You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

345 lines
13 KiB

package compiler
// This file emits the correct map intrinsics for map operations.
import (
"go/token"
"go/types"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// constants for hashmap algorithms; must match src/runtime/hashmap.go
const (
hashmapAlgorithmBinary = iota
hashmapAlgorithmString
hashmapAlgorithmInterface
)
// createMakeMap creates a new map object (runtime.hashmap) by allocating and
// initializing an appropriately sized object.
func (b *builder) createMakeMap(expr *ssa.MakeMap) (llvm.Value, error) {
mapType := expr.Type().Underlying().(*types.Map)
keyType := mapType.Key().Underlying()
llvmValueType := b.getLLVMType(mapType.Elem().Underlying())
var llvmKeyType llvm.Type
var alg uint64 // must match values in src/runtime/hashmap.go
if t, ok := keyType.(*types.Basic); ok && t.Info()&types.IsString != 0 {
// String keys.
llvmKeyType = b.getLLVMType(keyType)
alg = hashmapAlgorithmString
} else if hashmapIsBinaryKey(keyType) {
// Trivially comparable keys.
llvmKeyType = b.getLLVMType(keyType)
alg = hashmapAlgorithmBinary
} else {
// All other keys. Implemented as map[interface{}]valueType for ease of
// implementation.
llvmKeyType = b.getLLVMRuntimeType("_interface")
alg = hashmapAlgorithmInterface
}
keySize := b.targetData.TypeAllocSize(llvmKeyType)
valueSize := b.targetData.TypeAllocSize(llvmValueType)
llvmKeySize := llvm.ConstInt(b.uintptrType, keySize, false)
llvmValueSize := llvm.ConstInt(b.uintptrType, valueSize, false)
sizeHint := llvm.ConstInt(b.uintptrType, 8, false)
algEnum := llvm.ConstInt(b.ctx.Int8Type(), alg, false)
if expr.Reserve != nil {
sizeHint = b.getValue(expr.Reserve, getPos(expr))
var err error
sizeHint, err = b.createConvert(expr.Reserve.Type(), types.Typ[types.Uintptr], sizeHint, expr.Pos())
if err != nil {
return llvm.Value{}, err
}
}
hashmap := b.createRuntimeCall("hashmapMake", []llvm.Value{llvmKeySize, llvmValueSize, sizeHint, algEnum}, "")
return hashmap, nil
}
// createMapLookup returns the value in a map. It calls a runtime function
// depending on the map key type to load the map value and its comma-ok value.
func (b *builder) createMapLookup(keyType, valueType types.Type, m, key llvm.Value, commaOk bool, pos token.Pos) (llvm.Value, error) {
llvmValueType := b.getLLVMType(valueType)
// Allocate the memory for the resulting type. Do not zero this memory: it
// will be zeroed by the hashmap get implementation if the key is not
// present in the map.
mapValueAlloca, mapValuePtr, mapValueAllocaSize := b.createTemporaryAlloca(llvmValueType, "hashmap.value")
// We need the map size (with type uintptr) to pass to the hashmap*Get
// functions. This is necessary because those *Get functions are valid on
// nil maps, and they'll need to zero the value pointer by that number of
// bytes.
mapValueSize := mapValueAllocaSize
if mapValueSize.Type().IntTypeWidth() > b.uintptrType.IntTypeWidth() {
mapValueSize = llvm.ConstTrunc(mapValueSize, b.uintptrType)
}
// Do the lookup. How it is done depends on the key type.
var commaOkValue llvm.Value
origKeyType := keyType
keyType = keyType.Underlying()
if t, ok := keyType.(*types.Basic); ok && t.Info()&types.IsString != 0 {
// key is a string
params := []llvm.Value{m, key, mapValuePtr, mapValueSize}
commaOkValue = b.createRuntimeCall("hashmapStringGet", params, "")
} else if hashmapIsBinaryKey(keyType) {
// key can be compared with runtime.memequal
// Store the key in an alloca, in the entry block to avoid dynamic stack
// growth.
