You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

708 lines
25 KiB

package compiler
// This file provides function to lower interface intrinsics to their final LLVM
// form, optimizing them in the process.
//
// During SSA construction, the following pseudo-calls are created:
// runtime.typeAssert(typecode, assertedType)
// runtime.interfaceImplements(typecode, interfaceMethodSet)
// runtime.interfaceMethod(typecode, interfaceMethodSet, signature)
// See src/runtime/interface.go for details.
// These calls are to declared but not defined functions, so the optimizer will
// leave them alone.
//
// This pass lowers the above functions to their final form:
//
// typeAssert:
// Replaced with an icmp instruction so it can be directly used in a type
// switch. This is very easy to optimize for LLVM: it will often translate a
// type switch into a regular switch statement.
// When this type assert is not possible (the type is never used in an
// interface), this call is replaced with a constant false to optimize the
// type assert away completely.
//
// interfaceImplements:
// This call is translated into a call that checks whether the underlying
// type is one of the types implementing this interface.
// When there is only one type implementing this interface, the check is
// replaced with a simple icmp instruction, just like a type assert.
// When there is no type at all that implements this interface, it is
// replaced with a constant false to optimize it completely.
//
// interfaceMethod:
// This call is replaced with a call to a function that calls the
// appropriate method depending on the underlying type.
// When there is only one type implementing this interface, this call is
// translated into a direct call of that method.
// When there is no type implementing this interface, this code is marked
// unreachable as there is no way such an interface could be constructed.
//
// Note that this way of implementing interfaces is very different from how the
// main Go compiler implements them. For more details on how the main Go
// compiler does it: https://research.swtch.com/interfaces
import (
"sort"
"strings"
"tinygo.org/x/go-llvm"
)
// signatureInfo is a Go signature of an interface method. It does not represent
// any method in particular.
type signatureInfo struct {
name string
methods []*methodInfo
interfaces []*interfaceInfo
}
// methodName takes a method name like "func String()" and returns only the
// name, which is "String" in this case.
func (s *signatureInfo) methodName() string {
if !strings.HasPrefix(s.name, "func ") {
panic("signature must start with \"func \"")
}
methodName := s.name[len("func "):]
if openingParen := strings.IndexByte(methodName, '('); openingParen < 0 {
panic("no opening paren in signature name")
} else {
return methodName[:openingParen]
}
}
// methodInfo describes a single method on a concrete type.
type methodInfo struct {
*signatureInfo
function llvm.Value
}
// typeInfo describes a single concrete Go type, which can be a basic or a named
// type. If it is a named type, it may have methods.
type typeInfo struct {
name string
typecode llvm.Value
methodSet llvm.Value
num uint64 // the type number after lowering
countMakeInterfaces int // how often this type is used in an interface
countTypeAsserts int // how often a type assert happens on this method
methods []*methodInfo
}
// getMethod looks up the method on this type with the given signature and
// returns it. The method must exist on this type, otherwise getMethod will
// panic.
func (t *typeInfo) getMethod(signature *signatureInfo) *methodInfo {
for _, method := range t.methods {
if method.signatureInfo == signature {
return method
}
}
panic("could not find method")
}
// typeInfoSlice implements sort.Slice, sorting the most commonly used types
// first.
type typeInfoSlice []*typeInfo
func (t typeInfoSlice) Len() int { return len(t) }
func (t typeInfoSlice) Less(i, j int) bool {
// Try to sort the most commonly used types first.
if t[i].countTypeAsserts != t[j].countTypeAsserts {
return t[i].countTypeAsserts < t[j].countTypeAsserts
}
if t[i].countMakeInterfaces != t[j].countMakeInterfaces {
return t[i].countMakeInterfaces < t[j].countMakeInterfaces
}
return t[i].name < t[j].name
}
func (t typeInfoSlice) Swap(i, j int) { t[i], t[j] = t[j], t[i] }
// interfaceInfo keeps information about a Go interface type, including all
// methods it has.
type interfaceInfo struct {
name string // name with $interface suffix
signatures []*signatureInfo // method set
types typeInfoSlice // types this interface implements
assertFunc llvm.Value // runtime.interfaceImplements replacement
methodFuncs map[*signatureInfo]llvm.Value // runtime.interfaceMethod replacements for each signature
}
// id removes the $interface suffix from the name and returns the clean
// interface name including import path.
