You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

2860 lines
102 KiB

package compiler
import (
"debug/dwarf"
"errors"
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
"math/bits"
"path/filepath"
"sort"
"strconv"
"strings"
"github.com/tinygo-org/tinygo/compiler/llvmutil"
"github.com/tinygo-org/tinygo/loader"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
func init() {
llvm.InitializeAllTargets()
llvm.InitializeAllTargetMCs()
llvm.InitializeAllTargetInfos()
llvm.InitializeAllAsmParsers()
llvm.InitializeAllAsmPrinters()
}
// Config is the configuration for the compiler. Most settings should be copied
// directly from compileopts.Config, it recreated here to decouple the compiler
// package a bit and because it makes caching easier.
//
// This struct can be used for caching: if one of the flags here changes the
// code must be recompiled.
type Config struct {
// Target and output information.
Triple string
CPU string
Features string
GOOS string
GOARCH string
CodeModel string
RelocationModel string
SizeLevel int
// Various compiler options that determine how code is generated.
Scheduler string
AutomaticStackSize bool
DefaultStackSize uint64
NeedsStackObjects bool
Debug bool // Whether to emit debug information in the LLVM module.
}
// compilerContext contains function-independent data that should still be
// available while compiling every function. It is not strictly read-only, but
// must not contain function-dependent data such as an IR builder.
type compilerContext struct {
*Config
DumpSSA bool
mod llvm.Module
ctx llvm.Context
dibuilder *llvm.DIBuilder
cu llvm.Metadata
difiles map[string]llvm.Metadata
ditypes map[types.Type]llvm.Metadata
llvmTypes map[types.Type]llvm.Type
machine llvm.TargetMachine
targetData llvm.TargetData
intType llvm.Type
i8ptrType llvm.Type // for convenience
rawVoidFuncType llvm.Type // for convenience
funcPtrAddrSpace int
uintptrType llvm.Type
program *ssa.Program
diagnostics []error
astComments map[string]*ast.CommentGroup
pkg *types.Package
packageDir string // directory for this package
runtimePkg *types.Package
}
// newCompilerContext returns a new compiler context ready for use, most
// importantly with a newly created LLVM context and module.
func newCompilerContext(moduleName string, machine llvm.TargetMachine, config *Config, dumpSSA bool) *compilerContext {
c := &compilerContext{
Config: config,
DumpSSA: dumpSSA,
difiles: make(map[string]llvm.Metadata),
ditypes: make(map[types.Type]llvm.Metadata),
llvmTypes: make(map[types.Type]llvm.Type),
machine: machine,
targetData: machine.CreateTargetData(),
astComments: map[string]*ast.CommentGroup{},
}
c.ctx = llvm.NewContext()
c.mod = c.ctx.NewModule(moduleName)
c.mod.SetTarget(config.Triple)
c.mod.SetDataLayout(c.targetData.String())
if c.Debug {
c.dibuilder = llvm.NewDIBuilder(c.mod)
}
c.uintptrType = c.ctx.IntType(c.targetData.PointerSize() * 8)
if c.targetData.PointerSize() <= 4 {
// 8, 16, 32 bits targets
c.intType = c.ctx.Int32Type()
} else if c.targetData.PointerSize() == 8 {
// 64 bits target
c.intType = c.ctx.Int64Type()
} else {
panic("unknown pointer size")
}
c.i8ptrType = llvm.PointerType(c.ctx.Int8Type(), 0)
dummyFuncType := llvm.FunctionType(c.ctx.VoidType(), nil, false)
dummyFunc := llvm.AddFunction(c.mod, "tinygo.dummy", dummyFuncType)
c.funcPtrAddrSpace = dummyFunc.Type().PointerAddressSpace()
c.rawVoidFuncType = dummyFunc.Type()
dummyFunc.EraseFromParentAsFunction()
return c
}
// builder contains all information relevant to build a single function.
type builder struct {
*compilerContext
llvm.Builder
fn *ssa.Function
llvmFn llvm.Value
info functionInfo
locals map[ssa.Value]llvm.Value // local variables
blockEntries map[*ssa.BasicBlock]llvm.BasicBlock // a *ssa.BasicBlock may be split up
blockExits map[*ssa.BasicBlock]llvm.BasicBlock // these are the exit blocks
currentBlock *ssa.BasicBlock
phis []phiNode
deferPtr llvm.Value
difunc llvm.Metadata
dilocals map[*types.Var]llvm.Metadata
initInlinedAt llvm.Metadata // fake inlinedAt position
initPseudoFuncs map[string]llvm.Metadata // fake "inlined" functions for proper init debug locations
allDeferFuncs []interface{}
deferFuncs map[*ssa.Function]int
deferInvokeFuncs map[string]int
deferClosureFuncs map[*ssa.Function]int
deferExprFuncs map[ssa.Value]int
selectRecvBuf map[*ssa.Select]llvm.Value
deferBuiltinFuncs map[ssa.Value]deferBuiltin
}
func newBuilder(c *compilerContext, irbuilder llvm.Builder, f *ssa.Function) *builder {
return &builder{
compilerContext: c,
Builder: irbuilder,
fn: f,
llvmFn: c.getFunction(f),
info: c.getFunctionInfo(f),
locals: make(map[ssa.Value]llvm.Value),
dilocals: make(map[*types.Var]llvm.Metadata),
blockEntries: make(map[*ssa.BasicBlock]llvm.BasicBlock),
blockExits: make(map[*ssa.BasicBlock]llvm.BasicBlock),
}
}
type deferBuiltin struct {
callName string
pos token.Pos
argTypes []types.Type
callback int
}
type phiNode struct {
ssa *ssa.Phi
llvm llvm.Value
}
// NewTargetMachine returns a new llvm.TargetMachine based on the passed-in
// configuration. It is used by the compiler and is needed for machine code
// emission.
