to find. For // example: immediately applied functions. funcValue := b.getValue(value) context = b.extractFuncContext(funcValue) default: panic("StaticCallee returned an unexpected value") } exported = info.exported } else if call, ok := instr.Value.(*ssa.Builtin); ok { // Builtin function (append, close, delete, etc.).) var argTypes []types.Type var argValues []llvm.Value for _, arg := range instr.Args { argTypes = append(argTypes, arg.Type()) argValues = append(argValues, b.getValue(arg)) } return b.createBuiltin(argTypes, argValues, call.Name(), instr.Pos()) } else { // Function pointer. value := b.getValue(instr.Value) // This is a func value, which cannot be called directly. We have to // extract the function pointer and context first from the func value. callee, context = b.decodeFuncValue(value, instr.Value.Type().Underlying().(*types.Signature)) b.createNilCheck(instr.Value, callee, "fpcall") } var params []llvm.Value for _, param := range instr.Args { params = append(params, b.getValue(param)) } if !exported { // This function takes a context parameter. // Add it to the end of the parameter list. params = append(params, context) // Parent coroutine handle. params = append(params, llvm.Undef(b.i8ptrType)) } return b.createCall(callee, params, ""), nil } // getValue returns the LLVM value of a constant, function value, global, or // already processed SSA expression. func (b *builder) getValue(expr ssa.Value) llvm.Value { switch expr := expr.(type) { case *ssa.Const: return b.createConst(b.info.linkName, expr) case *ssa.Function: if b.getFunctionInfo(expr).exported { b.addError(expr.Pos(), "cannot use an exported function as value: "+expr.String()) return llvm.Undef(b.getLLVMType(expr.Type())) } return b.createFuncValue(b.getFunction(expr), llvm.Undef(b.i8ptrType), expr.Signature) case *ssa.Global: value := b.getGlobal(expr) if value.IsNil() { b.addError(expr.Pos(), "global not found: "+expr.RelString(nil)) return llvm.Undef(b.getLLVMType(expr.Type())) } return value default: // other (local) SSA value if value, ok := b.locals[expr]; ok { return value } else { // indicates a compiler bug panic("local has not been parsed: " + expr.String()) } } } // maxSliceSize determines the maximum size a slice of the given element type // can be. func (c *compilerContext) maxSliceSize(elementType llvm.Type) uint64 { // Calculate ^uintptr(0), which is the max value that fits in uintptr. maxPointerValue := llvm.ConstNot(llvm.ConstInt(c.uintptrType, 0, false)).ZExtValue() // Calculate (^uint(0))/2, which is the max value that fits in an int. maxIntegerValue := llvm.ConstNot(llvm.ConstInt(c.intType, 0, false)).ZExtValue() / 2 // Determine the maximum allowed size for a slice. The biggest possible // pointer (starting from 0) would be maxPointerValue*sizeof(elementType) so // divide by the element type to get the real maximum size. maxSize := maxPointerValue / c.targetData.TypeAllocSize(elementType) // len(slice) is an int. Make sure the length remains small enough to fit in // an int. if maxSize > maxIntegerValue { maxSize = maxIntegerValue } return maxSize } // createExpr translates a Go SSA expression to LLVM IR. This can be zero, one, // or multiple LLVM IR instructions and/or runtime calls. func (b *builder) createExpr(expr ssa.Value) (llvm.Value, error) { if _, ok := b.locals[expr]; ok { // sanity check panic("instruction has already been created: " + expr.String()) } switch expr := expr.(type) { case *ssa.Alloc: typ := b.getLLVMType(expr.Type().Underlying().(*types.Pointer).Elem()) if expr.Heap { size := b.targetData.TypeAllocSize(typ) // Calculate ^uintptr(0) maxSize := llvm.ConstNot(llvm.ConstInt(b.uintptrType, 0, false)).ZExtValue() if size > maxSize { // Size would be truncated if truncated to uintptr. return llvm.Value{}, b.makeError(expr.Pos(), fmt.Sprintf("value is too big (%v bytes)", size)) } sizeValue := llvm.ConstInt(b.uintptrType, size, false) buf := b.createRuntimeCall("alloc", []llvm.Value{sizeValue}, expr.Comment) buf = b.CreateBitCast(buf, llvm.PointerType(typ, 0), "") return buf, nil } else { buf := llvmutil.CreateEntryBlockAlloca(b.Builder, typ, expr.Comment) if b.targetData.TypeAllocSize(typ) != 0 { b.CreateStore(llvm.ConstNull(typ), buf) // zero-initialize var } return buf, nil } case *ssa.BinOp: x := b.getValue(expr.X) y := b.getValue(expr.Y) return b.createBinOp(expr.Op, expr.X.Type(), expr.Y.Type(), x, y, expr.Pos()) case *ssa.Call: return b.createFunctionCall(expr.Common()) case *ssa.ChangeInterface: // Do not change between interface types: always use the underlying // (concrete) type in the type number of the interface. Every method // call on an interface will do a lookup which method to call. // This is different from how the official Go compiler works, because of // heap allocation and because it's easier to implement, see: // https://research.swtch.com/interfaces return b.getValue(expr.X), nil case *ssa.ChangeType: // This instruction changes the type, but the underlying value remains // the same. This is often a no-op, but sometimes we have to change the // LLVM type as well. x := b.getValue(expr.X) llvmType := b.getLLVMType(expr.Type()) if x.Type() == llvmType { // Different Go type but same LLVM type (for example, named int). // This is the common case. return x, nil } // Figure out what kind of type we need to cast. switch llvmType.TypeKind() { case llvm.StructTypeKind: // Unfortunately, we can't just bitcast structs. We have to // actually create a new struct of the correct type and insert the // values from the previous struct in there. value := llvm.Undef(llvmType) for i := 0; i < llvmType.StructElementTypesCount(); i++ { field := b.CreateExtractValue(x, i, "changetype.field") value = b.CreateInsertValue(value, field, i, "changetype.struct") } return value, nil case llvm.PointerTypeKind: // This can happen with pointers to structs. This case is easy: // simply bitcast the pointer to the destination type. return b.CreateBitCast(x, llvmType, "changetype.pointer"), nil default: return llvm.Value{}, errors.New("todo: unknown ChangeType type: " + expr.X.Type().String()) } case *ssa.Const: panic("const is not an expression") case *ssa.Convert: x := b.getValue(expr.X) return b.createConvert(expr.X.Type(), expr.Type(), x, expr.Pos()) case *ssa.Extract: if _, ok := expr.Tuple.