You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

251 lines
9.1 KiB

package compiler
// This file implements inline asm support by calling special functions.
import (
"fmt"
"go/constant"
"go/token"
"regexp"
"strconv"
"strings"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// This is a compiler builtin, which emits a piece of inline assembly with no
// operands or return values. It is useful for trivial instructions, like wfi in
// ARM or sleep in AVR.
//
// func Asm(asm string)
//
// The provided assembly must be a constant.
func (b *builder) createInlineAsm(args []ssa.Value) (llvm.Value, error) {
// Magic function: insert inline assembly instead of calling it.
fnType := llvm.FunctionType(b.ctx.VoidType(), []llvm.Type{}, false)
asm := constant.StringVal(args[0].(*ssa.Const).Value)
target := llvm.InlineAsm(fnType, asm, "", true, false, 0, false)
return b.CreateCall(fnType, target, nil, ""), nil
}
// This is a compiler builtin, which allows assembly to be called in a flexible
// way.
//
// func AsmFull(asm string, regs map[string]interface{}) uintptr
//
// The asm parameter must be a constant string. The regs parameter must be
// provided immediately. For example:
//
// arm.AsmFull(
// "str {value}, {result}",
// map[string]interface{}{
// "value": 1
// "result": &dest,
// })
func (b *builder) createInlineAsmFull(instr *ssa.CallCommon) (llvm.Value, error) {
asmString := constant.StringVal(instr.Args[0].(*ssa.Const).Value)
registers := map[string]llvm.Value{}
if registerMap, ok := instr.Args[1].(*ssa.MakeMap); ok {
for _, r := range *registerMap.Referrers() {
switch r := r.(type) {
case *ssa.DebugRef:
// ignore
case *ssa.MapUpdate:
if r.Block() != registerMap.Block() {
return llvm.Value{}, b.makeError(instr.Pos(), "register value map must be created in the same basic block")
}
key := constant.StringVal(r.Key.(*ssa.Const).Value)
registers[key] = b.getValue(r.Value.(*ssa.MakeInterface).X, getPos(instr))
case *ssa.Call:
if r.Common() == instr {
break
}
default:
return llvm.Value{}, b.makeError(instr.Pos(), "don't know how to handle argument to inline assembly: "+r.String())
}
}
}
// TODO: handle dollar signs in asm string
registerNumbers := map[string]int{}
var err error
argTypes := []llvm.Type{}
args := []llvm.Value{}
constraints := []string{}
hasOutput := false
asmString = regexp.MustCompile(`\{\}`).ReplaceAllStringFunc(asmString, func(s string) string {
hasOutput = true
return "$0"
})
if hasOutput {
constraints = append(constraints, "=&r")
registerNumbers[""] = 0
}
asmString = regexp.MustCompile(`\{[a-zA-Z]+\}`).ReplaceAllStringFunc(asmString, func(s string) string {
// TODO: skip strings like {r4} etc. that look like ARM push/pop
// instructions.
name := s[1 : len(s)-1]
if _, ok := registers[name]; !ok {
if err == nil {
err = b.makeError(instr.Pos(), "unknown register name: "+name)
}
return s
}
if _, ok := registerNumbers[name]; !ok {
registerNumbers[name] = len(registerNumbers)
argTypes = append(argTypes, registers[name].Type())
args = append(args, registers[name])
switch registers[name].Type().TypeKind() {
case llvm.IntegerTypeKind:
constraints = append(constraints, "r")
case llvm.PointerTypeKind:
// Memory references require a type starting with LLVM 14,
// probably as a preparation for opaque pointers.
err = b.makeError(instr.Pos(), "support for pointer operands was dropped in TinyGo 0.23")
return s
default:
err = b.makeError(instr.Pos(), "unknown type in inline assembly for value: "+name)
return s
}
}
return fmt.Sprintf("${%v}", registerNumbers[name])
})
if err != nil {
return llvm.Value{}, err
}
var outputType llvm.Type
if hasOutput {
outputType = b.uintptrType
} else {
outputType = b.ctx.VoidType()
}
fnType := llvm.FunctionType(outputType, argTypes, false)
target := llvm.InlineAsm(fnType, asmString, strings.Join(constraints, ","), true, false, 0, false)
result := b.CreateCall(fnType, target, args, "")
if hasOutput {
return result, nil
} else {
// Make sure we return something valid.
return llvm.ConstInt(b.uintptrType, 0, false), nil
}
}
// This is a compiler builtin which emits an inline SVCall instruction. It can
// be one of:
//
// func SVCall0(num uintptr) uintptr
// func SVCall1(num uintptr, a1 interface{}) uintptr
// func SVCall2(num uintptr, a1, a2 interface{}) uintptr
// func SVCall3(num uintptr, a1, a2, a3 interface{}) uintptr
// func SVCall4(num uintptr, a1, a2, a3, a4 interface{}) uintptr
//
// The num parameter must be a constant. All other parameters may be any scalar
// value supported by LLVM inline assembly.