func NewTargetMachine(config *Config) (llvm.TargetMachine, error) {
target, err := llvm.GetTargetFromTriple(config.Triple)
if err != nil {
return llvm.TargetMachine{}, err
}
var codeModel llvm.CodeModel
var relocationModel llvm.RelocMode
switch config.CodeModel {
case "default":
codeModel = llvm.CodeModelDefault
case "tiny":
codeModel = llvm.CodeModelTiny
case "small":
codeModel = llvm.CodeModelSmall
case "kernel":
codeModel = llvm.CodeModelKernel
case "medium":
codeModel = llvm.CodeModelMedium
case "large":
codeModel = llvm.CodeModelLarge
}
switch config.RelocationModel {
case "static":
relocationModel = llvm.RelocStatic
case "pic":
relocationModel = llvm.RelocPIC
case "dynamicnopic":
relocationModel = llvm.RelocDynamicNoPic
}
machine := target.CreateTargetMachine(config.Triple, config.CPU, config.Features, llvm.CodeGenLevelDefault, relocationModel, codeModel)
return machine, nil
}
// Sizes returns a types.Sizes appropriate for the given target machine. It
// includes the correct int size and aligment as is necessary for the Go
// typechecker.
func Sizes(machine llvm.TargetMachine) types.Sizes {
targetData := machine.CreateTargetData()
defer targetData.Dispose()
var intWidth int
if targetData.PointerSize() <= 4 {
// 8, 16, 32 bits targets
intWidth = 32
} else if targetData.PointerSize() == 8 {
// 64 bits target
intWidth = 64
} else {
panic("unknown pointer size")
}
return &stdSizes{
IntSize: int64(intWidth / 8),
PtrSize: int64(targetData.PointerSize()),
MaxAlign: int64(targetData.PrefTypeAlignment(targetData.IntPtrType())),
}
}
// CompilePackage compiles a single package to a LLVM module.
func CompilePackage(moduleName string, pkg *loader.Package, ssaPkg *ssa.Package, machine llvm.TargetMachine, config *Config, dumpSSA bool) (llvm.Module, []error) {
c := newCompilerContext(moduleName, machine, config, dumpSSA)
c.packageDir = pkg.OriginalDir()
c.pkg = pkg.Pkg
c.runtimePkg = ssaPkg.Prog.ImportedPackage("runtime").Pkg
c.program = ssaPkg.Prog
// Convert AST to SSA.
ssaPkg.Build()
// Initialize debug information.
if c.Debug {
c.cu = c.dibuilder.CreateCompileUnit(llvm.DICompileUnit{
Language: 0xb, // DW_LANG_C99 (0xc, off-by-one?)
File: "<unknown>",
Dir: "",
Producer: "TinyGo",
Optimized: true,
})
}
// Load comments such as //go:extern on globals.
c.loadASTComments(pkg)
// Predeclare the runtime.alloc function, which is used by the wordpack
// functionality.
c.getFunction(c.program.ImportedPackage("runtime").Members["alloc"].(*ssa.Function))
if c.NeedsStackObjects {
// Predeclare trackPointer, which is used everywhere we use runtime.alloc.
c.getFunction(c.program.ImportedPackage("runtime").Members["trackPointer"].(*ssa.Function))
}
// Compile all functions, methods, and global variables in this package.
irbuilder := c.ctx.NewBuilder()
defer irbuilder.Dispose()
c.createPackage(irbuilder, ssaPkg)
// see: https://reviews.llvm.org/D18355
if c.Debug {
c.mod.AddNamedMetadataOperand("llvm.module.flags",
c.ctx.MDNode([]llvm.Metadata{
llvm.ConstInt(c.ctx.Int32Type(), 2, false).ConstantAsMetadata(), // Warning on mismatch
c.ctx.MDString("Debug Info Version"),
llvm.ConstInt(c.ctx.Int32Type(), 3, false).ConstantAsMetadata(), // DWARF version
}),
)
c.mod.AddNamedMetadataOperand("llvm.module.flags",
c.ctx.MDNode([]llvm.Metadata{
llvm.ConstInt(c.ctx.Int32Type(), 7, false).ConstantAsMetadata(), // Max on mismatch
c.ctx.MDString("Dwarf Version"),
llvm.ConstInt(c.ctx.Int32Type(), 4, false).ConstantAsMetadata(),
}),
)
c.dibuilder.Finalize()
}
return c.mod, c.diagnostics
}
// getLLVMRuntimeType obtains a named type from the runtime package and returns
// it as a LLVM type, creating it if necessary. It is a shorthand for
// getLLVMType(getRuntimeType(name)).
func (c *compilerContext) getLLVMRuntimeType(name string) llvm.Type {
typ := c.runtimePkg.Scope().Lookup(name).(*types.TypeName).Type()
return c.getLLVMType(typ)
}
// getLLVMType returns a LLVM type for a Go type. It doesn't recreate already
// created types. This is somewhat important for performance, but especially
// important for named struct types (which should only be created once).
func (c *compilerContext) getLLVMType(goType types.Type) llvm.Type {
// Try to load the LLVM type from the cache.
if t, ok := c.llvmTypes[goType]; ok {
return t
}
// Not already created, so adding this type to the cache.
llvmType := c.makeLLVMType(goType)
c.llvmTypes[goType] = llvmType
return llvmType
}
// makeLLVMType creates a LLVM type for a Go type. Don't call this, use
// getLLVMType instead.
