You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

588 lines
18 KiB

package interp
// This file provides a litte bit of abstraction around LLVM values.
import (
"strconv"
"github.com/aykevl/go-llvm"
)
// A Value is a LLVM value with some extra methods attached for easier
// interpretation.
type Value interface {
Value() llvm.Value // returns a LLVM value
Type() llvm.Type // equal to Value().Type()
IsConstant() bool // returns true if this value is a constant value
Load() llvm.Value // dereference a pointer
Store(llvm.Value) // store to a pointer
GetElementPtr([]uint32) Value // returns an interior pointer
String() string // string representation, for debugging
}
// A type that simply wraps a LLVM constant value.
type LocalValue struct {
Eval *Eval
Underlying llvm.Value
}
// Value implements Value by returning the constant value itself.
func (v *LocalValue) Value() llvm.Value {
return v.Underlying
}
func (v *LocalValue) Type() llvm.Type {
return v.Underlying.Type()
}
func (v *LocalValue) IsConstant() bool {
return v.Underlying.IsConstant()
}
// Load loads a constant value if this is a constant GEP, otherwise it panics.
func (v *LocalValue) Load() llvm.Value {
switch v.Underlying.Opcode() {
case llvm.GetElementPtr:
indices := v.getConstGEPIndices()
if indices[0] != 0 {
panic("invalid GEP")
}
global := v.Eval.getValue(v.Underlying.Operand(0))
agg := global.Load()
return llvm.ConstExtractValue(agg, indices[1:])
default:
panic("interp: load from a constant")
}
}
// Store stores to the underlying value if the value type is a constant GEP,
// otherwise it panics.
func (v *LocalValue) Store(value llvm.Value) {
switch v.Underlying.Opcode() {
case llvm.GetElementPtr:
indices := v.getConstGEPIndices()
if indices[0] != 0 {
panic("invalid GEP")
}
global := &GlobalValue{v.Eval, v.Underlying.Operand(0)}
agg := global.Load()
agg = llvm.ConstInsertValue(agg, value, indices[1:])
global.Store(agg)
return
default:
panic("interp: store on a constant")
}
}
// GetElementPtr returns a constant GEP when the underlying value is also a
// constant GEP. It panics when the underlying value is not a constant GEP:
// getting the pointer to a constant is not possible.
func (v *LocalValue) GetElementPtr(indices []uint32) Value {
switch v.Underlying.Opcode() {
case llvm.GetElementPtr, llvm.IntToPtr:
int32Type := v.Underlying.Type().Context().Int32Type()
llvmIndices := getLLVMIndices(int32Type, indices)
return &LocalValue{v.Eval, llvm.ConstGEP(v.Underlying, llvmIndices)}
default:
panic("interp: GEP on a constant")
}
}
func (v *LocalValue) String() string {
isConstant := "false"
if v.IsConstant() {
isConstant = "true"
}
return "&LocalValue{Type: " + v.Type().String() + ", IsConstant: " + isConstant + "}"
}
// getConstGEPIndices returns indices of this constant GEP, if this is a GEP
// instruction. If it is not, the behavior is undefined.
func (v *LocalValue) getConstGEPIndices() []uint32 {
indices := make([]uint32, v.Underlying.OperandsCount()-1)
for i := range indices {
operand := v.Underlying.Operand(i + 1)
indices[i] = uint32(operand.ZExtValue())
}
return indices
}
// GlobalValue wraps a LLVM global variable.
type GlobalValue struct {
Eval *Eval
Underlying llvm.Value
}
// Value returns the initializer for this global variable.
func (v *GlobalValue) Value() llvm.Value {
return v.Underlying
}
// Type returns the type of this global variable, which is a pointer type. Use
// Type().ElementType() to get the actual global variable type.
func (v *GlobalValue) Type() llvm.Type {
return v.Underlying.Type()
}
// IsConstant returns true if this global is not dirty, false otherwise.
func (v *GlobalValue) IsConstant() bool {
if _, ok := v.Eval.dirtyGlobals[v.Underlying]; ok {
return false
}
return true
}
// Load returns the initializer of the global variable.