func (b *builder) emitSVCall(args []ssa.Value, pos token.Pos) (llvm.Value, error) {
num, _ := constant.Uint64Val(args[0].(*ssa.Const).Value)
llvmArgs := []llvm.Value{}
argTypes := []llvm.Type{}
asm := "svc #" + strconv.FormatUint(num, 10)
constraints := "={r0}"
for i, arg := range args[1:] {
arg = arg.(*ssa.MakeInterface).X
if i == 0 {
constraints += ",0"
} else {
constraints += ",{r" + strconv.Itoa(i) + "}"
}
llvmValue := b.getValue(arg, pos)
llvmArgs = append(llvmArgs, llvmValue)
argTypes = append(argTypes, llvmValue.Type())
}
// Implement the ARM calling convention by marking r1-r3 as
// clobbered. r0 is used as an output register so doesn't have to be
// marked as clobbered.
constraints += ",~{r1},~{r2},~{r3}"
fnType := llvm.FunctionType(b.uintptrType, argTypes, false)
target := llvm.InlineAsm(fnType, asm, constraints, true, false, 0, false)
return b.CreateCall(fnType, target, llvmArgs, ""), nil
}
// This is a compiler builtin which emits an inline SVCall instruction. It can
// be one of:
//
// func SVCall0(num uintptr) uintptr
// func SVCall1(num uintptr, a1 interface{}) uintptr
// func SVCall2(num uintptr, a1, a2 interface{}) uintptr
// func SVCall3(num uintptr, a1, a2, a3 interface{}) uintptr
// func SVCall4(num uintptr, a1, a2, a3, a4 interface{}) uintptr
//
// The num parameter must be a constant. All other parameters may be any scalar
// value supported by LLVM inline assembly.
// Same as emitSVCall but for AArch64
func (b *builder) emitSV64Call(args []ssa.Value, pos token.Pos) (llvm.Value, error) {
num, _ := constant.Uint64Val(args[0].(*ssa.Const).Value)
llvmArgs := []llvm.Value{}
argTypes := []llvm.Type{}
asm := "svc #" + strconv.FormatUint(num, 10)
constraints := "={x0}"
for i, arg := range args[1:] {
arg = arg.(*ssa.MakeInterface).X
if i == 0 {
constraints += ",0"
} else {
constraints += ",{x" + strconv.Itoa(i) + "}"
}
llvmValue := b.getValue(arg, pos)
llvmArgs = append(llvmArgs, llvmValue)
argTypes = append(argTypes, llvmValue.Type())
}
// Implement the ARM64 calling convention by marking x1-x7 as
// clobbered. x0 is used as an output register so doesn't have to be
// marked as clobbered.
constraints += ",~{x1},~{x2},~{x3},~{x4},~{x5},~{x6},~{x7}"
fnType := llvm.FunctionType(b.uintptrType, argTypes, false)
target := llvm.InlineAsm(fnType, asm, constraints, true, false, 0, false)
return b.CreateCall(fnType, target, llvmArgs, ""), nil
}
// This is a compiler builtin which emits CSR instructions. It can be one of:
//
// func (csr CSR) Get() uintptr
// func (csr CSR) Set(uintptr)
// func (csr CSR) SetBits(uintptr) uintptr
// func (csr CSR) ClearBits(uintptr) uintptr
//
// The csr parameter (method receiver) must be a constant. Other parameter can
// be any value.
func (b *builder) emitCSROperation(call *ssa.CallCommon) (llvm.Value, error) {
csrConst, ok := call.Args[0].(*ssa.Const)
if !ok {
return llvm.Value{}, b.makeError(call.Pos(), "CSR must be constant")
}
csr := csrConst.Uint64()
switch name := call.StaticCallee().Name(); name {
case "Get":
// Note that this instruction may have side effects, and thus must be
// marked as such.
fnType := llvm.FunctionType(b.uintptrType, nil, false)
asm := fmt.Sprintf("csrr $0, %d", csr)
target := llvm.InlineAsm(fnType, asm, "=r", true, false, 0, false)
return b.CreateCall(fnType, target, nil, ""), nil
case "Set":
fnType := llvm.FunctionType(b.ctx.VoidType(), []llvm.Type{b.uintptrType}, false)
asm := fmt.Sprintf("csrw %d, $0", csr)
target := llvm.InlineAsm(fnType, asm, "r", true, false, 0, false)
return b.CreateCall(fnType, target, []llvm.Value{b.getValue(call.Args[1], getPos(call))}, ""), nil
case "SetBits":
// Note: it may be possible to optimize this to csrrsi in many cases.
fnType := llvm.FunctionType(b.uintptrType, []llvm.Type{b.uintptrType}, false)
asm := fmt.Sprintf("csrrs $0, %d, $1", csr)
target := llvm.InlineAsm(fnType, asm, "=r,r", true, false, 0, false)
return b.CreateCall(fnType, target, []llvm.Value{b.getValue(call.Args[1], getPos(call))}, ""), nil
case "ClearBits":
// Note: it may be possible to optimize this to csrrci in many cases.
fnType := llvm.FunctionType(b.uintptrType, []llvm.Type{b.uintptrType}, false)
asm := fmt.Sprintf("csrrc $0, %d, $1", csr)
target := llvm.InlineAsm(fnType, asm, "=r,r", true, false, 0, false)
return b.CreateCall(fnType, target, []llvm.Value{b.getValue(call.Args[1], getPos(call))}, ""), nil
default:
return llvm.Value{}, b.makeError(call.Pos(), "unknown CSR operation: "+name)
}
}