func (c *compilerContext) makeLLVMType(goType types.Type) llvm.Type {
switch typ := goType.(type) {
case *types.Array:
elemType := c.getLLVMType(typ.Elem())
return llvm.ArrayType(elemType, int(typ.Len()))
case *types.Basic:
switch typ.Kind() {
case types.Bool, types.UntypedBool:
return c.ctx.Int1Type()
case types.Int8, types.Uint8:
return c.ctx.Int8Type()
case types.Int16, types.Uint16:
return c.ctx.Int16Type()
case types.Int32, types.Uint32:
return c.ctx.Int32Type()
case types.Int, types.Uint:
return c.intType
case types.Int64, types.Uint64:
return c.ctx.Int64Type()
case types.Float32:
return c.ctx.FloatType()
case types.Float64:
return c.ctx.DoubleType()
case types.Complex64:
return c.ctx.StructType([]llvm.Type{c.ctx.FloatType(), c.ctx.FloatType()}, false)
case types.Complex128:
return c.ctx.StructType([]llvm.Type{c.ctx.DoubleType(), c.ctx.DoubleType()}, false)
case types.String, types.UntypedString:
return c.getLLVMRuntimeType("_string")
case types.Uintptr:
return c.uintptrType
case types.UnsafePointer:
return c.i8ptrType
default:
panic("unknown basic type: " + typ.String())
}
case *types.Chan:
return llvm.PointerType(c.getLLVMRuntimeType("channel"), 0)
case *types.Interface:
return c.getLLVMRuntimeType("_interface")
case *types.Map:
return llvm.PointerType(c.getLLVMRuntimeType("hashmap"), 0)
case *types.Named:
if st, ok := typ.Underlying().(*types.Struct); ok {
// Structs are a special case. While other named types are ignored
// in LLVM IR, named structs are implemented as named structs in
// LLVM. This is because it is otherwise impossible to create
// self-referencing types such as linked lists.
llvmName := typ.Obj().Pkg().Path() + "." + typ.Obj().Name()
llvmType := c.ctx.StructCreateNamed(llvmName)
c.llvmTypes[goType] = llvmType // avoid infinite recursion
underlying := c.getLLVMType(st)
llvmType.StructSetBody(underlying.StructElementTypes(), false)
return llvmType
}
return c.getLLVMType(typ.Underlying())
case *types.Pointer:
ptrTo := c.getLLVMType(typ.Elem())
return llvm.PointerType(ptrTo, 0)
case *types.Signature: // function value
return c.getFuncType(typ)
case *types.Slice:
elemType := c.getLLVMType(typ.Elem())
members := []llvm.Type{
llvm.PointerType(elemType, 0),
c.uintptrType, // len
c.uintptrType, // cap
}
return c.ctx.StructType(members, false)
case *types.Struct:
members := make([]llvm.Type, typ.NumFields())
for i := 0; i < typ.NumFields(); i++ {
members[i] = c.getLLVMType(typ.Field(i).Type())
}
return c.ctx.StructType(members, false)
case *types.Tuple:
members := make([]llvm.Type, typ.Len())
for i := 0; i < typ.Len(); i++ {
members[i] = c.getLLVMType(typ.At(i).Type())
}
return c.ctx.StructType(members, false)
default:
panic("unknown type: " + goType.String())
}
}
// Is this a pointer type of some sort? Can be unsafe.Pointer or any *T pointer.
func isPointer(typ types.Type) bool {
if _, ok := typ.(*types.Pointer); ok {
return true
} else if typ, ok := typ.(*types.Basic); ok && typ.Kind() == types.UnsafePointer {
return true
} else {
return false
}
}
// Get the DWARF type for this Go type.
func (c *compilerContext) getDIType(typ types.Type) llvm.Metadata {
if md, ok := c.ditypes[typ]; ok {
return md
}
md := c.createDIType(typ)
c.ditypes[typ] = md
return md
}
// createDIType creates a new DWARF type. Don't call this function directly,
// call getDIType instead.
func (c *compilerContext) createDIType(typ types.Type) llvm.Metadata {
llvmType := c.getLLVMType(typ)
sizeInBytes := c.targetData.TypeAllocSize(llvmType)
switch typ := typ.(type) {
case *types.Array:
return c.dibuilder.CreateArrayType(llvm.DIArrayType{
SizeInBits: sizeInBytes * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
ElementType: c.getDIType(typ.Elem()),
Subscripts: []llvm.DISubrange{
{
Lo: 0,
Count: typ.Len(),
},
},
})
case *types.Basic:
var encoding llvm.DwarfTypeEncoding
if typ.Info()&types.IsBoolean != 0 {
encoding = llvm.DW_ATE_boolean
} else if typ.Info()&types.IsFloat != 0 {
encoding = llvm.DW_ATE_float
} else if typ.Info()&types.IsComplex != 0 {
encoding = llvm.DW_ATE_complex_float
} else if typ.Info()&types.IsUnsigned != 0 {
encoding = llvm.DW_ATE_unsigned
} else if typ.Info()&types.IsInteger != 0 {
encoding = llvm.DW_ATE_signed
} else if typ.Kind() == types.UnsafePointer {
return c.dibuilder.CreatePointerType(llvm.DIPointerType{
Name: "unsafe.Pointer",
SizeInBits: c.targetData.TypeAllocSize(llvmType) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
AddressSpace: 0,
})
} else if typ.Info()&types.IsString != 0 {
return c.dibuilder.CreateStructType(llvm.Metadata{}, llvm.DIStructType{
Name: "string",
SizeInBits: sizeInBytes * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
Elements: []llvm.Metadata{
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "ptr",
SizeInBits: c.targetData.TypeAllocSize(c.i8ptrType) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(c.i8ptrType)) * 8,
OffsetInBits: 0,
Type: c.getDIType(types.NewPointer(types.Typ[types.Byte])),
}),
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "len",