func (itf *interfaceInfo) id() string {
if !strings.HasSuffix(itf.name, "$interface") {
panic("interface type does not have $interface suffix: " + itf.name)
}
return itf.name[:len(itf.name)-len("$interface")]
}
// lowerInterfacesPass keeps state related to the interface lowering pass. The
// pass has been implemented as an object type because of its complexity, but
// should be seen as a regular function call (see LowerInterfaces).
type lowerInterfacesPass struct {
*Compiler
types map[string]*typeInfo
signatures map[string]*signatureInfo
interfaces map[string]*interfaceInfo
}
// Lower all interface functions. They are emitted by the compiler as
// higher-level intrinsics that need some lowering before LLVM can work on them.
// This is done so that a few cleanup passes can run before assigning the final
// type codes.
func (c *Compiler) LowerInterfaces() {
p := &lowerInterfacesPass{
Compiler: c,
types: make(map[string]*typeInfo),
signatures: make(map[string]*signatureInfo),
interfaces: make(map[string]*interfaceInfo),
}
p.run()
}
// run runs the pass itself.
func (p *lowerInterfacesPass) run() {
// Collect all type codes.
typecodeIDPtr := llvm.PointerType(p.mod.GetTypeByName("runtime.typecodeID"), 0)
typeInInterfacePtr := llvm.PointerType(p.mod.GetTypeByName("runtime.typeInInterface"), 0)
var typesInInterfaces []llvm.Value
for global := p.mod.FirstGlobal(); !global.IsNil(); global = llvm.NextGlobal(global) {
switch global.Type() {
case typecodeIDPtr:
// Retrieve Go type information based on an opaque global variable.
// Only the name of the global is relevant, the object itself is
// discarded afterwards.
name := global.Name()
t := &typeInfo{
name: name,
typecode: global,
}
p.types[name] = t
case typeInInterfacePtr:
// Count per type how often it is put in an interface. Also, collect
// all methods this type has (if it is named).
typesInInterfaces = append(typesInInterfaces, global)
initializer := global.Initializer()
typecode := llvm.ConstExtractValue(initializer, []uint32{0})
methodSet := llvm.ConstExtractValue(initializer, []uint32{1})
t := p.types[typecode.Name()]
p.addTypeMethods(t, methodSet)
// Count the number of MakeInterface instructions, for sorting the
// typecodes later.
t.countMakeInterfaces += len(getUses(global))
}
}
// Count per type how often it is type asserted on (e.g. in a switch
// statement).
typeAssert := p.mod.NamedFunction("runtime.typeAssert")
typeAssertUses := getUses(typeAssert)
for _, use := range typeAssertUses {
typecode := use.Operand(1)
name := typecode.Name()
p.types[name].countTypeAsserts++
}
// Find all interface method calls.
interfaceMethod := p.mod.NamedFunction("runtime.interfaceMethod")
interfaceMethodUses := getUses(interfaceMethod)
for _, use := range interfaceMethodUses {
methodSet := use.Operand(1).Operand(0)
name := methodSet.Name()
if _, ok := p.interfaces[name]; !ok {
p.addInterface(methodSet)
}
}
// Find all interface type asserts.
interfaceImplements := p.mod.NamedFunction("runtime.interfaceImplements")
interfaceImplementsUses := getUses(interfaceImplements)
for _, use := range interfaceImplementsUses {
methodSet := use.Operand(1).Operand(0)
name := methodSet.Name()
if _, ok := p.interfaces[name]; !ok {
p.addInterface(methodSet)
}
}
// Find all the interfaces that are implemented per type.
for _, t := range p.types {
// This type has no methods, so don't spend time calculating them.
if len(t.methods) == 0 {
continue
}
// Pre-calculate a set of signatures that this type has, for easy
// lookup/check.
typeSignatureSet := make(map[*signatureInfo]struct{})
for _, method := range t.methods {
typeSignatureSet[method.signatureInfo] = struct{}{}
}
// A set of interfaces, mapped from the name to the info.