func (v *GlobalValue) Load() llvm.Value {
return v.Underlying.Initializer()
}
// Store sets the initializer of the global variable.
func (v *GlobalValue) Store(value llvm.Value) {
if !value.IsConstant() {
v.MarkDirty()
v.Eval.builder.CreateStore(value, v.Underlying)
} else {
v.Underlying.SetInitializer(value)
}
}
// GetElementPtr returns a constant GEP on this global, which can be used in
// load and store instructions.
func (v *GlobalValue) GetElementPtr(indices []uint32) Value {
int32Type := v.Underlying.Type().Context().Int32Type()
gep := llvm.ConstGEP(v.Underlying, getLLVMIndices(int32Type, indices))
return &LocalValue{v.Eval, gep}
}
func (v *GlobalValue) String() string {
return "&GlobalValue{" + v.Underlying.Name() + "}"
}
// MarkDirty marks this global as dirty, meaning that every load from and store
// to this global (from now on) must be performed at runtime.
func (v *GlobalValue) MarkDirty() {
if !v.IsConstant() {
return // already dirty
}
v.Eval.dirtyGlobals[v.Underlying] = struct{}{}
}
// An alloca represents a local alloca, which is a stack allocated variable.
// It is emulated by storing the constant of the alloca.
type AllocaValue struct {
Eval *Eval
Underlying llvm.Value // the constant value itself if not dirty, otherwise the alloca instruction
Dirty bool // this value must be evaluated at runtime
}
// Value turns this alloca into a runtime alloca instead of a compile-time
// constant (if not already converted), and returns the alloca itself.
func (v *AllocaValue) Value() llvm.Value {
if !v.Dirty {
// Mark this alloca a dirty, meaning it is run at runtime instead of
// compile time.
alloca := v.Eval.builder.CreateAlloca(v.Underlying.Type(), "")
v.Eval.builder.CreateStore(v.Underlying, alloca)
v.Dirty = true
v.Underlying = alloca
}
return v.Underlying
}
// Type returns the type of this alloca, which is always a pointer.
func (v *AllocaValue) Type() llvm.Type {
if v.Dirty {
return v.Underlying.Type()
} else {
return llvm.PointerType(v.Underlying.Type(), 0)
}
}
func (v *AllocaValue) IsConstant() bool {
return !v.Dirty
}
// Load returns the value this alloca contains, which may be evaluated at
// runtime.
func (v *AllocaValue) Load() llvm.Value {
if v.Dirty {
ret := v.Eval.builder.CreateLoad(v.Underlying, "")
if ret.IsNil() {
panic("alloca is nil")
}
return ret
} else {
if v.Underlying.IsNil() {
panic("alloca is nil")
}
return v.Underlying
}
}
// Store updates the value of this alloca.
func (v *AllocaValue) Store(value llvm.Value) {
if v.Underlying.Type() != value.Type() {
panic("interp: trying to store to an alloca with a different type")
}
if v.Dirty || !value.IsConstant() {
v.Eval.builder.CreateStore(value, v.Value())
} else {
v.Underlying = value
}
}
// GetElementPtr returns a value (a *GetElementPtrValue) that keeps a reference
// to this alloca, so that Load() and Store() continue to work.
func (v *AllocaValue) GetElementPtr(indices []uint32) Value {
return &GetElementPtrValue{v, indices}
}
func (v *AllocaValue) String() string {
return "&AllocaValue{Type: " + v.Type().String() + "}"
}
// GetElementPtrValue wraps an alloca, keeping track of what the GEP points to
// so it can be used as a pointer value (with Load() and Store()).
type GetElementPtrValue struct {
Alloca *AllocaValue
Indices []uint32
}
// Type returns the type of this GEP, which is always of type pointer.
func (v *GetElementPtrValue) Type() llvm.Type {
if v.Alloca.Dirty {
return v.Value().Type()
} else {
return llvm.PointerType(v.Load().Type(), 0)
}
}
func (v *GetElementPtrValue) IsConstant() bool {
return v.Alloca.IsConstant()
}
// Value creates the LLVM GEP instruction of this GetElementPtrValue wrapper and
// returns it.