SizeInBits: c.targetData.TypeAllocSize(c.uintptrType) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(c.uintptrType)) * 8,
OffsetInBits: c.targetData.ElementOffset(llvmType, 1) * 8,
Type: c.getDIType(types.Typ[types.Uintptr]),
}),
},
})
} else {
panic("unknown basic type")
}
return c.dibuilder.CreateBasicType(llvm.DIBasicType{
Name: typ.String(),
SizeInBits: sizeInBytes * 8,
Encoding: encoding,
})
case *types.Chan:
return c.getDIType(types.NewPointer(c.program.ImportedPackage("runtime").Members["channel"].(*ssa.Type).Type()))
case *types.Interface:
return c.getDIType(c.program.ImportedPackage("runtime").Members["_interface"].(*ssa.Type).Type())
case *types.Map:
return c.getDIType(types.NewPointer(c.program.ImportedPackage("runtime").Members["hashmap"].(*ssa.Type).Type()))
case *types.Named:
return c.dibuilder.CreateTypedef(llvm.DITypedef{
Type: c.getDIType(typ.Underlying()),
Name: typ.String(),
})
case *types.Pointer:
return c.dibuilder.CreatePointerType(llvm.DIPointerType{
Pointee: c.getDIType(typ.Elem()),
SizeInBits: c.targetData.TypeAllocSize(llvmType) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
AddressSpace: 0,
})
case *types.Signature:
// actually a closure
fields := llvmType.StructElementTypes()
return c.dibuilder.CreateStructType(llvm.Metadata{}, llvm.DIStructType{
SizeInBits: sizeInBytes * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
Elements: []llvm.Metadata{
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "context",
SizeInBits: c.targetData.TypeAllocSize(fields[1]) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(fields[1])) * 8,
OffsetInBits: 0,
Type: c.getDIType(types.Typ[types.UnsafePointer]),
}),
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "fn",
SizeInBits: c.targetData.TypeAllocSize(fields[0]) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(fields[0])) * 8,
OffsetInBits: c.targetData.ElementOffset(llvmType, 1) * 8,
Type: c.getDIType(types.Typ[types.UnsafePointer]),
}),
},
})
case *types.Slice:
fields := llvmType.StructElementTypes()
return c.dibuilder.CreateStructType(llvm.Metadata{}, llvm.DIStructType{
Name: typ.String(),
SizeInBits: sizeInBytes * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
Elements: []llvm.Metadata{
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "ptr",
SizeInBits: c.targetData.TypeAllocSize(fields[0]) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(fields[0])) * 8,
OffsetInBits: 0,
Type: c.getDIType(types.NewPointer(typ.Elem())),
}),
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "len",
SizeInBits: c.targetData.TypeAllocSize(c.uintptrType) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(c.uintptrType)) * 8,
OffsetInBits: c.targetData.ElementOffset(llvmType, 1) * 8,
Type: c.getDIType(types.Typ[types.Uintptr]),
}),
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "cap",
SizeInBits: c.targetData.TypeAllocSize(c.uintptrType) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(c.uintptrType)) * 8,
OffsetInBits: c.targetData.ElementOffset(llvmType, 2) * 8,
Type: c.getDIType(types.Typ[types.Uintptr]),
}),
},
})
case *types.Struct:
// Placeholder metadata node, to be replaced afterwards.
temporaryMDNode := c.dibuilder.CreateReplaceableCompositeType(llvm.Metadata{}, llvm.DIReplaceableCompositeType{
Tag: dwarf.TagStructType,
SizeInBits: sizeInBytes * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
})
c.ditypes[typ] = temporaryMDNode
elements := make([]llvm.Metadata, typ.NumFields())
for i := range elements {
field := typ.Field(i)
fieldType := field.Type()
llvmField := c.getLLVMType(fieldType)
elements[i] = c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: field.Name(),
SizeInBits: c.targetData.TypeAllocSize(llvmField) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmField)) * 8,
OffsetInBits: c.targetData.ElementOffset(llvmType, i) * 8,
Type: c.getDIType(fieldType),
})
}
md := c.dibuilder.CreateStructType(llvm.Metadata{}, llvm.DIStructType{
SizeInBits: sizeInBytes * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
Elements: elements,
})
temporaryMDNode.ReplaceAllUsesWith(md)
return md
default:
panic("unknown type while generating DWARF debug type: " + typ.String())
}
}
// setDebugLocation sets the current debug location for the builder.
func (b *builder) setDebugLocation(pos token.Pos) {
if pos == token.NoPos {
// No debug information available for this instruction.
b.SetCurrentDebugLocation(0, 0, b.difunc, llvm.Metadata{})
return
}
position := b.program.Fset.Position(pos)
if b.fn.Synthetic == "package initializer" {
// Package initializers are treated specially, because while individual
// Go SSA instructions have file/line/col information, the parent
// function does not. LLVM doesn't store filename information per
// instruction, only per function. We work around this difference by
// creating a fake DIFunction for each Go file and say that the
// instruction really came from that (fake) function but was inlined in
// the package initializer function.