(*ssa.Select); ok { return b.getChanSelectResult(expr), nil } value := b.getValue(expr.Tuple) return b.CreateExtractValue(value, expr.Index, ""), nil case *ssa.Field: value := b.getValue(expr.X) result := b.CreateExtractValue(value, expr.Field, "") return result, nil case *ssa.FieldAddr: val := b.getValue(expr.X) // Check for nil pointer before calculating the address, from the spec: // > For an operand x of type T, the address operation &x generates a // > pointer of type *T to x. [...] If the evaluation of x would cause a // > run-time panic, then the evaluation of &x does too. b.createNilCheck(expr.X, val, "gep") // Do a GEP on the pointer to get the field address. indices := []llvm.Value{ llvm.ConstInt(b.ctx.Int32Type(), 0, false), llvm.ConstInt(b.ctx.Int32Type(), uint64(expr.Field), false), } return b.CreateInBoundsGEP(val, indices, ""), nil case *ssa.Function: panic("function is not an expression") case *ssa.Global: panic("global is not an expression") case *ssa.Index: array := b.getValue(expr.X) index := b.getValue(expr.Index) // Check bounds. arrayLen := expr.X.Type().Underlying().(*types.Array).Len() arrayLenLLVM := llvm.ConstInt(b.uintptrType, uint64(arrayLen), false) b.createLookupBoundsCheck(arrayLenLLVM, index, expr.Index.Type()) // Can't load directly from array (as index is non-constant), so have to // do it using an alloca+gep+load. alloca, allocaPtr, allocaSize := b.createTemporaryAlloca(array.Type(), "index.alloca") b.CreateStore(array, alloca) zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false) ptr := b.CreateInBoundsGEP(alloca, []llvm.Value{zero, index}, "index.gep") result := b.CreateLoad(ptr, "index.load") b.emitLifetimeEnd(allocaPtr, allocaSize) return result, nil case *ssa.IndexAddr: val := b.getValue(expr.X) index := b.getValue(expr.Index) // Get buffer pointer and length var bufptr, buflen llvm.Value switch ptrTyp := expr.X.Type().Underlying().(type) { case *types.Pointer: typ := expr.X.Type().Underlying().(*types.Pointer).Elem().Underlying() switch typ := typ.(type) { case *types.Array: bufptr = val buflen = llvm.ConstInt(b.uintptrType, uint64(typ.Len()), false) // Check for nil pointer before calculating the address, from // the spec: // > For an operand x of type T, the address operation &x // > generates a pointer of type *T to x. [...] If the // > evaluation of x would cause a run-time panic, then the // > evaluation of &x does too. b.createNilCheck(expr.X, bufptr, "gep") default: return llvm.Value{}, b.makeError(expr.Pos(), "todo: indexaddr: "+typ.String()) } case *types.Slice: bufptr = b.CreateExtractValue(val, 0, "indexaddr.ptr") buflen = b.CreateExtractValue(val, 1, "indexaddr.len") default: return llvm.Value{}, b.makeError(expr.Pos(), "todo: indexaddr: "+ptrTyp.String()) } // Bounds check. b.createLookupBoundsCheck(buflen, index, expr.Index.Type()) switch expr.X.Type().Underlying().(type) { case *types.Pointer: indices := []llvm.Value{ llvm.ConstInt(b.ctx.Int32Type(), 0, false), index, } return b.CreateInBoundsGEP(bufptr, indices, ""), nil case *types.Slice: return b.CreateInBoundsGEP(bufptr, []llvm.Value{index}, ""), nil default: panic("unreachable") } case *ssa.Lookup: value := b.getValue(expr.X) index := b.getValue(expr.Index) switch xType := expr.X.Type().Underlying().(type) { case *types.Basic: // Value type must be a string, which is a basic type. if xType.Info()&types.IsString == 0 { panic("lookup on non-string?") } // Bounds check. length := b.CreateExtractValue(value, 1, "len") b.createLookupBoundsCheck(length, index, expr.Index.Type()) // Lookup byte buf := b.CreateExtractValue(value, 0, "") bufPtr := b.CreateInBoundsGEP(buf, []llvm.Value{index}, "") return b.CreateLoad(bufPtr, ""), nil case *types.Map: valueType := expr.Type() if expr.CommaOk { valueType = valueType.(*types.Tuple).At(0).Type() } return b.createMapLookup(xType.Key(), valueType, value, index, expr.CommaOk, expr.Pos()) default: panic("unknown lookup type: " + expr.String()) } case *ssa.MakeChan: return b.createMakeChan(expr), nil case *ssa.MakeClosure: return b.parseMakeClosure(expr) case *ssa.MakeInterface: val := b.getValue(expr.X) return b.createMakeInterface(val, expr.X.Type(), expr.Pos()), nil case *ssa.MakeMap: return b.createMakeMap(expr) case *ssa.MakeSlice: sliceLen := b.getValue(expr.Len) sliceCap := b.getValue(expr.Cap) sliceType := expr.Type().Underlying().(*types.Slice) llvmElemType := b.getLLVMType(sliceType.Elem()) elemSize := b.targetData.TypeAllocSize(llvmElemType) elemSizeValue := llvm.ConstInt(b.uintptrType, elemSize, false) maxSize := b.maxSliceSize(llvmElemType) if elemSize > maxSize { // This seems to be checked by the typechecker already, but let's // check it again just to be sure. return llvm.Value{}, b.makeError(expr.Pos(), fmt.Sprintf("slice element type is too big (%v bytes)", elemSize)) } // Bounds checking. lenType := expr.Len.Type().Underlying().(*types.Basic) capType := expr.Cap.Type().Underlying().