mapKeyAlloca, mapKeyPtr, mapKeySize := b.createTemporaryAlloca(key.Type(), "hashmap.key")
b.CreateStore(key, mapKeyAlloca)
b.zeroUndefBytes(b.getLLVMType(keyType), mapKeyAlloca)
// Fetch the value from the hashmap.
params := []llvm.Value{m, mapKeyPtr, mapValuePtr, mapValueSize}
commaOkValue = b.createRuntimeCall("hashmapBinaryGet", params, "")
b.emitLifetimeEnd(mapKeyPtr, mapKeySize)
} else {
// Not trivially comparable using memcmp. Make it an interface instead.
itfKey := key
if _, ok := keyType.(*types.Interface); !ok {
// Not already an interface, so convert it to an interface now.
itfKey = b.createMakeInterface(key, origKeyType, pos)
}
params := []llvm.Value{m, itfKey, mapValuePtr, mapValueSize}
commaOkValue = b.createRuntimeCall("hashmapInterfaceGet", params, "")
}
// Load the resulting value from the hashmap. The value is set to the zero
// value if the key doesn't exist in the hashmap.
mapValue := b.CreateLoad(llvmValueType, mapValueAlloca, "")
b.emitLifetimeEnd(mapValuePtr, mapValueAllocaSize)
if commaOk {
tuple := llvm.Undef(b.ctx.StructType([]llvm.Type{llvmValueType, b.ctx.Int1Type()}, false))
tuple = b.CreateInsertValue(tuple, mapValue, 0, "")
tuple = b.CreateInsertValue(tuple, commaOkValue, 1, "")
return tuple, nil
} else {
return mapValue, nil
}
}
// createMapUpdate updates a map key to a given value, by creating an
// appropriate runtime call.
func (b *builder) createMapUpdate(keyType types.Type, m, key, value llvm.Value, pos token.Pos) {
valueAlloca, valuePtr, valueSize := b.createTemporaryAlloca(value.Type(), "hashmap.value")
b.CreateStore(value, valueAlloca)
origKeyType := keyType
keyType = keyType.Underlying()
if t, ok := keyType.(*types.Basic); ok && t.Info()&types.IsString != 0 {
// key is a string
params := []llvm.Value{m, key, valuePtr}
b.createRuntimeCall("hashmapStringSet", params, "")
} else if hashmapIsBinaryKey(keyType) {
// key can be compared with runtime.memequal
keyAlloca, keyPtr, keySize := b.createTemporaryAlloca(key.Type(), "hashmap.key")
b.CreateStore(key, keyAlloca)
b.zeroUndefBytes(b.getLLVMType(keyType), keyAlloca)
params := []llvm.Value{m, keyPtr, valuePtr}
b.createRuntimeCall("hashmapBinarySet", params, "")
b.emitLifetimeEnd(keyPtr, keySize)
} else {
// Key is not trivially comparable, so compare it as an interface instead.
itfKey := key
if _, ok := keyType.(*types.Interface); !ok {
// Not already an interface, so convert it to an interface first.
itfKey = b.createMakeInterface(key, origKeyType, pos)
}
params := []llvm.Value{m, itfKey, valuePtr}
b.createRuntimeCall("hashmapInterfaceSet", params, "")
}
b.emitLifetimeEnd(valuePtr, valueSize)
}
// createMapDelete deletes a key from a map by calling the appropriate runtime
// function. It is the implementation of the Go delete() builtin.