position := b.program.Fset.Position(pos)
name := filepath.Base(position.Filename)
difunc, ok := b.initPseudoFuncs[name]
if !ok {
diFuncType := b.dibuilder.CreateSubroutineType(llvm.DISubroutineType{
File: b.getDIFile(position.Filename),
})
difunc = b.dibuilder.CreateFunction(b.getDIFile(position.Filename), llvm.DIFunction{
Name: b.fn.RelString(nil) + "#" + name,
File: b.getDIFile(position.Filename),
Line: 0,
Type: diFuncType,
LocalToUnit: true,
IsDefinition: true,
ScopeLine: 0,
Flags: llvm.FlagPrototyped,
Optimized: true,
})
b.initPseudoFuncs[name] = difunc
}
b.SetCurrentDebugLocation(uint(position.Line), uint(position.Column), difunc, b.initInlinedAt)
return
}
// Regular debug information.
b.SetCurrentDebugLocation(uint(position.Line), uint(position.Column), b.difunc, llvm.Metadata{})
}
// getLocalVariable returns a debug info entry for a local variable, which may
// either be a parameter or a regular variable. It will create a new metadata
// entry if there isn't one for the variable yet.
func (b *builder) getLocalVariable(variable *types.Var) llvm.Metadata {
if dilocal, ok := b.dilocals[variable]; ok {
// DILocalVariable was already created, return it directly.
return dilocal
}
pos := b.program.Fset.Position(variable.Pos())
// Check whether this is a function parameter.
for i, param := range b.fn.Params {
if param.Object().(*types.Var) == variable {
// Yes it is, create it as a function parameter.
dilocal := b.dibuilder.CreateParameterVariable(b.difunc, llvm.DIParameterVariable{
Name: param.Name(),
File: b.getDIFile(pos.Filename),
Line: pos.Line,
Type: b.getDIType(variable.Type()),
AlwaysPreserve: true,
ArgNo: i + 1,
})
b.dilocals[variable] = dilocal
return dilocal
}
}
// No, it's not a parameter. Create a regular (auto) variable.
dilocal := b.dibuilder.CreateAutoVariable(b.difunc, llvm.DIAutoVariable{
Name: variable.Name(),
File: b.getDIFile(pos.Filename),
Line: pos.Line,
Type: b.getDIType(variable.Type()),
AlwaysPreserve: true,
})
b.dilocals[variable] = dilocal
return dilocal
}
// attachDebugInfo adds debug info to a function declaration. It returns the
// DISubprogram metadata node.
func (c *compilerContext) attachDebugInfo(f *ssa.Function) llvm.Metadata {
pos := c.program.Fset.Position(f.Syntax().Pos())
return c.attachDebugInfoRaw(f, c.getFunction(f), "", pos.Filename, pos.Line)
}
// attachDebugInfo adds debug info to a function declaration. It returns the
// DISubprogram metadata node. This method allows some more control over how
// debug info is added to the function.
func (c *compilerContext) attachDebugInfoRaw(f *ssa.Function, llvmFn llvm.Value, suffix, filename string, line int) llvm.Metadata {
// Debug info for this function.
params := getParams(f.Signature)
diparams := make([]llvm.Metadata, 0, len(params))
for _, param := range params {
diparams = append(diparams, c.getDIType(param.Type()))
}
diFuncType := c.dibuilder.CreateSubroutineType(llvm.DISubroutineType{
File: c.getDIFile(filename),
Parameters: diparams,
Flags: 0, // ?
})
difunc := c.dibuilder.CreateFunction(c.getDIFile(filename), llvm.DIFunction{
Name: f.RelString(nil) + suffix,
LinkageName: c.getFunctionInfo(f).linkName + suffix,
File: c.getDIFile(filename),
Line: line,
Type: diFuncType,
LocalToUnit: true,
IsDefinition: true,
ScopeLine: 0,
Flags: llvm.FlagPrototyped,
Optimized: true,
})
llvmFn.SetSubprogram(difunc)
return difunc
}
// getDIFile returns a DIFile metadata node for the given filename. It tries to
// use one that was already created, otherwise it falls back to creating a new
// one.
func (c *compilerContext) getDIFile(filename string) llvm.Metadata {
if _, ok := c.difiles[filename]; !ok {
dir, file := filepath.Split(filename)
if dir != "" {
dir = dir[:len(dir)-1]
}
c.difiles[filename] = c.dibuilder.CreateFile(file, dir)
}
return c.difiles[filename]
}
// createPackage builds the LLVM IR for all types, methods, and global variables
// in the given package.
func (c *compilerContext) createPackage(irbuilder llvm.Builder, pkg *ssa.Package) {
// Sort by position, so that the order of the functions in the IR matches
// the order of functions in the source file. This is useful for testing,
// for example.
var members []string
for name := range pkg.Members {
members = append(members, name)
}
sort.Slice(members, func(i, j int) bool {
iPos := pkg.Members[members[i]].Pos()
jPos := pkg.Members[members[j]].Pos()
if i == j {
// Cannot sort by pos, so do it by name.
return members[i] < members[j]
}
return iPos < jPos
})
// Define all functions.
for _, name := range members {
member := pkg.Members[name]
switch member := member.(type) {
case *ssa.Function:
// Create the function definition.
b := newBuilder(c, irbuilder, member)
if member.Blocks == nil {
continue // external function
}
b.createFunction()
case *ssa.Type:
if types.IsInterface(member.Type()) {
// Interfaces don't have concrete methods.
continue
}
// Named type. We should make sure all methods are created.
// This includes both functions with pointer receivers and those
// without.
methods := getAllMethods(pkg.Prog, member.Type())
methods = append(methods, getAllMethods(pkg.Prog, types.NewPointer(member.Type()))...)
for _, method := range methods {
// Parse this method.
fn := pkg.Prog.MethodValue(method)
if fn.Blocks == nil {
continue // external function
}
if member.Type().String() != member.String() {
// This is a member on a type alias. Do not build such a
// function.
continue
}
if fn.Synthetic != "" && fn.Synthetic != "package initializer" {
// This function is a kind of wrapper function (created by
// the ssa package, not appearing in the source code) that
// is created by the getFunction method as needed.