(*types.Basic) maxSizeValue := llvm.ConstInt(b.uintptrType, maxSize, false) b.createSliceBoundsCheck(maxSizeValue, sliceLen, sliceCap, sliceCap, lenType, capType, capType) // Allocate the backing array. sliceCapCast, err := b.createConvert(expr.Cap.Type(), types.Typ[types.Uintptr], sliceCap, expr.Pos()) if err != nil { return llvm.Value{}, err } sliceSize := b.CreateBinOp(llvm.Mul, elemSizeValue, sliceCapCast, "makeslice.cap") slicePtr := b.createRuntimeCall("alloc", []llvm.Value{sliceSize}, "makeslice.buf") slicePtr = b.CreateBitCast(slicePtr, llvm.PointerType(llvmElemType, 0), "makeslice.array") // Extend or truncate if necessary. This is safe as we've already done // the bounds check. sliceLen, err = b.createConvert(expr.Len.Type(), types.Typ[types.Uintptr], sliceLen, expr.Pos()) if err != nil { return llvm.Value{}, err } sliceCap, err = b.createConvert(expr.Cap.Type(), types.Typ[types.Uintptr], sliceCap, expr.Pos()) if err != nil { return llvm.Value{}, err } // Create the slice. slice := b.ctx.ConstStruct([]llvm.Value{ llvm.Undef(slicePtr.Type()), llvm.Undef(b.uintptrType), llvm.Undef(b.uintptrType), }, false) slice = b.CreateInsertValue(slice, slicePtr, 0, "") slice = b.CreateInsertValue(slice, sliceLen, 1, "") slice = b.CreateInsertValue(slice, sliceCap, 2, "") return slice, nil case *ssa.Next: rangeVal := expr.Iter.(*ssa.Range).X llvmRangeVal := b.getValue(rangeVal) it := b.getValue(expr.Iter) if expr.IsString { return b.createRuntimeCall("stringNext", []llvm.Value{llvmRangeVal, it}, "range.next"), nil } else { // map llvmKeyType := b.getLLVMType(rangeVal.Type().Underlying().(*types.Map).Key()) llvmValueType := b.getLLVMType(rangeVal.Type().Underlying().(*types.Map).Elem()) mapKeyAlloca, mapKeyPtr, mapKeySize := b.createTemporaryAlloca(llvmKeyType, "range.key") mapValueAlloca, mapValuePtr, mapValueSize := b.createTemporaryAlloca(llvmValueType, "range.value") ok := b.createRuntimeCall("hashmapNext", []llvm.Value{llvmRangeVal, it, mapKeyPtr, mapValuePtr}, "range.next") tuple := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.Int1Type(), llvmKeyType, llvmValueType}, false)) tuple = b.CreateInsertValue(tuple, ok, 0, "") tuple = b.CreateInsertValue(tuple, b.CreateLoad(mapKeyAlloca, ""), 1, "") tuple = b.CreateInsertValue(tuple, b.CreateLoad(mapValueAlloca, ""), 2, "") b.emitLifetimeEnd(mapKeyPtr, mapKeySize) b.emitLifetimeEnd(mapValuePtr, mapValueSize) return tuple, nil } case *ssa.Phi: phi := b.CreatePHI(b.getLLVMType(expr.Type()), "") b.phis = append(b.phis, phiNode{expr, phi}) return phi, nil case *ssa.Range: var iteratorType llvm.Type switch typ := expr.X.Type().Underlying().(type) { case *types.Basic: // string iteratorType = b.getLLVMRuntimeType("stringIterator") case *types.Map: iteratorType = b.getLLVMRuntimeType("hashmapIterator") default: panic("unknown type in range: " + typ.String()) } it, _, _ := b.createTemporaryAlloca(iteratorType, "range.it") b.CreateStore(llvm.ConstNull(iteratorType), it) return it, nil case *ssa.Select: return b.createSelect(expr), nil case *ssa.Slice: value := b.getValue(expr.X) var lowType, highType, maxType *types.Basic var low, high, max llvm.Value if expr.Low != nil { lowType = expr.Low.Type().Underlying().(*types.Basic) low = b.getValue(expr.Low) if low.Type().IntTypeWidth() < b.uintptrType.IntTypeWidth() { if lowType.Info()&types.IsUnsigned != 0 { low = b.CreateZExt(low, b.uintptrType, "") } else { low = b.CreateSExt(low, b.uintptrType, "") } } } else { lowType = types.Typ[types.Uintptr] low = llvm.ConstInt(b.uintptrType, 0, false) } if expr.High != nil { highType = expr.High.Type().Underlying().(*types.Basic) high = b.getValue(expr.High) if high.Type().IntTypeWidth() < b.uintptrType.IntTypeWidth() { if highType.Info()&types.IsUnsigned != 0 { high = b.CreateZExt(high, b.uintptrType, "") } else { high = b.CreateSExt(high, b.uintptrType, "") } } } else { highType = types.Typ[types.Uintptr] } if expr.Max != nil { maxType = expr.Max.Type().Underlying().(*types.Basic) max = b.getValue(expr.Max) if max.Type().IntTypeWidth() < b.uintptrType.IntTypeWidth() { if maxType.Info()&types.IsUnsigned != 0 { max = b.CreateZExt(max, b.uintptrType, "") } else { max = b.CreateSExt(max, b.uintptrType, "") } } } else { maxType = types.Typ[types.Uintptr] } switch typ := expr.X.Type().Underlying().(type) { case *types.Pointer: // pointer to array // slice an array length := typ.Elem().Underlying().(*types.Array).Len() llvmLen := llvm.ConstInt(b.uintptrType, uint64(length), false) if high.IsNil() { high = llvmLen } if max.IsNil() { max = llvmLen } indices := []llvm.Value{ llvm.ConstInt(b.ctx.Int32Type(), 0, false), low, } b.createNilCheck(expr.X, value, "slice") b.createSliceBoundsCheck(llvmLen, low, high, max, lowType, highType, maxType) // Truncate ints bigger than uintptr. This is after the bounds // check so it's safe. if b.targetData.TypeAllocSize(low.Type()) > b.targetData.TypeAllocSize(b.uintptrType) { low = b.CreateTrunc(low, b.uintptrType, "") } if b.targetData.TypeAllocSize(high.Type()) > b.targetData.TypeAllocSize(b.uintptrType) { high = b.CreateTrunc(high, b.uintptrType, "") } if b.targetData.TypeAllocSize(max.Type()) > b.targetData.TypeAllocSize(b.uintptrType) { max = b.CreateTrunc(max, b.uintptrType, "") } sliceLen := b.CreateSub(high, low, "slice.len") slicePtr := b.CreateInBoundsGEP(value, indices, "slice.ptr") sliceCap := b.CreateSub(max, low, "slice.cap") slice := b.ctx.ConstStruct([]llvm.Value{ llvm.Undef(slicePtr.Type()), llvm.Undef(b.uintptrType), llvm.Undef(b.uintptrType), }, false) slice = b.CreateInsertValue(slice, slicePtr, 0, "") slice = b.CreateInsertValue(slice, sliceLen, 1, "") slice = b.CreateInsertValue(slice, sliceCap, 2, "") return slice, nil case *types.Slice: // slice a slice oldPtr := b.CreateExtractValue(value, 0, "") oldLen := b.CreateExtractValue(value, 1, "") oldCap := b.CreateExtractValue(value, 2, "") if high.IsNil() { high = oldLen } if max.IsNil() { max = oldCap } b.createSliceBoundsCheck(oldCap, low, high, max, lowType, highType, maxType) // Truncate ints bigger than uintptr. This is after the bounds // check so it's safe. if b.targetData.TypeAllocSize(low.Type()) > b.targetData.TypeAllocSize(b.uintptrType) { low = b.CreateTrunc(low, b.uintptrType, "") } if b.targetData.TypeAllocSize(high.Type()) > b.targetData.TypeAllocSize(b.uintptrType) { high = b.CreateTrunc(high, b.uintptrType, "") } if b.targetData.TypeAllocSize(max.Type()) > b.targetData.TypeAllocSize(b.uintptrType) { max = b.CreateTrunc(max, b.uintptrType, "") } newPtr := b.CreateInBoundsGEP(oldPtr, []llvm.Value{low}, "") newLen := b.CreateSub(high, low, "") newCap := b.CreateSub(max, low, "") slice := b.ctx.ConstStruct([]llvm.Value{ llvm.Undef(newPtr.Type()), llvm.Undef(b.uintptrType), llvm.Undef(b.uintptrType), }, false) slice = b.CreateInsertValue(slice, newPtr, 0, "") slice = b.CreateInsertValue(slice, newLen, 1, "") slice = b.CreateInsertValue(slice, newCap, 2, "") return slice, nil case *types.Basic: if typ.Info()&types.IsString == 0 { return llvm.Value{}, b.makeError(expr.Pos(), "unknown slice type: "+typ.String()) } // slice a string if expr.Max != nil { // This might as well be a panic, as the frontend should have // handled this already. return llvm.Value{}, b.makeError(expr.Pos(), "slicing a string with a max parameter is not allowed by the spec") } oldPtr := b.CreateExtractValue(value, 0, "") oldLen := b.CreateExtractValue(value, 1, "") if high.IsNil() { high = oldLen } b.createSliceBoundsCheck(oldLen, low, high, high, lowType, highType, maxType) // Truncate ints bigger than uintptr. This is after the bounds // check so it's safe. if b.targetData.TypeAllocSize(low.Type()) > b.targetData.TypeAllocSize(b.uintptrType) { low = b.CreateTrunc(low, b.uintptrType, "") } if b.targetData.TypeAllocSize(high.Type()) > b.targetData.TypeAllocSize(b.uintptrType) { high = b.CreateTrunc(high, b.uintptrType, "") } newPtr := b.CreateInBoundsGEP(oldPtr, []llvm.Value{low}, "") newLen := b.CreateSub(high, low, "") str := llvm.Undef(b.getLLVMRuntimeType("_string")) str = b.CreateInsertValue(str, newPtr, 0, "") str = b.CreateInsertValue(str, newLen, 1, "") return str, nil default: return llvm.Value{}, b.makeError(expr.Pos(), "unknown slice type: "+typ.String()) } case *ssa.TypeAssert: return b.createTypeAssert(expr), nil case *ssa.UnOp: return b.createUnOp(expr) default: return llvm.Value{}, b.makeError(expr.Pos(), "todo: unknown expression: "+expr.String()) } } // createBinOp creates a LLVM binary operation (add, sub, mul, etc) for a Go // binary operation. This is almost a direct mapping, but there are some subtle // differences such as the requirement in LLVM IR that both sides must have the // same type, even for bitshifts. Also, signedness in Go is encoded in the type // and is encoded in the operation in LLVM IR: this is important for some // operations such as divide. func (b *builder) createBinOp(op token.Token, typ, ytyp types.Type, x, y llvm.Value, pos token.Pos) (llvm.Value, error) { switch typ := typ.Underlying().(type) { case *types.Basic: if typ.Info()&types.IsInteger != 0 { // Operations on integers signed := typ.Info()&types.IsUnsigned == 0 switch op { case token.ADD: // + return b.CreateAdd(x, y, ""), nil case token.SUB: // - return b.CreateSub(x, y, ""), nil case token.MUL: // * return b.CreateMul(x, y, ""), nil case token.QUO: // / if signed { return b.CreateSDiv(x, y, ""), nil } else { return b.CreateUDiv(x, y, ""), nil } case token.REM: // % if signed { return b.CreateSRem(x, y, ""), nil } else { return b.CreateURem(x, y, ""), nil } case token.AND: // & return b.CreateAnd(x, y, ""), nil case token.OR: // | return b.CreateOr(x, y, ""), nil case token.XOR: // ^ return b.CreateXor(x, y, ""), nil case token.SHL, token.SHR: if ytyp.Underlying().(*types.Basic).Info()&types.IsUnsigned == 0 { // Ensure that y is not negative. b.createNegativeShiftCheck(y) } sizeX := b.targetData.TypeAllocSize(x.Type()) sizeY := b.targetData.TypeAllocSize(y.Type()) // Check if the shift is bigger than the bit-width of the shifted value. // This is UB in LLVM, so it needs to be handled seperately. // The Go spec indirectly defines the result as 0. // Negative shifts are handled earlier, so we can treat y as unsigned. overshifted := b.CreateICmp(llvm.IntUGE, y, llvm.ConstInt(y.Type(), 8*sizeX, false), "shift.overflow") // Adjust the size of y to match x. switch { case sizeX > sizeY: y = b.CreateZExt(y, x.Type(), "") case sizeX < sizeY: // If it gets truncated, overshifted will be true and it will not matter. y = b.CreateTrunc(y, x.Type(), "") } // Create a shift operation. var val llvm.Value switch op { case token.SHL: // << val = b.CreateShl(x, y, "") case token.SHR: // >> if signed { // Arithmetic right shifts work differently, since shifting a negative number right yields -1. // Cap the shift input rather than selecting the output. y = b.CreateSelect(overshifted, llvm.ConstInt(y.Type(), 8*sizeX-1, false), y, "shift.offset") return b.CreateAShr(x, y, ""), nil } else { val = b.CreateLShr(x, y, "") } default: panic("unreachable") } // Select between the shift result and zero depending on whether there was an overshift. return b.CreateSelect(overshifted, llvm.ConstInt(val.Type(), 0, false), val, "shift.result"), nil case token.EQL: // == return b.CreateICmp(llvm.IntEQ, x, y, ""), nil case token.NEQ: // != return b.CreateICmp(llvm.IntNE, x, y, ""), nil case token.AND_NOT: // &^ // Go specific. Calculate "and not" with x & (~y) inv := b.CreateNot(y, "") // ~y return b.CreateAnd(x, inv, ""), nil case token.LSS: // < if signed { return b.CreateICmp(llvm.IntSLT, x, y, ""), nil } else { return b.CreateICmp(llvm.IntULT, x, y, ""), nil } case token.LEQ: // <= if signed { return b.CreateICmp(llvm.IntSLE, x, y, ""), nil } else { return b.CreateICmp(llvm.IntULE, x, y, ""), nil } case token.GTR: // > if signed { return b.CreateICmp(llvm.IntSGT, x, y, ""), nil } else { return b.CreateICmp(llvm.IntUGT, x, y, ""), nil } case token.GEQ: // >= if signed { return b.CreateICmp(llvm.IntSGE, x, y, ""), nil } else { return b.CreateICmp(llvm.IntUGE, x, y, ""), nil } default: panic("binop on integer: " + op.String()) } } else if typ.Info()&types.IsFloat != 0 { // Operations on floats switch op { case token.ADD: // + return b.CreateFAdd(x, y, ""), nil case token.SUB: // - return b.CreateFSub(x, y, ""), nil case token.MUL: // * return b.CreateFMul(x, y, ""), nil case token.QUO: // / return b.CreateFDiv(x, y, ""), nil case token.EQL: // == return