// When the name maps to a nil pointer, one of the methods of this type
// exists in the given interface but not all of them so this type
// doesn't implement the interface.
satisfiesInterfaces := make(map[string]*interfaceInfo)
for _, method := range t.methods {
for _, itf := range method.interfaces {
if _, ok := satisfiesInterfaces[itf.name]; ok {
// interface already checked with a different method
continue
}
// check whether this interface satisfies this type
satisfies := true
for _, itfSignature := range itf.signatures {
if _, ok := typeSignatureSet[itfSignature]; !ok {
satisfiesInterfaces[itf.name] = nil // does not satisfy
satisfies = false
break
}
}
if !satisfies {
continue
}
satisfiesInterfaces[itf.name] = itf
}
}
// Add this type to all interfaces that satisfy this type.
for _, itf := range satisfiesInterfaces {
if itf == nil {
// Interface does not implement this type, but one of the
// methods on this type also exists on the interface.
continue
}
itf.types = append(itf.types, t)
}
}
// Sort all types added to the interfaces, to check for more common types
// first.
for _, itf := range p.interfaces {
sort.Sort(itf.types)
}
// Replace all interface methods with their uses, if possible.
for _, use := range interfaceMethodUses {
typecode := use.Operand(0)
signature := p.signatures[use.Operand(2).Name()]
methodSet := use.Operand(1).Operand(0) // global variable
itf := p.interfaces[methodSet.Name()]
if len(itf.types) == 0 {
// This method call is impossible: no type implements this
// interface. In fact, the previous type assert that got this
// interface value should already have returned false.
// Replace the function pointer with undef (which will then be
// called), indicating to the optimizer this code is unreachable.
use.ReplaceAllUsesWith(llvm.Undef(p.uintptrType))
use.EraseFromParentAsInstruction()
} else if len(itf.types) == 1 {
// There is only one implementation of the given type.
// Call that function directly.
p.replaceInvokeWithCall(use, itf.types[0], signature)
} else {
// There are multiple types implementing this interface, thus there
// are multiple possible functions to call. Delegate calling the
// right function to a special wrapper function.
inttoptrs := getUses(use)
if len(inttoptrs) != 1 || inttoptrs[0].IsAIntToPtrInst().IsNil() {
panic("expected exactly one inttoptr use of runtime.interfaceMethod")
}
inttoptr := inttoptrs[0]
calls := getUses(inttoptr)
if len(calls) != 1 || calls[0].IsACallInst().IsNil() {
panic("expected exactly one call use of runtime.interfaceMethod")
}
call := calls[0]
// Set up parameters for the call. First copy the regular params...
params := make([]llvm.Value, call.OperandsCount())
paramTypes := make([]llvm.Type, len(params))
for i := 0; i < len(params)-1; i++ {
params[i] = call.Operand(i)
paramTypes[i] = params[i].Type()
}
// then add the typecode to the end of the list.
params[len(params)-1] = typecode
paramTypes[len(params)-1] = p.uintptrType
// Create a function that redirects the call to the destination
// call, after selecting the right concrete type.
redirector := p.getInterfaceMethodFunc(itf, signature, call.Type(), paramTypes)
// Replace the old lookup/inttoptr/call with the new call.
p.builder.SetInsertPointBefore(call)
retval := p.builder.CreateCall(redirector, params, "")
if retval.Type().TypeKind() != llvm.VoidTypeKind {
call.ReplaceAllUsesWith(retval)
}
call.EraseFromParentAsInstruction()
inttoptr.EraseFromParentAsInstruction()
use.EraseFromParentAsInstruction()
}
}
// Replace all typeasserts on interface types with matches on their concrete
// types, if possible.
for _, use := range interfaceImplementsUses {
actualType := use.Operand(0)
methodSet := use.Operand(1).Operand(0) // global variable
itf := p.interfaces[methodSet.Name()]
if len(itf.types) == 0 {
// There are no types implementing this interface, so this assert
// can never succeed.
// Signal this to the optimizer by branching on constant false. It
// should remove the "then" block.
use.ReplaceAllUsesWith(llvm.ConstInt(p.ctx.Int1Type(), 0, false))
use.EraseFromParentAsInstruction()
} else if len(itf.types) == 1 {
// There is only one type implementing this interface.
// Transform this interface assert into comparison against a
// constant.
p.builder.SetInsertPointBefore(use)
assertedType := p.builder.CreatePtrToInt(itf.types[0].typecode, p.uintptrType, "typeassert.typecode")
commaOk := p.builder.CreateICmp(llvm.IntEQ, assertedType, actualType, "typeassert.ok")
use.ReplaceAllUsesWith(commaOk)
use.EraseFromParentAsInstruction()
} else {
// There are multiple possible types implementing this interface.
