You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

380 lines
12 KiB

// Package compileopts contains the configuration for a single to-be-built
// binary.
package compileopts
import (
"errors"
"fmt"
"path/filepath"
"regexp"
"strings"
"github.com/tinygo-org/tinygo/goenv"
)
// Config keeps all configuration affecting the build in a single struct.
type Config struct {
Options *Options
Target *TargetSpec
GoMinorVersion int
ClangHeaders string // Clang built-in header include path
TestConfig TestConfig
}
// Triple returns the LLVM target triple, like armv6m-unknown-unknown-eabi.
func (c *Config) Triple() string {
return c.Target.Triple
}
// CPU returns the LLVM CPU name, like atmega328p or arm7tdmi. It may return an
// empty string if the CPU name is not known.
func (c *Config) CPU() string {
return c.Target.CPU
}
// Features returns a list of features this CPU supports. For example, for a
// RISC-V processor, that could be ["+a", "+c", "+m"]. For many targets, an
// empty list will be returned.
func (c *Config) Features() []string {
return c.Target.Features
}
// GOOS returns the GOOS of the target. This might not always be the actual OS:
// for example, bare-metal targets will usually pretend to be linux to get the
// standard library to compile.
func (c *Config) GOOS() string {
return c.Target.GOOS
}
// GOARCH returns the GOARCH of the target. This might not always be the actual
// archtecture: for example, the AVR target is not supported by the Go standard
// library so such targets will usually pretend to be linux/arm.
func (c *Config) GOARCH() string {
return c.Target.GOARCH
}
// BuildTags returns the complete list of build tags used during this build.
func (c *Config) BuildTags() []string {
tags := append(c.Target.BuildTags, []string{"tinygo", "math_big_pure_go", "gc." + c.GC(), "scheduler." + c.Scheduler(), "serial." + c.Serial()}...)
for i := 1; i <= c.GoMinorVersion; i++ {
tags = append(tags, fmt.Sprintf("go1.%d", i))
}
if extraTags := strings.Fields(c.Options.Tags); len(extraTags) != 0 {
tags = append(tags, extraTags...)
}
return tags
}
// CgoEnabled returns true if (and only if) CGo is enabled. It is true by
// default and false if CGO_ENABLED is set to "0".
func (c *Config) CgoEnabled() bool {
return goenv.Get("CGO_ENABLED") == "1"
}
// GC returns the garbage collection strategy in use on this platform. Valid
// values are "none", "leaking", "extalloc", and "conservative".
func (c *Config) GC() string {
if c.Options.GC != "" {
return c.Options.GC
}
if c.Target.GC != "" {
return c.Target.GC
}
return "conservative"
}
// NeedsStackObjects returns true if the compiler should insert stack objects
// that can be traced by the garbage collector.
func (c *Config) NeedsStackObjects() bool {
switch c.GC() {
case "conservative", "extalloc":
for _, tag := range c.BuildTags() {
if tag == "tinygo.wasm" {
return true
}
}
return false
default:
return false
}
}
// Scheduler returns the scheduler implementation. Valid values are "none",
//"coroutines" and "tasks".
func (c *Config) Scheduler() string {
if c.Options.Scheduler != "" {
return c.Options.Scheduler
}
if c.Target.Scheduler != "" {
return c.Target.Scheduler
}
// Fall back to coroutines, which are supported everywhere.
return "coroutines"
}
// Serial returns the serial implementation for this build configuration: uart,
// usb (meaning USB-CDC), or none.
func (c *Config) Serial() string {
if c.Options.Serial != "" {
return c.Options.Serial
}
if c.Target.Serial != "" {
return c.Target.Serial
}
return "none"
}
// OptLevels returns the optimization level (0-2), size level (0-2), and inliner
// threshold as used in the LLVM optimization pipeline.
func (c *Config) OptLevels() (optLevel, sizeLevel int, inlinerThreshold uint) {
switch c.Options.Opt {
case "none", "0":
return 0, 0, 0 // -O0
case "1":
return 1, 0, 0 // -O1
case "2":
return 2, 0, 225 // -O2
case "s":
return 2, 1, 225 // -Os
case "z":
return 2, 2, 5 // -Oz, default
default:
// This is not shown to the user: valid choices are already checked as
// part of Options.Verify(). It is here as a sanity check.