b.CreateFCmp(llvm.FloatOEQ, x, y, ""), nil case token.NEQ: // != return b.CreateFCmp(llvm.FloatUNE, x, y, ""), nil case token.LSS: // < return b.CreateFCmp(llvm.FloatOLT, x, y, ""), nil case token.LEQ: // <= return b.CreateFCmp(llvm.FloatOLE, x, y, ""), nil case token.GTR: // > return b.CreateFCmp(llvm.FloatOGT, x, y, ""), nil case token.GEQ: // >= return b.CreateFCmp(llvm.FloatOGE, x, y, ""), nil default: panic("binop on float: " + op.String()) } } else if typ.Info()&types.IsComplex != 0 { r1 := b.CreateExtractValue(x, 0, "r1") r2 := b.CreateExtractValue(y, 0, "r2") i1 := b.CreateExtractValue(x, 1, "i1") i2 := b.CreateExtractValue(y, 1, "i2") switch op { case token.EQL: // == req := b.CreateFCmp(llvm.FloatOEQ, r1, r2, "") ieq := b.CreateFCmp(llvm.FloatOEQ, i1, i2, "") return b.CreateAnd(req, ieq, ""), nil case token.NEQ: // != req := b.CreateFCmp(llvm.FloatOEQ, r1, r2, "") ieq := b.CreateFCmp(llvm.FloatOEQ, i1, i2, "") neq := b.CreateAnd(req, ieq, "") return b.CreateNot(neq, ""), nil case token.ADD, token.SUB: var r, i llvm.Value switch op { case token.ADD: r = b.CreateFAdd(r1, r2, "") i = b.CreateFAdd(i1, i2, "") case token.SUB: r = b.CreateFSub(r1, r2, "") i = b.CreateFSub(i1, i2, "") default: panic("unreachable") } cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{r.Type(), i.Type()}, false)) cplx = b.CreateInsertValue(cplx, r, 0, "") cplx = b.CreateInsertValue(cplx, i, 1, "") return cplx, nil case token.MUL: // Complex multiplication follows the current implementation in // the Go compiler, with the difference that complex64 // components are not first scaled up to float64 for increased // precision. // https://github.com/golang/go/blob/170b8b4b12be50eeccbcdadb8523fb4fc670ca72/src/cmd/compile/internal/gc/ssa.go#L2089-L2127 // The implementation is as follows: // r := real(a) * real(b) - imag(a) * imag(b) // i := real(a) * imag(b) + imag(a) * real(b) // Note: this does NOT follow the C11 specification (annex G): // http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=549 // See https://github.com/golang/go/issues/29846 for a related // discussion. r := b.CreateFSub(b.CreateFMul(r1, r2, ""), b.CreateFMul(i1, i2, ""), "") i := b.CreateFAdd(b.CreateFMul(r1, i2, ""), b.CreateFMul(i1, r2, ""), "") cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{r.Type(), i.Type()}, false)) cplx = b.CreateInsertValue(cplx, r, 0, "") cplx = b.CreateInsertValue(cplx, i, 1, "") return cplx, nil case token.QUO: // Complex division. // Do this in a library call because it's too difficult to do // inline. switch r1.Type().TypeKind() { case llvm.FloatTypeKind: return b.createRuntimeCall("complex64div", []llvm.Value{x, y}, ""), nil case llvm.DoubleTypeKind: return b.createRuntimeCall("complex128div", []llvm.Value{x, y}, ""), nil default: panic("unexpected complex type") } default: panic("binop on complex: " + op.String()) } } else if typ.Info()&types.IsBoolean != 0 { // Operations on booleans switch op { case token.EQL: // == return b.CreateICmp(llvm.IntEQ, x, y, ""), nil case token.NEQ: // != return b.CreateICmp(llvm.IntNE, x, y, ""), nil default: panic("binop on bool: " + op.String()) } } else if typ.Kind() == types.UnsafePointer { // Operations on pointers switch op { case token.EQL: // == return b.CreateICmp(llvm.IntEQ, x, y, ""), nil case token.NEQ: // != return b.CreateICmp(llvm.IntNE, x, y, ""), nil default: panic("binop on pointer: " + op.String()) } } else if typ.Info()&types.IsString != 0 { // Operations on strings switch op { case token.ADD: // + return b.createRuntimeCall("stringConcat", []llvm.Value{x, y}, ""), nil case token.EQL: // == return b.createRuntimeCall("stringEqual", []llvm.Value{x, y}, ""), nil case token.NEQ: // != result := b.createRuntimeCall("stringEqual", []llvm.Value{x, y}, "") return b.CreateNot(result, ""), nil case token.LSS: // < return b.createRuntimeCall("stringLess", []llvm.Value{x, y}, ""), nil case token.LEQ: // <= result := b.createRuntimeCall("stringLess", []llvm.Value{y, x}, "") return b.CreateNot(result, ""), nil case token.GTR: // > result := b.createRuntimeCall("stringLess", []llvm.Value{x, y}, "") return b.CreateNot(result, ""), nil case token.GEQ: // >= return b.createRuntimeCall("stringLess", []llvm.Value{y, x}, ""), nil default: panic("binop on string: " + op.String()) } } else { return llvm.Value{}, b.makeError(pos, "todo: unknown basic type in binop: "+typ.String()) } case *types.Signature: // Get raw scalars from the function value and compare those. // Function values may be implemented in multiple ways, but they all // have some way of getting a scalar value identifying the function. // This is safe: function pointers are generally not comparable // against each other, only against nil. So one of these has to be nil. x = b.extractFuncScalar(x) y = b.extractFuncScalar(y) switch op { case token.EQL: // == return b.CreateICmp(llvm.IntEQ, x, y, ""), nil case token.NEQ: // != return b.CreateICmp(llvm.IntNE, x, y, ""), nil default: return llvm.Value{}, b.makeError(pos, "binop on signature: "+op.String()) } case *types.Interface: switch op { case token.EQL, token.NEQ: // ==, != nilInterface := llvm.ConstNull(x.Type()) var result llvm.Value if x == nilInterface || y == nilInterface { // An interface value is compared against nil. // This is a very common case and is easy to optimize: simply // compare the typecodes (of which one is nil). typecodeX := b.CreateExtractValue(x, 0, "") typecodeY := b.CreateExtractValue(y, 0, "") result = b.CreateICmp(llvm.IntEQ, typecodeX, typecodeY, "") } else { // Fall back to a full interface comparison. result = b.createRuntimeCall("interfaceEqual", []llvm.Value{x, y}, "") } if op == token.NEQ { result = b.CreateNot(result, "") } return result, nil default: return llvm.Value{}, b.makeError(pos, "binop on interface: "+op.String()) } case *types.Chan, *types.Map, *types.Pointer: // Maps are in general not comparable, but can be compared against nil // (which is a nil