// Create a function that does a type switch on all available types
// that implement this interface.
fn := p.getInterfaceImplementsFunc(itf)
p.builder.SetInsertPointBefore(use)
commaOk := p.builder.CreateCall(fn, []llvm.Value{actualType}, "typeassert.ok")
use.ReplaceAllUsesWith(commaOk)
use.EraseFromParentAsInstruction()
}
}
// Make a slice of types sorted by frequency of use.
typeSlice := make(typeInfoSlice, 0, len(p.types))
for _, t := range p.types {
typeSlice = append(typeSlice, t)
}
sort.Sort(sort.Reverse(typeSlice))
// A type code must fit in 16 bits.
if len(typeSlice) >= 1<<16 {
panic("typecode does not fit in a uint16: too many types in this program")
}
// Assign a type code for each type.
p.assignTypeCodes(typeSlice)
// Replace each use of a runtime.typeInInterface with the constant type
// code.
for _, global := range typesInInterfaces {
for _, use := range getUses(global) {
t := p.types[llvm.ConstExtractValue(global.Initializer(), []uint32{0}).Name()]
typecode := llvm.ConstInt(p.uintptrType, t.num, false)
use.ReplaceAllUsesWith(typecode)
}
}
// Replace each type assert with an actual type comparison or (if the type
// assert is impossible) the constant false.
for _, use := range typeAssertUses {
actualType := use.Operand(0)
assertedTypeGlobal := use.Operand(1)
t := p.types[assertedTypeGlobal.Name()]
var commaOk llvm.Value
if t.countMakeInterfaces == 0 {
// impossible type assert: optimize accordingly
commaOk = llvm.ConstInt(p.ctx.Int1Type(), 0, false)
} else {
// regular type assert
p.builder.SetInsertPointBefore(use)
commaOk = p.builder.CreateICmp(llvm.IntEQ, llvm.ConstPtrToInt(assertedTypeGlobal, p.uintptrType), actualType, "typeassert.ok")
}
use.ReplaceAllUsesWith(commaOk)
use.EraseFromParentAsInstruction()
}
// Fill in each helper function for type asserts on interfaces
// (interface-to-interface matches).
for _, itf := range p.interfaces {
if !itf.assertFunc.IsNil() {
p.createInterfaceImplementsFunc(itf)
}
for signature := range itf.methodFuncs {
p.createInterfaceMethodFunc(itf, signature)
}
}
// Replace all ptrtoint typecode placeholders with their final type code
// numbers.
for _, typ := range p.types {
for _, use := range getUses(typ.typecode) {
if !use.IsAConstantExpr().IsNil() && use.Opcode() == llvm.PtrToInt {
use.ReplaceAllUsesWith(llvm.ConstInt(p.uintptrType, typ.num, false))
}
}
}
// Remove stray runtime.typeInInterface globals. Required for the following
// cleanup.
for _, global := range typesInInterfaces {
global.EraseFromParentAsGlobal()
}
// Remove method sets of types. Unnecessary, but cleans up the IR for
// inspection.
for _, typ := range p.types {
if !typ.methodSet.IsNil() {
typ.methodSet.EraseFromParentAsGlobal()
typ.methodSet = llvm.Value{}
}
}
}
// addTypeMethods reads the method set of the given type info struct. It
// retrieves the signatures and the references to the method functions
// themselves for later type<->interface matching.
func (p *lowerInterfacesPass) addTypeMethods(t *typeInfo, methodSet llvm.Value) {
if !t.methodSet.IsNil() || methodSet.IsNull() {
// no methods or methods already read
return
}
methodSet = methodSet.Operand(0) // get global from GEP
// This type has methods, collect all methods of this type.
t.methodSet = methodSet
set := methodSet.Initializer() // get value from global
for i := 0; i < set.Type().ArrayLength(); i++ {
methodData := llvm.ConstExtractValue(set, []uint32{uint32(i)})
signatureName := llvm.ConstExtractValue(methodData, []uint32{0}).Name()
function := llvm.ConstExtractValue(methodData, []uint32{1}).Operand(0)
signature := p.getSignature(signatureName)
method := &methodInfo{
function: function,
signatureInfo: signature,
}
signature.methods = append(signature.methods, method)
t.methods = append(t.methods, method)
}
}
// addInterface reads information about an interface, which is the
// fully-qualified name and the signatures of all methods it has.