// Therefore, don't build it here to avoid "function
// redeclared" errors.
continue
}
// Create the function definition.
b := newBuilder(c, irbuilder, fn)
b.createFunction()
}
case *ssa.Global:
// Global variable.
info := c.getGlobalInfo(member)
global := c.getGlobal(member)
if !info.extern {
global.SetInitializer(llvm.ConstNull(global.Type().ElementType()))
global.SetVisibility(llvm.HiddenVisibility)
if info.section != "" {
global.SetSection(info.section)
}
}
}
}
// Add forwarding functions for functions that would otherwise be
// implemented in assembly.
for _, name := range members {
member := pkg.Members[name]
switch member := member.(type) {
case *ssa.Function:
if member.Blocks != nil {
continue // external function
}
info := c.getFunctionInfo(member)
if aliasName, ok := stdlibAliases[info.linkName]; ok {
alias := c.mod.NamedFunction(aliasName)
if alias.IsNil() {
// Shouldn't happen, but perhaps best to just ignore.
// The error will be a link error, if there is an error.
continue
}
b := newBuilder(c, irbuilder, member)
b.createAlias(alias)
}
}
}
}
// createFunction builds the LLVM IR implementation for this function. The
// function must not yet be defined, otherwise this function will create a
// diagnostic.
func (b *builder) createFunction() {
if b.DumpSSA {
fmt.Printf("\nfunc %s:\n", b.fn)
}
if !b.llvmFn.IsDeclaration() {
errValue := b.llvmFn.Name() + " redeclared in this program"
fnPos := getPosition(b.llvmFn)
if fnPos.IsValid() {
errValue += "\n\tprevious declaration at " + fnPos.String()
}
b.addError(b.fn.Pos(), errValue)
return
}
b.addStandardDefinedAttributes(b.llvmFn)
if !b.info.exported {
b.llvmFn.SetVisibility(llvm.HiddenVisibility)
b.llvmFn.SetUnnamedAddr(true)
}
if b.info.section != "" {
b.llvmFn.SetSection(b.info.section)
}
if b.info.exported && strings.HasPrefix(b.Triple, "wasm") {
// Set the exported name. This is necessary for WebAssembly because
// otherwise the function is not exported.
functionAttr := b.ctx.CreateStringAttribute("wasm-export-name", b.info.linkName)
b.llvmFn.AddFunctionAttr(functionAttr)
}
// Some functions have a pragma controlling the inlining level.
switch b.info.inline {
case inlineHint:
// Add LLVM inline hint to functions with //go:inline pragma.
inline := b.ctx.CreateEnumAttribute(llvm.AttributeKindID("inlinehint"), 0)
b.llvmFn.AddFunctionAttr(inline)
case inlineNone:
// Add LLVM attribute to always avoid inlining this function.
noinline := b.ctx.CreateEnumAttribute(llvm.AttributeKindID("noinline"), 0)
b.llvmFn.AddFunctionAttr(noinline)
}
if b.info.interrupt {
// Mark this function as an interrupt.
// This is necessary on MCUs that don't push caller saved registers when
// entering an interrupt, such as on AVR.
if strings.HasPrefix(b.Triple, "avr") {
b.llvmFn.AddFunctionAttr(b.ctx.CreateStringAttribute("signal", ""))
} else {
b.addError(b.fn.Pos(), "//go:interrupt not supported on this architecture")
}
}
// Add debug info, if needed.
if b.Debug {
if b.fn.Synthetic == "package initializer" {
// Package initializer functions have no debug info. Create some
// fake debug info to at least have *something*.
b.difunc = b.attachDebugInfoRaw(b.fn, b.llvmFn, "", b.packageDir, 0)
} else if b.fn.Syntax() != nil {
// Create debug info file if needed.
b.difunc = b.attachDebugInfo(b.fn)
}
b.setDebugLocation(b.fn.Pos())
}
// Pre-create all basic blocks in the function.
for _, block := range b.fn.DomPreorder() {
llvmBlock := b.ctx.AddBasicBlock(b.llvmFn, block.Comment)
b.blockEntries[block] = llvmBlock
b.blockExits[block] = llvmBlock
}
entryBlock := b.blockEntries[b.fn.Blocks[0]]
b.SetInsertPointAtEnd(entryBlock)
if b.fn.Synthetic == "package initializer" {
b.initPseudoFuncs = make(map[string]llvm.Metadata)
// Create a fake 'inlined at' metadata node.
// See setDebugLocation for details.
alloca := b.CreateAlloca(b.uintptrType, "")
b.initInlinedAt = alloca.InstructionDebugLoc()
alloca.EraseFromParentAsInstruction()
}
// Load function parameters
llvmParamIndex := 0
for _, param := range b.fn.Params {
llvmType := b.getLLVMType(param.Type())
fields := make([]llvm.Value, 0, 1)
for _, info := range b.expandFormalParamType(llvmType, param.Name(), param.Type()) {
param := b.llvmFn.Param(llvmParamIndex)
param.SetName(info.name)
fields = append(fields, param)
llvmParamIndex++
}
b.locals[param] = b.collapseFormalParam(llvmType, fields)
// Add debug information to this parameter (if available)
if b.Debug && b.fn.Syntax() != nil {
dbgParam := b.getLocalVariable(param.Object().(*types.Var))
loc := b.GetCurrentDebugLocation()
if len(fields) == 1 {
expr := b.dibuilder.CreateExpression(nil)
b.dibuilder.InsertValueAtEnd(fields[0], dbgParam, expr, loc, entryBlock)
} else {
fieldOffsets := b.expandFormalParamOffsets(llvmType)
for i, field := range fields {
expr := b.dibuilder.CreateExpression([]int64{
0x1000, // DW_OP_LLVM_fragment
int64(fieldOffsets[i]) * 8, // offset in bits
int64(b.targetData.TypeAllocSize(field.Type())) * 8, // size in bits
})
b.dibuilder.InsertValueAtEnd(field, dbgParam, expr, loc, entryBlock)
}
}
}
}
// Load free variables from the context. This is a closure (or bound
// method).