pointer). This means they can be trivially compared // by treating them as a pointer. // Channels behave as pointers in that they are equal as long as they // are created with the same call to make or if both are nil. switch op { case token.EQL: // == return b.CreateICmp(llvm.IntEQ, x, y, ""), nil case token.NEQ: // != return b.CreateICmp(llvm.IntNE, x, y, ""), nil default: return llvm.Value{}, b.makeError(pos, "todo: binop on pointer: "+op.String()) } case *types.Slice: // Slices are in general not comparable, but can be compared against // nil. Assume at least one of them is nil to make the code easier. xPtr := b.CreateExtractValue(x, 0, "") yPtr := b.CreateExtractValue(y, 0, "") switch op { case token.EQL: // == return b.CreateICmp(llvm.IntEQ, xPtr, yPtr, ""), nil case token.NEQ: // != return b.CreateICmp(llvm.IntNE, xPtr, yPtr, ""), nil default: return llvm.Value{}, b.makeError(pos, "todo: binop on slice: "+op.String()) } case *types.Array: // Compare each array element and combine the result. From the spec: // Array values are comparable if values of the array element type // are comparable. Two array values are equal if their corresponding // elements are equal. result := llvm.ConstInt(b.ctx.Int1Type(), 1, true) for i := 0; i < int(typ.Len()); i++ { xField := b.CreateExtractValue(x, i, "") yField := b.CreateExtractValue(y, i, "") fieldEqual, err := b.createBinOp(token.EQL, typ.Elem(), typ.Elem(), xField, yField, pos) if err != nil { return llvm.Value{}, err } result = b.CreateAnd(result, fieldEqual, "") } switch op { case token.EQL: // == return result, nil case token.NEQ: // != return b.CreateNot(result, ""), nil default: return llvm.Value{}, b.makeError(pos, "unknown: binop on struct: "+op.String()) } case *types.Struct: // Compare each struct field and combine the result. From the spec: // Struct values are comparable if all their fields are comparable. // Two struct values are equal if their corresponding non-blank // fields are equal. result := llvm.ConstInt(b.ctx.Int1Type(), 1, true) for i := 0; i < typ.NumFields(); i++ { if typ.Field(i).Name() == "_" { // skip blank fields continue } fieldType := typ.Field(i).Type() xField := b.CreateExtractValue(x, i, "") yField := b.CreateExtractValue(y, i, "") fieldEqual, err := b.createBinOp(token.EQL, fieldType, fieldType, xField, yField, pos) if err != nil { return llvm.Value{}, err } result = b.CreateAnd(result, fieldEqual, "") } switch op { case token.EQL: // == return result, nil case token.NEQ: // != return b.CreateNot(result, ""), nil default: return llvm.Value{}, b.makeError(pos, "unknown: binop on struct: "+op.String()) } default: return llvm.Value{}, b.makeError(pos, "todo: binop type: "+typ.String()) } } // createConst creates a LLVM constant value from a Go constant. func (b *builder) createConst(prefix string, expr *ssa.Const) llvm.Value { switch typ := expr.Type().Underlying().(type) { case *types.Basic: llvmType := b.getLLVMType(typ) if typ.Info()&types.IsBoolean != 0 { b := constant.BoolVal(expr.Value) n := uint64(0) if b { n = 1 } return llvm.ConstInt(llvmType, n, false) } else if typ.Info()&types.IsString != 0 { str := constant.StringVal(expr.Value) strLen := llvm.ConstInt(b.uintptrType, uint64(len(str)), false) var strPtr llvm.Value if str != "" { objname := prefix + "$string" global := llvm.AddGlobal(b.mod, llvm.ArrayType(b.ctx.Int8Type(), len(str)), objname) global.SetInitializer(b.ctx.ConstString(str, false)) global.SetLinkage(llvm.InternalLinkage) global.SetGlobalConstant(true) global.SetUnnamedAddr(true) global.SetAlignment(1) zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false) strPtr = b.CreateInBoundsGEP(global, []llvm.Value{zero, zero}, "") } else { strPtr = llvm.ConstNull(b.i8ptrType) } strObj := llvm.ConstNamedStruct(b.getLLVMRuntimeType("_string"), []llvm.Value{strPtr, strLen}) return strObj } else if typ.Kind() == types.UnsafePointer { if !expr.IsNil() { value, _ := constant.Uint64Val(constant.ToInt(expr.Value)) return llvm.ConstIntToPtr(llvm.ConstInt(b.uintptrType, value, false), b.i8ptrType) } return llvm.ConstNull(b.i8ptrType) } else if typ.Info()&types.IsUnsigned != 0 { n, _ := constant.Uint64Val(constant.ToInt(expr.Value)) return llvm.ConstInt(llvmType, n, false) } else if typ.Info()&types.IsInteger != 0 { // signed n, _ := constant.Int64Val(constant.ToInt(expr.Value)) return llvm.ConstInt(llvmType, uint64(n), true) } else if typ.Info()&types.IsFloat != 0 { n, _ := constant.Float64Val(expr.Value) return llvm.ConstFloat(llvmType, n) } else if typ.Kind() == types.Complex64 { r := b.createConst(prefix, ssa.NewConst(constant.Real(expr.Value), types.Typ[types.Float32])) i := b.createConst(prefix, ssa.NewConst(constant.Imag(expr.Value), types.Typ[types.Float32])) cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.FloatType(), b.ctx.FloatType()}, false)) cplx = b.CreateInsertValue(cplx, r, 0, "") cplx = b.CreateInsertValue(cplx, i, 1, "") return cplx } else if typ.Kind() == types.Complex128 { r := b.createConst(prefix, ssa.NewConst(constant.Real(expr.Value), types.Typ[types.Float64])) i := b.createConst(prefix, ssa.NewConst(constant.Imag(expr.Value), types.Typ[types.Float64])) cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.DoubleType(), b.ctx.DoubleType()}, false)) cplx = b.CreateInsertValue(cplx, r, 0, "") cplx = b.CreateInsertValue(cplx, i, 1, "") return cplx } else { panic("unknown constant of basic type: " + expr.String()) } case *types.Chan: if expr.Value != nil { panic("expected nil chan constant") } return llvm.ConstNull(b.getLLVMType(expr.Type())) case *types.Signature: if expr.Value != nil { panic("expected nil signature constant") } return llvm.ConstNull(b.getLLVMType(expr.Type())) case *types.Interface: if expr.Value != nil { panic("expected nil interface constant") } // Create a generic nil interface with no dynamic type (typecode=0). fields := []llvm.Value{ llvm.ConstInt(b.uintptrType, 0, false), llvm.ConstPointerNull(b.i8ptrType), } return