func (b *builder) createMapDelete(keyType types.Type, m, key llvm.Value, pos token.Pos) error {
origKeyType := keyType
keyType = keyType.Underlying()
if t, ok := keyType.(*types.Basic); ok && t.Info()&types.IsString != 0 {
// key is a string
params := []llvm.Value{m, key}
b.createRuntimeCall("hashmapStringDelete", params, "")
return nil
} else if hashmapIsBinaryKey(keyType) {
keyAlloca, keyPtr, keySize := b.createTemporaryAlloca(key.Type(), "hashmap.key")
b.CreateStore(key, keyAlloca)
b.zeroUndefBytes(b.getLLVMType(keyType), keyAlloca)
params := []llvm.Value{m, keyPtr}
b.createRuntimeCall("hashmapBinaryDelete", params, "")
b.emitLifetimeEnd(keyPtr, keySize)
return nil
} else {
// Key is not trivially comparable, so compare it as an interface
// instead.
itfKey := key
if _, ok := keyType.(*types.Interface); !ok {
// Not already an interface, so convert it to an interface first.
itfKey = b.createMakeInterface(key, origKeyType, pos)
}
params := []llvm.Value{m, itfKey}
b.createRuntimeCall("hashmapInterfaceDelete", params, "")
return nil
}
}
// createMapIteratorNext lowers the *ssa.Next instruction for iterating over a
// map. It returns a tuple of {bool, key, value} with the result of the
// iteration.
func (b *builder) createMapIteratorNext(rangeVal ssa.Value, llvmRangeVal, it llvm.Value) llvm.Value {
// Determine the type of the values to return from the *ssa.Next
// instruction. It is returned as {bool, keyType, valueType}.
keyType := rangeVal.Type().Underlying().(*types.Map).Key()
valueType := rangeVal.Type().Underlying().(*types.Map).Elem()
llvmKeyType := b.getLLVMType(keyType)
llvmValueType := b.getLLVMType(valueType)
// There is a special case in which keys are stored as an interface value
// instead of the value they normally are. This happens for non-trivially
// comparable types such as float32 or some structs.
isKeyStoredAsInterface := false
if t, ok := keyType.Underlying().(*types.Basic); ok && t.Info()&types.IsString != 0 {
// key is a string
} else if hashmapIsBinaryKey(keyType) {
// key can be compared with runtime.memequal
} else {
// The key is stored as an interface value, and may or may not be an
// interface type (for example, float32 keys are stored as an interface
// value).
if _, ok := keyType.Underlying().(*types.Interface); !ok {
isKeyStoredAsInterface = true
}
}
// Determine the type of the key as stored in the map.
llvmStoredKeyType := llvmKeyType
if isKeyStoredAsInterface {
llvmStoredKeyType = b.getLLVMRuntimeType("_interface")
}
// Extract the key and value from the map.
mapKeyAlloca, mapKeyPtr, mapKeySize := b.createTemporaryAlloca(llvmStoredKeyType, "range.key")
mapValueAlloca, mapValuePtr, mapValueSize := b.createTemporaryAlloca(llvmValueType, "range.value")
ok := b.createRuntimeCall("hashmapNext", []llvm.Value{llvmRangeVal, it, mapKeyPtr, mapValuePtr}, "range.next")
mapKey := b.CreateLoad(llvmStoredKeyType, mapKeyAlloca, "")
mapValue := b.CreateLoad(llvmValueType, mapValueAlloca, "")
if isKeyStoredAsInterface {
// The key is stored as an interface but it isn't of interface type.
// Extract the underlying value.
mapKey = b.extractValueFromInterface(mapKey, llvmKeyType)
}
// End the lifetimes of the allocas, because we're done with them.
b.emitLifetimeEnd(mapKeyPtr, mapKeySize)
b.emitLifetimeEnd(mapValuePtr, mapValueSize)
// Construct the *ssa.Next return value: {ok, mapKey, mapValue}
tuple := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.Int1Type(), llvmKeyType, llvmValueType}, false))
tuple = b.CreateInsertValue(tuple, ok, 0, "")
tuple = b.CreateInsertValue(tuple, mapKey, 1, "")
tuple = b.CreateInsertValue(tuple, mapValue, 2, "")
return tuple
}
// Returns true if this key type does not contain strings, interfaces etc., so
// can be compared with runtime.memequal. Note that padding bytes are undef
// and can alter two "equal" structs being equal when compared with memequal.