func (p *lowerInterfacesPass) addInterface(methodSet llvm.Value) {
name := methodSet.Name()
t := &interfaceInfo{
name: name,
}
p.interfaces[name] = t
methodSet = methodSet.Initializer() // get global value from getelementptr
for i := 0; i < methodSet.Type().ArrayLength(); i++ {
signatureName := llvm.ConstExtractValue(methodSet, []uint32{uint32(i)}).Name()
signature := p.getSignature(signatureName)
signature.interfaces = append(signature.interfaces, t)
t.signatures = append(t.signatures, signature)
}
}
// getSignature returns a new *signatureInfo, creating it if it doesn't already
// exist.
func (p *lowerInterfacesPass) getSignature(name string) *signatureInfo {
if _, ok := p.signatures[name]; !ok {
p.signatures[name] = &signatureInfo{
name: name,
}
}
return p.signatures[name]
}
// replaceInvokeWithCall replaces a runtime.interfaceMethod + inttoptr with a
// concrete method. This can be done when only one type implements the
// interface.
func (p *lowerInterfacesPass) replaceInvokeWithCall(use llvm.Value, typ *typeInfo, signature *signatureInfo) {
inttoptrs := getUses(use)
if len(inttoptrs) != 1 || inttoptrs[0].IsAIntToPtrInst().IsNil() {
panic("expected exactly one inttoptr use of runtime.interfaceMethod")
}
inttoptr := inttoptrs[0]
function := typ.getMethod(signature).function
if inttoptr.Type() == function.Type() {
// Easy case: the types are the same. Simply replace the inttoptr
// result (which is directly called) with the actual function.
inttoptr.ReplaceAllUsesWith(function)
} else {
// Harder case: the type is not actually the same. Go through each call
// (of which there should be only one), extract the receiver params for
// this call and replace the call with a direct call to the target
// function.
for _, call := range getUses(inttoptr) {
if call.IsACallInst().IsNil() || call.CalledValue() != inttoptr {
panic("expected the inttoptr to be called as a method, this is not a method call")
}
operands := make([]llvm.Value, call.OperandsCount()-1)
for i := range operands {
operands[i] = call.Operand(i)
}
paramTypes := function.Type().ElementType().ParamTypes()
receiverParamTypes := paramTypes[:len(paramTypes)-(len(operands)-1)]
methodParamTypes := paramTypes[len(paramTypes)-(len(operands)-1):]
for i, methodParamType := range methodParamTypes {
if methodParamType != operands[i+1].Type() {
panic("expected method call param type and function param type to be the same")
}
}
p.builder.SetInsertPointBefore(call)
receiverParams := p.emitPointerUnpack(operands[0], receiverParamTypes)
result := p.builder.CreateCall(function, append(receiverParams, operands[1:]...), "")
if result.Type().TypeKind() != llvm.VoidTypeKind {
call.ReplaceAllUsesWith(result)
}
call.EraseFromParentAsInstruction()
}
}
inttoptr.EraseFromParentAsInstruction()
use.EraseFromParentAsInstruction()
}
// getInterfaceImplementsFunc returns a function that checks whether a given
// interface type implements a given interface, by checking all possible types
// that implement this interface.
func (p *lowerInterfacesPass) getInterfaceImplementsFunc(itf *interfaceInfo) llvm.Value {
if !itf.assertFunc.IsNil() {
return itf.assertFunc
}
// Create the function and function signature.
// TODO: debug info
fnName := itf.id() + "$typeassert"
fnType := llvm.FunctionType(p.ctx.Int1Type(), []llvm.Type{p.uintptrType}, false)
itf.assertFunc = llvm.AddFunction(p.mod, fnName, fnType)
itf.assertFunc.Param(0).SetName("actualType")
// Type asserts will be made for each type, so increment the counter for
// those.
for _, typ := range itf.types {
typ.countTypeAsserts++
}
return itf.assertFunc
}
// createInterfaceImplementsFunc finishes the work of
// getInterfaceImplementsFunc, because it needs to run after types have a type
// code assigned.