panic("unknown optimization level: -opt=" + c.Options.Opt)
}
}
// FuncImplementation picks an appropriate func value implementation for the
// target.
func (c *Config) FuncImplementation() string {
switch c.Scheduler() {
case "tasks":
// A func value is implemented as a pair of pointers:
// {context, function pointer}
// where the context may be a pointer to a heap-allocated struct
// containing the free variables, or it may be undef if the function
// being pointed to doesn't need a context. The function pointer is a
// regular function pointer.
return "doubleword"
case "none", "coroutines":
// As "doubleword", but with the function pointer replaced by a unique
// ID per function signature. Function values are called by using a
// switch statement and choosing which function to call.
// Pick the switch implementation with the coroutines scheduler, as it
// allows the use of blocking inside a function that is used as a func
// value.
return "switch"
default:
panic("unknown scheduler type")
}
}
// PanicStrategy returns the panic strategy selected for this target. Valid
// values are "print" (print the panic value, then exit) or "trap" (issue a trap
// instruction).
func (c *Config) PanicStrategy() string {
return c.Options.PanicStrategy
}
// AutomaticStackSize returns whether goroutine stack sizes should be determined
// automatically at compile time, if possible. If it is false, no attempt is
// made.
func (c *Config) AutomaticStackSize() bool {
if c.Target.AutoStackSize != nil && c.Scheduler() == "tasks" {
return *c.Target.AutoStackSize
}
return false
}
// RP2040BootPatch returns whether the RP2040 boot patch should be applied that
// calculates and patches in the checksum for the 2nd stage bootloader.
func (c *Config) RP2040BootPatch() bool {
if c.Target.RP2040BootPatch != nil {
return *c.Target.RP2040BootPatch
}
return false
}
// CFlags returns the flags to pass to the C compiler. This is necessary for CGo
// preprocessing.
func (c *Config) CFlags() []string {
var cflags []string
for _, flag := range c.Target.CFlags {
cflags = append(cflags, strings.ReplaceAll(flag, "{root}", goenv.Get("TINYGOROOT")))
}
if c.Target.Libc == "picolibc" {
root := goenv.Get("TINYGOROOT")
cflags = append(cflags, "-nostdlibinc", "-Xclang", "-internal-isystem", "-Xclang", filepath.Join(root, "lib", "picolibc", "newlib", "libc", "include"))
cflags = append(cflags, "-I"+filepath.Join(root, "lib/picolibc-include"))
}
// Always emit debug information. It is optionally stripped at link time.
cflags = append(cflags, "-g")
// Use the same optimization level as TinyGo.
cflags = append(cflags, "-O"+c.Options.Opt)
// Set the LLVM target triple.
cflags = append(cflags, "--target="+c.Triple())
return cflags
}
// LDFlags returns the flags to pass to the linker. A few more flags are needed
// (like the one for the compiler runtime), but this represents the majority of
// the flags.
func (c *Config) LDFlags() []string {
root := goenv.Get("TINYGOROOT")
// Merge and adjust LDFlags.
var ldflags []string
for _, flag := range c.Target.LDFlags {
ldflags = append(ldflags, strings.ReplaceAll(flag, "{root}", root))
}
ldflags = append(ldflags, "-L", root)
if c.Target.LinkerScript != "" {
ldflags = append(ldflags, "-T", c.Target.LinkerScript)
}
return ldflags
}
// ExtraFiles returns the list of extra files to be built and linked with the
// executable. This can include extra C and assembly files.
func (c *Config) ExtraFiles() []string {
return c.Target.ExtraFiles
}
// DumpSSA returns whether to dump Go SSA while compiling (-dumpssa flag). Only
// enable this for debugging.
func (c *Config) DumpSSA() bool {
return c.Options.DumpSSA
}
// VerifyIR returns whether to run extra checks on the IR. This is normally
// disabled but enabled during testing.
func (c *Config) VerifyIR() bool {
return c.Options.VerifyIR
}
// Debug returns whether debug (DWARF) information should be retained by the
// linker. By default, debug information is retained but it can be removed with
// the -no-debug flag.