func (v *GetElementPtrValue) Value() llvm.Value {
if v.Alloca.Dirty {
alloca := v.Alloca.Value()
int32Type := v.Alloca.Type().Context().Int32Type()
llvmIndices := getLLVMIndices(int32Type, v.Indices)
return v.Alloca.Eval.builder.CreateGEP(alloca, llvmIndices, "")
} else {
panic("interp: todo: pointer to alloca gep")
}
}
// Load deferences the pointer this GEP points to. For a constant GEP, it
// extracts the value from the underlying alloca.
func (v *GetElementPtrValue) Load() llvm.Value {
if v.Alloca.Dirty {
gep := v.Value()
return v.Alloca.Eval.builder.CreateLoad(gep, "")
} else {
underlying := v.Alloca.Load()
indices := v.Indices
if indices[0] != 0 {
panic("invalid GEP")
}
return llvm.ConstExtractValue(underlying, indices[1:])
}
}
// Store stores to the pointer this GEP points to. For a constant GEP, it
// updates the underlying allloca.
func (v *GetElementPtrValue) Store(value llvm.Value) {
if v.Alloca.Dirty || !value.IsConstant() {
alloca := v.Alloca.Value()
int32Type := v.Alloca.Type().Context().Int32Type()
llvmIndices := getLLVMIndices(int32Type, v.Indices)
gep := v.Alloca.Eval.builder.CreateGEP(alloca, llvmIndices, "")
v.Alloca.Eval.builder.CreateStore(value, gep)
} else {
underlying := v.Alloca.Load()
indices := v.Indices
if indices[0] != 0 {
panic("invalid GEP")
}
underlying = llvm.ConstInsertValue(underlying, value, indices[1:])
v.Alloca.Store(underlying)
}
}
func (v *GetElementPtrValue) GetElementPtr(indices []uint32) Value {
if v.Alloca.Dirty {
panic("interp: todo: gep on a dirty gep")
} else {
combined := append([]uint32{}, v.Indices...)
combined[len(combined)-1] += indices[0]
combined = append(combined, indices[1:]...)
return &GetElementPtrValue{v.Alloca, combined}
}
}
func (v *GetElementPtrValue) String() string {
indices := ""
for _, n := range v.Indices {
if indices != "" {
indices += ", "
}
indices += strconv.Itoa(int(n))
}
return "&GetElementPtrValue{Alloca: " + v.Alloca.String() + ", Indices: [" + indices + "]}"
}
// PointerCastValue represents a bitcast operation on a pointer.
type PointerCastValue struct {
Eval *Eval
Underlying Value
CastType llvm.Type
}
// Value returns a constant bitcast value.
func (v *PointerCastValue) Value() llvm.Value {
from := v.Underlying.Value()
return llvm.ConstBitCast(from, v.CastType)
}
// Type returns the type this pointer has been cast to.
func (v *PointerCastValue) Type() llvm.Type {
return v.CastType
}
func (v *PointerCastValue) IsConstant() bool {
return v.Underlying.IsConstant()
}
// Load tries to load and bitcast the given value. If this value cannot be
// bitcasted, Load panics.
func (v *PointerCastValue) Load() llvm.Value {
if v.Underlying.IsConstant() {
typeFrom := v.Underlying.Type().ElementType()
typeTo := v.CastType.ElementType()
if isScalar(typeFrom) && isScalar(typeTo) && v.Eval.TargetData.TypeAllocSize(typeFrom) == v.Eval.TargetData.TypeAllocSize(typeTo) {
return llvm.ConstBitCast(v.Underlying.Load(), v.CastType.ElementType())
}
}
panic("interp: load from a pointer bitcast: " + v.String())
}
// Store panics: it is not (yet) possible to store directly to a bitcast.
func (v *PointerCastValue) Store(value llvm.Value) {
panic("interp: store on a pointer bitcast")
}
// GetElementPtr panics: it is not (yet) possible to do a GEP operation on a
// bitcast.
func (v *PointerCastValue) GetElementPtr(indices []uint32) Value {
panic("interp: GEP on a pointer bitcast")
}
func (v *PointerCastValue) String() string {
return "&PointerCastValue{Value: " + v.Underlying.String() + ", CastType: " + v.CastType.String() + "}"
}
// MapValue implements a Go map which is created at compile time and stored as a
// global variable.