//
// The type match is implemented using a big type switch over all possible
// types.
func (p *lowerInterfacesPass) createInterfaceImplementsFunc(itf *interfaceInfo) {
fn := itf.assertFunc
fn.SetLinkage(llvm.InternalLinkage)
fn.SetUnnamedAddr(true)
// TODO: debug info
// Create all used basic blocks.
entry := llvm.AddBasicBlock(fn, "entry")
thenBlock := llvm.AddBasicBlock(fn, "then")
elseBlock := llvm.AddBasicBlock(fn, "else")
// Add all possible types as cases.
p.builder.SetInsertPointAtEnd(entry)
actualType := fn.Param(0)
sw := p.builder.CreateSwitch(actualType, elseBlock, len(itf.types))
for _, typ := range itf.types {
sw.AddCase(llvm.ConstInt(p.uintptrType, typ.num, false), thenBlock)
}
// Fill 'then' block (type assert was successful).
p.builder.SetInsertPointAtEnd(thenBlock)
p.builder.CreateRet(llvm.ConstInt(p.ctx.Int1Type(), 1, false))
// Fill 'else' block (type asserted failed).
p.builder.SetInsertPointAtEnd(elseBlock)
p.builder.CreateRet(llvm.ConstInt(p.ctx.Int1Type(), 0, false))
}
// getInterfaceMethodFunc returns a thunk for calling a method on an interface.
// It only declares the function, createInterfaceMethodFunc actually defines the
// function.
func (p *lowerInterfacesPass) getInterfaceMethodFunc(itf *interfaceInfo, signature *signatureInfo, returnType llvm.Type, params []llvm.Type) llvm.Value {
if fn, ok := itf.methodFuncs[signature]; ok {
// This function has already been created.
return fn
}
if itf.methodFuncs == nil {
// initialize the above map
itf.methodFuncs = make(map[*signatureInfo]llvm.Value)
}
// Construct the function name, which is of the form:
// (main.Stringer).String
fnName := "(" + itf.id() + ")." + signature.methodName()
fnType := llvm.FunctionType(returnType, params, false)
fn := llvm.AddFunction(p.mod, fnName, fnType)
fn.LastParam().SetName("actualType")
itf.methodFuncs[signature] = fn
return fn
}
// createInterfaceMethodFunc finishes the work of getInterfaceMethodFunc,
// because it needs to run after type codes have been assigned to concrete
// types.
//
// Matching the actual type is implemented using a big type switch over all
// possible types.
func (p *lowerInterfacesPass) createInterfaceMethodFunc(itf *interfaceInfo, signature *signatureInfo) {
fn := itf.methodFuncs[signature]
fn.SetLinkage(llvm.InternalLinkage)
fn.SetUnnamedAddr(true)
// TODO: debug info
// Create entry block.
entry := llvm.AddBasicBlock(fn, "entry")
// Create default block and make it unreachable (which it is, because all
// possible types are checked).
defaultBlock := llvm.AddBasicBlock(fn, "default")
p.builder.SetInsertPointAtEnd(defaultBlock)
p.builder.CreateUnreachable()
// Create type switch in entry block.
p.builder.SetInsertPointAtEnd(entry)
actualType := fn.LastParam()
sw := p.builder.CreateSwitch(actualType, defaultBlock, len(itf.types))
// Collect the params that will be passed to the functions to call.
// These params exclude the receiver (which may actually consist of multiple
// parts).
params := make([]llvm.Value, fn.ParamsCount()-2)
for i := range params {
params[i] = fn.Param(i + 1)
}
// Define all possible functions that can be called.
for _, typ := range itf.types {
bb := llvm.AddBasicBlock(fn, typ.name)
sw.AddCase(llvm.ConstInt(p.uintptrType, typ.num, false), bb)
// The function we will redirect to when the interface has this type.
function := typ.getMethod(signature).function
p.builder.SetInsertPointAtEnd(bb)
receiver := fn.FirstParam()
if receiver.Type() != function.FirstParam().Type() {
// When the receiver is a pointer, it is not wrapped. This means the
// i8* has to be cast to the correct pointer type of the target
// function.
receiver = p.builder.CreateBitCast(receiver, function.FirstParam().Type(), "")
}
retval := p.builder.CreateCall(function, append([]llvm.Value{receiver}, params...), "")
if retval.Type().TypeKind() == llvm.VoidTypeKind {
p.builder.CreateRetVoid()
} else {
p.builder.CreateRet(retval)
}
}
}