func hashmapIsBinaryKey(keyType types.Type) bool {
switch keyType := keyType.(type) {
case *types.Basic:
return keyType.Info()&(types.IsBoolean|types.IsInteger) != 0
case *types.Pointer:
return true
case *types.Struct:
for i := 0; i < keyType.NumFields(); i++ {
fieldType := keyType.Field(i).Type().Underlying()
if !hashmapIsBinaryKey(fieldType) {
return false
}
}
return true
case *types.Array:
return hashmapIsBinaryKey(keyType.Elem())
case *types.Named:
return hashmapIsBinaryKey(keyType.Underlying())
default:
return false
}
}
func (b *builder) zeroUndefBytes(llvmType llvm.Type, ptr llvm.Value) error {
// We know that hashmapIsBinaryKey is true, so we only have to handle those types that can show up there.
// To zero all undefined bytes, we iterate over all the fields in the type. For each element, compute the
// offset of that element. If it's Basic type, there are no internal padding bytes. For compound types, we recurse to ensure
// we handle nested types. Next, we determine if there are any padding bytes before the next
// element and zero those as well.
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
switch llvmType.TypeKind() {
case llvm.IntegerTypeKind:
// no padding bytes
return nil
case llvm.PointerTypeKind:
// mo padding bytes
return nil
case llvm.ArrayTypeKind:
llvmArrayType := llvmType
llvmElemType := llvmType.ElementType()
for i := 0; i < llvmArrayType.ArrayLength(); i++ {
idx := llvm.ConstInt(b.uintptrType, uint64(i), false)
elemPtr := b.CreateInBoundsGEP(llvmArrayType, ptr, []llvm.Value{zero, idx}, "")
// zero any padding bytes in this element
b.zeroUndefBytes(llvmElemType, elemPtr)
}
case llvm.StructTypeKind:
llvmStructType := llvmType
numFields := llvmStructType.StructElementTypesCount()
llvmElementTypes := llvmStructType.StructElementTypes()
for i := 0; i < numFields; i++ {
idx := llvm.ConstInt(b.ctx.Int32Type(), uint64(i), false)
elemPtr := b.CreateInBoundsGEP(llvmStructType, ptr, []llvm.Value{zero, idx}, "")
// zero any padding bytes in this field
llvmElemType := llvmElementTypes[i]
b.zeroUndefBytes(llvmElemType, elemPtr)
// zero any padding bytes before the next field, if any
offset := b.targetData.ElementOffset(llvmStructType, i)
storeSize := b.targetData.TypeStoreSize(llvmElemType)
fieldEndOffset := offset + storeSize
var nextOffset uint64
if i < numFields-1 {
nextOffset = b.targetData.ElementOffset(llvmStructType, i+1)
} else {
// Last field? Next offset is the total size of the allcoate struct.
nextOffset = b.targetData.TypeAllocSize(llvmStructType)
}
if fieldEndOffset != nextOffset {
n := llvm.ConstInt(b.uintptrType, nextOffset-fieldEndOffset, false)
llvmStoreSize := llvm.ConstInt(b.uintptrType, storeSize, false)
gepPtr := elemPtr
if gepPtr.Type() != b.i8ptrType {
gepPtr = b.CreateBitCast(gepPtr, b.i8ptrType, "") // LLVM 14
}
paddingStart := b.CreateInBoundsGEP(b.ctx.Int8Type(), gepPtr, []llvm.Value{llvmStoreSize}, "")
if paddingStart.Type() != b.i8ptrType {
paddingStart = b.CreateBitCast(paddingStart, b.i8ptrType, "") // LLVM 14
}
b.createRuntimeCall("memzero", []llvm.Value{paddingStart, n}, "")
}
}
}
return nil
}