func (c *Config) Debug() bool {
return c.Options.Debug
}
// BinaryFormat returns an appropriate binary format, based on the file
// extension and the configured binary format in the target JSON file.
func (c *Config) BinaryFormat(ext string) string {
switch ext {
case ".bin", ".gba", ".nro":
// The simplest format possible: dump everything in a raw binary file.
if c.Target.BinaryFormat != "" {
return c.Target.BinaryFormat
}
return "bin"
case ".hex":
// Similar to bin, but includes the start address and is thus usually a
// better format.
return "hex"
case ".uf2":
// Special purpose firmware format, mainly used on Adafruit boards.
// More information:
// https://github.com/Microsoft/uf2
return "uf2"
case ".zip":
if c.Target.BinaryFormat != "" {
return c.Target.BinaryFormat
}
return "zip"
default:
// Use the ELF format for unrecognized file formats.
return "elf"
}
}
// Programmer returns the flash method and OpenOCD interface name given a
// particular configuration. It may either be all configured in the target JSON
// file or be modified using the -programmmer command-line option.
func (c *Config) Programmer() (method, openocdInterface string) {
switch c.Options.Programmer {
case "":
// No configuration supplied.
return c.Target.FlashMethod, c.Target.OpenOCDInterface
case "openocd", "msd", "command":
// The -programmer flag only specifies the flash method.
return c.Options.Programmer, c.Target.OpenOCDInterface
case "bmp":
// The -programmer flag only specifies the flash method.
return c.Options.Programmer, ""
default:
// The -programmer flag specifies something else, assume it specifies
// the OpenOCD interface name.
return "openocd", c.Options.Programmer
}
}
// OpenOCDConfiguration returns a list of command line arguments to OpenOCD.
// This list of command-line arguments is based on the various OpenOCD-related
// flags in the target specification.
func (c *Config) OpenOCDConfiguration() (args []string, err error) {
_, openocdInterface := c.Programmer()
if openocdInterface == "" {
return nil, errors.New("OpenOCD programmer not set")
}
if !regexp.MustCompile("^[\\p{L}0-9_-]+$").MatchString(openocdInterface) {
return nil, fmt.Errorf("OpenOCD programmer has an invalid name: %#v", openocdInterface)
}
if c.Target.OpenOCDTarget == "" {
return nil, errors.New("OpenOCD chip not set")
}
if !regexp.MustCompile("^[\\p{L}0-9_-]+$").MatchString(c.Target.OpenOCDTarget) {
return nil, fmt.Errorf("OpenOCD target has an invalid name: %#v", c.Target.OpenOCDTarget)
}
if c.Target.OpenOCDTransport != "" && c.Target.OpenOCDTransport != "swd" {
return nil, fmt.Errorf("unknown OpenOCD transport: %#v", c.Target.OpenOCDTransport)
}
args = []string{"-f", "interface/" + openocdInterface + ".cfg"}
for _, cmd := range c.Target.OpenOCDCommands {
args = append(args, "-c", cmd)
}
if c.Target.OpenOCDTransport != "" {
args = append(args, "-c", "transport select "+c.Target.OpenOCDTransport)
}
args = append(args, "-f", "target/"+c.Target.OpenOCDTarget+".cfg")
return args, nil
}
// CodeModel returns the code model used on this platform.
func (c *Config) CodeModel() string {
if c.Target.CodeModel != "" {
return c.Target.CodeModel
}
return "default"
}
// RelocationModel returns the relocation model in use on this platform. Valid
// values are "static", "pic", "dynamicnopic".
func (c *Config) RelocationModel() string {
if c.Target.RelocationModel != "" {
return c.Target.RelocationModel
}
return "static"
}
// WasmAbi returns the WASM ABI which is specified in the target JSON file, and
// the value is overridden by `-wasm-abi` flag if it is provided
func (c *Config) WasmAbi() string {
if c.Options.WasmAbi != "" {
return c.Options.WasmAbi
}
return c.Target.WasmAbi
}
func (c *Config) LLVMFeatures() string {
return c.Options.LLVMFeatures
}
type TestConfig struct {
CompileTestBinary bool
// TODO: Filter the test functions to run, include verbose flag, etc
}