type MapValue struct {
Eval *Eval
PkgName string
Underlying llvm.Value
Keys []Value
Values []Value
KeySize int
ValueSize int
KeyType llvm.Type
ValueType llvm.Type
}
func (v *MapValue) newBucket() llvm.Value {
ctx := v.Eval.Mod.Context()
i8ptrType := llvm.PointerType(ctx.Int8Type(), 0)
bucketType := ctx.StructType([]llvm.Type{
llvm.ArrayType(ctx.Int8Type(), 8), // tophash
i8ptrType, // next bucket
llvm.ArrayType(v.KeyType, 8), // key type
llvm.ArrayType(v.ValueType, 8), // value type
}, false)
bucketValue := getZeroValue(bucketType)
bucket := llvm.AddGlobal(v.Eval.Mod, bucketType, v.PkgName+"$mapbucket")
bucket.SetInitializer(bucketValue)
bucket.SetLinkage(llvm.InternalLinkage)
bucket.SetUnnamedAddr(true)
return bucket
}
// Value returns a global variable which is a pointer to the actual hashmap.
func (v *MapValue) Value() llvm.Value {
if !v.Underlying.IsNil() {
return v.Underlying
}
ctx := v.Eval.Mod.Context()
i8ptrType := llvm.PointerType(ctx.Int8Type(), 0)
var firstBucketGlobal llvm.Value
if len(v.Keys) == 0 {
// there are no buckets
firstBucketGlobal = llvm.ConstPointerNull(i8ptrType)
} else {
// create initial bucket
firstBucketGlobal = v.newBucket()
}
// Insert each key/value pair in the hashmap.
bucketGlobal := firstBucketGlobal
for i, key := range v.Keys {
var keyBuf []byte
llvmKey := key.Value()
llvmValue := v.Values[i].Value()
if key.Type().TypeKind() == llvm.StructTypeKind && key.Type().StructName() == "runtime._string" {
keyPtr := llvm.ConstExtractValue(llvmKey, []uint32{0})
keyLen := llvm.ConstExtractValue(llvmKey, []uint32{1})
keyPtrVal := v.Eval.getValue(keyPtr)
keyBuf = getStringBytes(keyPtrVal, keyLen)
} else if key.Type().TypeKind() == llvm.IntegerTypeKind {
keyBuf = make([]byte, v.Eval.TargetData.TypeAllocSize(key.Type()))
n := key.Value().ZExtValue()
for i := range keyBuf {
keyBuf[i] = byte(n)
n >>= 8
}
} else {
panic("interp: map key type not implemented: " + key.Type().String())
}
hash := v.hash(keyBuf)
if i%8 == 0 && i != 0 {
// Bucket is full, create a new one.
newBucketGlobal := v.newBucket()
zero := llvm.ConstInt(ctx.Int32Type(), 0, false)
newBucketPtr := llvm.ConstInBoundsGEP(newBucketGlobal, []llvm.Value{zero})
newBucketPtrCast := llvm.ConstBitCast(newBucketPtr, i8ptrType)
// insert pointer into old bucket
bucket := bucketGlobal.Initializer()
bucket = llvm.ConstInsertValue(bucket, newBucketPtrCast, []uint32{1})
bucketGlobal.SetInitializer(bucket)
// switch to next bucket
bucketGlobal = newBucketGlobal
}
tophashValue := llvm.ConstInt(ctx.Int8Type(), uint64(v.topHash(hash)), false)
bucket := bucketGlobal.Initializer()
bucket = llvm.ConstInsertValue(bucket, tophashValue, []uint32{0, uint32(i % 8)})
bucket = llvm.ConstInsertValue(bucket, llvmKey, []uint32{2, uint32(i % 8)})
bucket = llvm.ConstInsertValue(bucket, llvmValue, []uint32{3, uint32(i % 8)})
bucketGlobal.SetInitializer(bucket)
}
// Create the hashmap itself.