llvm.ConstNamedStruct(b.getLLVMRuntimeType("_interface"), fields) case *types.Pointer: if expr.Value != nil { panic("expected nil pointer constant") } return llvm.ConstPointerNull(b.getLLVMType(typ)) case *types.Slice: if expr.Value != nil { panic("expected nil slice constant") } elemType := b.getLLVMType(typ.Elem()) llvmPtr := llvm.ConstPointerNull(llvm.PointerType(elemType, 0)) llvmLen := llvm.ConstInt(b.uintptrType, 0, false) slice := b.ctx.ConstStruct([]llvm.Value{ llvmPtr, // backing array llvmLen, // len llvmLen, // cap }, false) return slice case *types.Map: if !expr.IsNil() { // I believe this is not allowed by the Go spec. panic("non-nil map constant") } llvmType := b.getLLVMType(typ) return llvm.ConstNull(llvmType) default: panic("unknown constant: " + expr.String()) } } // createConvert creates a Go type conversion instruction. func (b *builder) createConvert(typeFrom, typeTo types.Type, value llvm.Value, pos token.Pos) (llvm.Value, error) { llvmTypeFrom := value.Type() llvmTypeTo := b.getLLVMType(typeTo) // Conversion between unsafe.Pointer and uintptr. isPtrFrom := isPointer(typeFrom.Underlying()) isPtrTo := isPointer(typeTo.Underlying()) if isPtrFrom && !isPtrTo { return b.CreatePtrToInt(value, llvmTypeTo, ""), nil } else if !isPtrFrom && isPtrTo { if !value.IsABinaryOperator().IsNil() && value.InstructionOpcode() == llvm.Add { // This is probably a pattern like the following: // unsafe.Pointer(uintptr(ptr) + index) // Used in functions like memmove etc. for lack of pointer // arithmetic. Convert it to real pointer arithmatic here. ptr := value.Operand(0) index := value.Operand(1) if !index.IsAPtrToIntInst().IsNil() { // Swap if necessary, if ptr and index are reversed. ptr, index = index, ptr } if !ptr.IsAPtrToIntInst().IsNil() { origptr := ptr.Operand(0) if origptr.Type() == b.i8ptrType { // This pointer can be calculated from the original // ptrtoint instruction with a GEP. The leftover inttoptr // instruction is trivial to optimize away. // Making it an in bounds GEP even though it's easy to // create a GEP that is not in bounds. However, we're // talking about unsafe code here so the programmer has to // be careful anyway. return b.CreateInBoundsGEP(origptr, []llvm.Value{index}, ""), nil } } } return b.CreateIntToPtr(value, llvmTypeTo, ""), nil } // Conversion between pointers and unsafe.Pointer. if isPtrFrom && isPtrTo { return b.CreateBitCast(value, llvmTypeTo, ""), nil } switch typeTo := typeTo.Underlying().(type) { case *types.Basic: sizeFrom := b.targetData.TypeAllocSize(llvmTypeFrom) if typeTo.Info()&types.IsString != 0 { switch typeFrom := typeFrom.Underlying().(type) { case *types.Basic: // Assume a Unicode code point, as that is the only possible // value here. // Cast to an i32 value as expected by // runtime.stringFromUnicode. if sizeFrom > 4 { value = b.CreateTrunc(value, b.ctx.Int32Type(), "") } else if sizeFrom < 4 && typeTo.Info()&types.IsUnsigned != 0 { value = b.CreateZExt(value, b.ctx.Int32Type(), "") } else if sizeFrom < 4 { value = b.CreateSExt(value, b.ctx.Int32Type(), "") } return b.createRuntimeCall("stringFromUnicode", []llvm.Value{value}, ""), nil case *types.Slice: switch typeFrom.Elem().(*types.Basic).Kind() { case types.Byte: return b.createRuntimeCall("stringFromBytes", []llvm.Value{value}, ""), nil case types.Rune: return b.createRuntimeCall("stringFromRunes", []llvm.Value{value}, ""), nil default: return llvm.Value{}, b.makeError(pos, "todo: convert to string: "+typeFrom.String()) } default: return llvm.Value{}, b.makeError(pos, "todo: convert to string: "+typeFrom.String()) } } typeFrom := typeFrom.Underlying().(*types.Basic) sizeTo := b.targetData.TypeAllocSize(llvmTypeTo) if typeFrom.Info()&types.IsInteger != 0 && typeTo.Info()&types.IsInteger != 0 { // Conversion between two integers. if sizeFrom > sizeTo { return b.CreateTrunc(value, llvmTypeTo, ""), nil } else if typeFrom.Info()&types.IsUnsigned != 0 { // if unsigned return b.CreateZExt(value, llvmTypeTo, ""), nil } else { // if signed return b.CreateSExt(value, llvmTypeTo, ""), nil } } if typeFrom.Info()&types.IsFloat != 0 && typeTo.Info()&types.IsFloat != 0 { // Conversion between two floats. if sizeFrom > sizeTo { return b.CreateFPTrunc(value, llvmTypeTo, ""), nil } else if sizeFrom < sizeTo { return b.CreateFPExt(value, llvmTypeTo, ""), nil } else { return value, nil } } if typeFrom.Info()&types.IsFloat != 0 && typeTo.Info()&types.IsInteger != 0 { // Conversion from float to int. // Passing an out-of-bounds float to LLVM would cause UB, so that UB is trapped by select instructions. // The Go specification says that this should be implementation-defined behavior. // This implements saturating behavior, except that NaN is mapped to the minimum value. var significandBits int switch typeFrom.Kind() { case types.Float32: significandBits = 23 case types.Float64: significandBits = 52 } if typeTo.Info()&types.IsUnsigned != 0 { // if unsigned // Select the maximum value for this unsigned integer type. max := ^(^uint64(0) << uint(llvmTypeTo.IntTypeWidth())) maxFloat := float64(max) if bits.Len64(max) > significandBits { // Round the max down to fit within the significand. maxFloat = float64(max & (^uint64(0) << uint(bits.Len64(max)-significandBits))) } // Check if the value is in-bounds (0 <= value <= max). positive := b.CreateFCmp(llvm.FloatOLE, llvm.ConstNull(llvmTypeFrom), value, "positive") withinMax := b.CreateFCmp(llvm.FloatOLE, value, llvm.ConstFloat(llvmTypeFrom, maxFloat), "withinmax") inBounds := b.CreateAnd(positive, withinMax, "inbounds") // Assuming that the value is out-of-bounds, select a saturated value. saturated := b.CreateSelect(positive, llvm.ConstInt(llvmTypeTo, max, false), // value > max llvm.ConstNull(llvmTypeTo), // value < 0 (or NaN) "saturated", ) // Do a normal conversion. normal := b.CreateFPToUI(value, llvmTypeTo, "normal") return b.CreateSelect(inBounds, normal, saturated, ""), nil } else { // if signed // Select the minimum value for this signed integer type. min := uint64(1) << uint(llvmTypeTo.IntTypeWidth()-1) minFloat := -float64(min) // Select the maximum value for this signed integer type. max := ^(^uint64(0) << uint(llvmTypeTo.IntTypeWidth()-1)) maxFloat := float64(max) if bits.Len64(max) > significandBits { // Round the max down to fit within the significand. maxFloat = float64(max & (^uint64(0) << uint(bits.Len64(max)-significandBits))) } // Check if the value is in-bounds (min <= value <= max). aboveMin := b.CreateFCmp(llvm.FloatOLE, llvm.ConstFloat(llvmTypeFrom, minFloat), value, "abovemin") belowMax := b.CreateFCmp(llvm.FloatOLE, value, llvm.ConstFloat(llvmTypeFrom, maxFloat), "belowmax") inBounds := b.CreateAnd(aboveMin, belowMax, "inbounds") // Assuming that the value is out-of-bounds, select a saturated value. saturated := b.CreateSelect(aboveMin, llvm.ConstInt(llvmTypeTo, max, false), // value > max llvm.ConstInt(llvmTypeTo, min, false), // value < min "saturated", ) // Map NaN to 0. saturated = b.CreateSelect(b.CreateFCmp(llvm.FloatUNO, value, value, "isnan"), llvm.ConstNull(llvmTypeTo), saturated, "remapped", ) // Do a normal conversion. normal := b.CreateFPToSI(value, llvmTypeTo, "normal") return b.CreateSelect(inBounds, normal, saturated, ""), nil } } if typeFrom.Info()&types.IsInteger != 0 && typeTo.Info()&types.IsFloat != 0 { // Conversion from int to float. if typeFrom.Info()&types.IsUnsigned != 0 { // if unsigned return b.CreateUIToFP(value, llvmTypeTo, ""), nil } else { // if signed return b.CreateSIToFP(value, llvmTypeTo, ""), nil } } if typeFrom.Kind() == types.Complex128 && typeTo.Kind() == types.Complex64 { // Conversion from complex128 to complex64. r := b.CreateExtractValue(value, 0, "real.f64") i := b.CreateExtractValue(value, 1, "imag.f64") r = b.CreateFPTrunc(r, b.ctx.FloatType(), "real.f32") i = b.CreateFPTrunc(i, b.ctx.FloatType(), "imag.f32") cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.FloatType(), b.ctx.FloatType()}, false)) cplx = b.CreateInsertValue(cplx, r, 0, "") cplx = b.CreateInsertValue(cplx, i, 1, "") return cplx, nil } if typeFrom.Kind() == types.Complex64 && typeTo.Kind() == types.Complex128 { // Conversion from complex64 to complex128. r := b.CreateExtractValue(value, 0, "real.f32") i := b.CreateExtractValue(value, 1, "imag.f32") r = b.CreateFPExt(r, b.ctx.DoubleType(), "real.f64") i = b.CreateFPExt(i, b.ctx.DoubleType(), "imag.f64") cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.DoubleType(), b.ctx.DoubleType()}, false)) cplx = b.CreateInsertValue(cplx, r, 0, "") cplx = b.CreateInsertValue(cplx, i, 1, "") return cplx, nil } return llvm.Value{}, b.makeError(pos, "todo: convert: basic non-integer type: "+typeFrom.String()+" -> "+typeTo.String()) case *types.Slice: if basic, ok := typeFrom.Underlying().(*types.Basic); !ok || basic.Info()&types.IsString == 0 { panic("can only convert from a string to a slice") } elemType := typeTo.Elem().Underlying().(*types.Basic) // must be byte or rune switch elemType.Kind() { case types.Byte: return b.createRuntimeCall("stringToBytes", []llvm.Value{value}, ""), nil case types.Rune: return b.createRuntimeCall("stringToRunes", []llvm.Value{value}, ""), nil default: panic("unexpected type in string to slice conversion") } default: return llvm.Value{}, b.makeError(pos, "todo: convert "+typeTo.String()+" <- "+typeFrom.String()) } } // createUnOp creates LLVM IR for a given Go unary operation. // Most unary operators are pretty simple, such as the not and minus operator // which can all be directly lowered to IR. However, there is also the channel // receive operator which is handled in the runtime directly. func (b *builder) createUnOp(unop *ssa.UnOp) (llvm.Value, error) { x := b.getValue(unop.X) switch unop.Op { case token.NOT: // !x return b.CreateNot(x, ""), nil case token.SUB: // -x if typ, ok := unop.X.Type().Underlying().(*types.Basic); ok { if typ.Info()&types.IsInteger != 0 { return b.CreateSub(llvm.ConstInt(x.Type(), 0, false), x, ""), nil } else if typ.Info()&types.IsFloat != 0 { return b.CreateFNeg(x, ""), nil } else if typ.Info()&types.IsComplex != 0 { // Negate both components of the complex number. r := b.CreateExtractValue(x, 0, "r") i := b.CreateExtractValue(x, 1, "i") r = b.CreateFNeg(r, "") i = b.CreateFNeg(i, "") cplx := llvm.Undef(x.Type()) cplx = b.CreateInsertValue(cplx, r, 0, "") cplx = b.CreateInsertValue(cplx, i, 1, "") return cplx, nil } else { return llvm.Value{}, b.makeError(unop.Pos(), "todo: unknown basic type for negate: "+typ.String()) } } else { return llvm.Value{}, b.makeError(unop.Pos(), "todo: unknown type for negate: "+unop.X.Type().Underlying().String()) } case token.MUL: // *x, dereference pointer unop.X.Type().Underlying().(*types.Pointer).Elem() if b.targetData.TypeAllocSize(x.Type().ElementType()) == 0 { // zero-length data return llvm.ConstNull(x.Type().ElementType()), nil } else if strings.HasSuffix(unop.X.String(), "$funcaddr") { // CGo function pointer. The cgo part has rewritten CGo function // pointers as stub global variables of the form: // var C.add unsafe.Pointer // Instead of a load from the global, create a bitcast of the // function pointer itself. globalName := b.getGlobalInfo(unop.X.(*ssa.Global)).linkName name := globalName[:len(globalName)-len("$funcaddr")] fn := b.getFunction(b.fn.Pkg.Members["C."+name].(*ssa.Function)) if fn.IsNil() { return llvm.Value{}, b.makeError(unop.Pos(), "cgo function not found: "+name) } return b.CreateBitCast(fn, b.i8ptrType, ""), nil } else { b.createNilCheck(unop.X, x, "deref") load := b.CreateLoad(x, "") return load, nil } case token.XOR: // ^x, toggle all bits in integer return b.CreateXor(x, llvm.ConstInt(x.Type(), ^uint64(0), false), ""), nil case token.ARROW: // <-x, receive from channel return b.createChanRecv(unop), nil default: return llvm.Value{}, b.makeError(unop.Pos(), "todo: unknown unop") } }