var context llvm.Value
if !b.info.exported {
context = b.llvmFn.LastParam()
context.SetName("context")
}
if len(b.fn.FreeVars) != 0 {
// Get a list of all variable types in the context.
freeVarTypes := make([]llvm.Type, len(b.fn.FreeVars))
for i, freeVar := range b.fn.FreeVars {
freeVarTypes[i] = b.getLLVMType(freeVar.Type())
}
// Load each free variable from the context pointer.
// A free variable is always a pointer when this is a closure, but it
// can be another type when it is a wrapper for a bound method (these
// wrappers are generated by the ssa package).
for i, val := range b.emitPointerUnpack(context, freeVarTypes) {
b.locals[b.fn.FreeVars[i]] = val
}
}
if b.fn.Recover != nil {
// This function has deferred function calls. Set some things up for
// them.
b.deferInitFunc()
}
// Fill blocks with instructions.
for _, block := range b.fn.DomPreorder() {
if b.DumpSSA {
fmt.Printf("%d: %s:\n", block.Index, block.Comment)
}
b.SetInsertPointAtEnd(b.blockEntries[block])
b.currentBlock = block
for _, instr := range block.Instrs {
if instr, ok := instr.(*ssa.DebugRef); ok {
if !b.Debug {
continue
}
object := instr.Object()
variable, ok := object.(*types.Var)
if !ok {
// Not a local variable.
continue
}
if instr.IsAddr {
// TODO, this may happen for *ssa.Alloc and *ssa.FieldAddr
// for example.
continue
}
dbgVar := b.getLocalVariable(variable)
pos := b.program.Fset.Position(instr.Pos())
b.dibuilder.InsertValueAtEnd(b.getValue(instr.X), dbgVar, b.dibuilder.CreateExpression(nil), llvm.DebugLoc{
Line: uint(pos.Line),
Col: uint(pos.Column),
Scope: b.difunc,
}, b.GetInsertBlock())
continue
}
if b.DumpSSA {
if val, ok := instr.(ssa.Value); ok && val.Name() != "" {
fmt.Printf("\t%s = %s\n", val.Name(), val.String())
} else {
fmt.Printf("\t%s\n", instr.String())
}
}
b.createInstruction(instr)
}
if b.fn.Name() == "init" && len(block.Instrs) == 0 {
b.CreateRetVoid()
}
}
// Resolve phi nodes
for _, phi := range b.phis {
block := phi.ssa.Block()
for i, edge := range phi.ssa.Edges {
llvmVal := b.getValue(edge)
llvmBlock := b.blockExits[block.Preds[i]]
phi.llvm.AddIncoming([]llvm.Value{llvmVal}, []llvm.BasicBlock{llvmBlock})
}
}
if b.NeedsStackObjects {
// Track phi nodes.
for _, phi := range b.phis {
insertPoint := llvm.NextInstruction(phi.llvm)
for !insertPoint.IsAPHINode().IsNil() {
insertPoint = llvm.NextInstruction(insertPoint)
}
b.SetInsertPointBefore(insertPoint)
b.trackValue(phi.llvm)
}
}
// Create anonymous functions (closures etc.).
for _, sub := range b.fn.AnonFuncs {
b := newBuilder(b.compilerContext, b.Builder, sub)
b.createFunction()
}
}
// posser is an interface that's implemented by both ssa.Value and
// ssa.Instruction. It is implemented by everything that has a Pos() method,
// which is all that getPos() needs.
type posser interface {
Pos() token.Pos
}
// getPos returns position information for a ssa.Value or ssa.Instruction.
//
// Not all instructions have position information, especially when they're
// implicit (such as implicit casts or implicit returns at the end of a
// function). In these cases, it makes sense to try a bit harder to guess what
// the position really should be.
func getPos(val posser) token.Pos {
pos := val.Pos()
if pos != token.NoPos {
// Easy: position is known.
return pos
}
// No position information is known.
switch val := val.(type) {
case *ssa.MakeInterface:
return getPos(val.X)
case *ssa.MakeClosure:
return val.Fn.(*ssa.Function).Pos()
case *ssa.Return:
syntax := val.Parent().Syntax()
if syntax != nil {
// non-synthetic
return syntax.End()
}
return token.NoPos
case *ssa.FieldAddr:
return getPos(val.X)
case *ssa.IndexAddr:
return getPos(val.X)
case *ssa.Slice:
return getPos(val.X)
case *ssa.Store:
return getPos(val.Addr)
case *ssa.Extract:
return getPos(val.Tuple)
default:
// This is reachable, for example with *ssa.Const, *ssa.If, and
// *ssa.Jump. They might be implemented in some way in the future.
return token.NoPos
}
}
// createInstruction builds the LLVM IR equivalent instructions for the
// particular Go SSA instruction.
func (b *builder) createInstruction(instr ssa.Instruction) {
if b.Debug {
b.setDebugLocation(getPos(instr))
}
switch instr := instr.(type) {
case ssa.Value:
if value, err := b.createExpr(instr); err != nil {
// This expression could not be parsed. Add the error to the list
// of diagnostics and continue with an undef value.