zero := llvm.ConstInt(ctx.Int32Type(), 0, false)
bucketPtr := llvm.ConstInBoundsGEP(firstBucketGlobal, []llvm.Value{zero})
hashmapType := v.Type()
hashmap := llvm.ConstNamedStruct(hashmapType, []llvm.Value{
llvm.ConstPointerNull(llvm.PointerType(hashmapType, 0)), // next
llvm.ConstBitCast(bucketPtr, i8ptrType), // buckets
llvm.ConstInt(hashmapType.StructElementTypes()[2], uint64(len(v.Keys)), false), // count
llvm.ConstInt(ctx.Int8Type(), uint64(v.KeySize), false), // keySize
llvm.ConstInt(ctx.Int8Type(), uint64(v.ValueSize), false), // valueSize
llvm.ConstInt(ctx.Int8Type(), 0, false), // bucketBits
})
// Create a pointer to this hashmap.
hashmapPtr := llvm.AddGlobal(v.Eval.Mod, hashmap.Type(), v.PkgName+"$map")
hashmapPtr.SetInitializer(hashmap)
hashmapPtr.SetLinkage(llvm.InternalLinkage)
hashmapPtr.SetUnnamedAddr(true)
v.Underlying = llvm.ConstInBoundsGEP(hashmapPtr, []llvm.Value{zero})
return v.Underlying
}
// Type returns type runtime.hashmap, which is the actual hashmap type.
func (v *MapValue) Type() llvm.Type {
return v.Eval.Mod.GetTypeByName("runtime.hashmap")
}
func (v *MapValue) IsConstant() bool {
return true // TODO: dirty maps
}
// Load panics: maps are of reference type so cannot be dereferenced.
func (v *MapValue) Load() llvm.Value {
panic("interp: load from a map")
}
// Store panics: maps are of reference type so cannot be stored to.
func (v *MapValue) Store(value llvm.Value) {
panic("interp: store on a map")
}
// GetElementPtr panics: maps are of reference type so their (interior)
// addresses cannot be calculated.
func (v *MapValue) GetElementPtr(indices []uint32) Value {
panic("interp: GEP on a map")
}
// PutString does a map assign operation, assuming that the map is of type
// map[string]T.
func (v *MapValue) PutString(keyBuf, keyLen, valPtr Value) {
if !v.Underlying.IsNil() {
panic("map already created")
}
var value llvm.Value
switch valPtr := valPtr.(type) {
case *PointerCastValue:
value = valPtr.Underlying.Load()
if v.ValueType.IsNil() {
v.ValueType = value.Type()
if int(v.Eval.TargetData.TypeAllocSize(v.ValueType)) != v.ValueSize {
panic("interp: map store value type has the wrong size")
}
} else {
if value.Type() != v.ValueType {
panic("interp: map store value type is inconsistent")
}
}
default:
panic("interp: todo: handle map value pointer")
}
keyType := v.Eval.Mod.GetTypeByName("runtime._string")
v.KeyType = keyType
key := getZeroValue(keyType)
key = llvm.ConstInsertValue(key, keyBuf.Value(), []uint32{0})
key = llvm.ConstInsertValue(key, keyLen.Value(), []uint32{1})
// TODO: avoid duplicate keys
v.Keys = append(v.Keys, &LocalValue{v.Eval, key})
v.Values = append(v.Values, &LocalValue{v.Eval, value})
}
// Get FNV-1a hash of this string.
//
// https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function#FNV-1a_hash
func (v *MapValue) hash(data []byte) uint32 {
var result uint32 = 2166136261 // FNV offset basis
for _, c := range data {
result ^= uint32(c)
result *= 16777619 // FNV prime
}
return result
}
// Get the topmost 8 bits of the hash, without using a special value (like 0).
func (v *MapValue) topHash(hash uint32) uint8 {
tophash := uint8(hash >> 24)
if tophash < 1 {
// 0 means empty slot, so make it bigger.
tophash += 1
}
return tophash
}
func (v *MapValue) String() string {
return "&MapValue{KeySize: " + strconv.Itoa(v.KeySize) + ", ValueSize: " + strconv.Itoa(v.ValueSize) + "}"
}