// The resulting IR will be incorrect (but valid). However,
// compilation can proceed which is useful because there may be
// more compilation errors which can then all be shown together to
// the user.
b.diagnostics = append(b.diagnostics, err)
b.locals[instr] = llvm.Undef(b.getLLVMType(instr.Type()))
} else {
b.locals[instr] = value
if len(*instr.Referrers()) != 0 && b.NeedsStackObjects {
b.trackExpr(instr, value)
}
}
case *ssa.DebugRef:
// ignore
case *ssa.Defer:
b.createDefer(instr)
case *ssa.Go:
// Start a new goroutine.
b.createGo(instr)
case *ssa.If:
cond := b.getValue(instr.Cond)
block := instr.Block()
blockThen := b.blockEntries[block.Succs[0]]
blockElse := b.blockEntries[block.Succs[1]]
b.CreateCondBr(cond, blockThen, blockElse)
case *ssa.Jump:
blockJump := b.blockEntries[instr.Block().Succs[0]]
b.CreateBr(blockJump)
case *ssa.MapUpdate:
m := b.getValue(instr.Map)
key := b.getValue(instr.Key)
value := b.getValue(instr.Value)
mapType := instr.Map.Type().Underlying().(*types.Map)
b.createMapUpdate(mapType.Key(), m, key, value, instr.Pos())
case *ssa.Panic:
value := b.getValue(instr.X)
b.createRuntimeCall("_panic", []llvm.Value{value}, "")
b.CreateUnreachable()
case *ssa.Return:
if len(instr.Results) == 0 {
b.CreateRetVoid()
} else if len(instr.Results) == 1 {
b.CreateRet(b.getValue(instr.Results[0]))
} else {
// Multiple return values. Put them all in a struct.
retVal := llvm.ConstNull(b.llvmFn.Type().ElementType().ReturnType())
for i, result := range instr.Results {
val := b.getValue(result)
retVal = b.CreateInsertValue(retVal, val, i, "")
}
b.CreateRet(retVal)
}
case *ssa.RunDefers:
b.createRunDefers()
case *ssa.Send:
b.createChanSend(instr)
case *ssa.Store:
llvmAddr := b.getValue(instr.Addr)
llvmVal := b.getValue(instr.Val)
b.createNilCheck(instr.Addr, llvmAddr, "store")
if b.targetData.TypeAllocSize(llvmVal.Type()) == 0 {
// nothing to store
return
}
b.CreateStore(llvmVal, llvmAddr)
default:
b.addError(instr.Pos(), "unknown instruction: "+instr.String())
}
}
// createBuiltin lowers a builtin Go function (append, close, delete, etc.) to
// LLVM IR. It uses runtime calls for some builtins.
func (b *builder) createBuiltin(argTypes []types.Type, argValues []llvm.Value, callName string, pos token.Pos) (llvm.Value, error) {
switch callName {
case "append":
src := argValues[0]
elems := argValues[1]
srcBuf := b.CreateExtractValue(src, 0, "append.srcBuf")
srcPtr := b.CreateBitCast(srcBuf, b.i8ptrType, "append.srcPtr")
srcLen := b.CreateExtractValue(src, 1, "append.srcLen")
srcCap := b.CreateExtractValue(src, 2, "append.srcCap")
elemsBuf := b.CreateExtractValue(elems, 0, "append.elemsBuf")
elemsPtr := b.CreateBitCast(elemsBuf, b.i8ptrType, "append.srcPtr")
elemsLen := b.CreateExtractValue(elems, 1, "append.elemsLen")
elemType := srcBuf.Type().ElementType()
elemSize := llvm.ConstInt(b.uintptrType, b.targetData.TypeAllocSize(elemType), false)
result := b.createRuntimeCall("sliceAppend", []llvm.Value{srcPtr, elemsPtr, srcLen, srcCap, elemsLen, elemSize}, "append.new")
newPtr := b.CreateExtractValue(result, 0, "append.newPtr")
newBuf := b.CreateBitCast(newPtr, srcBuf.Type(), "append.newBuf")
newLen := b.CreateExtractValue(result, 1, "append.newLen")
newCap := b.CreateExtractValue(result, 2, "append.newCap")
newSlice := llvm.Undef(src.Type())
newSlice = b.CreateInsertValue(newSlice, newBuf, 0, "")
newSlice = b.CreateInsertValue(newSlice, newLen, 1, "")
newSlice = b.CreateInsertValue(newSlice, newCap, 2, "")
return newSlice, nil
case "cap":
value := argValues[0]
var llvmCap llvm.Value
switch argTypes[0].(type) {
case *types.Chan:
llvmCap = b.createRuntimeCall("chanCap", []llvm.Value{value}, "cap")
case *types.Slice:
llvmCap = b.CreateExtractValue(value, 2, "cap")
default:
return llvm.Value{}, b.makeError(pos, "todo: cap: unknown type")
}
if b.targetData.TypeAllocSize(llvmCap.Type()) < b.targetData.TypeAllocSize(b.intType) {
llvmCap = b.CreateZExt(llvmCap, b.intType, "len.int")
}
return llvmCap, nil
case "close":
b.createChanClose(argValues[0])
return llvm.Value{}, nil
case "complex":
r := argValues[0]
i := argValues[1]
t := argTypes[0].Underlying().(*types.Basic)
var cplx llvm.Value
switch t.Kind() {
case types.Float32:
cplx = llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.FloatType(), b.ctx.FloatType()}, false))
case types.Float64:
cplx = llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.DoubleType(), b.ctx.DoubleType()}, false))
default:
return llvm.Value{}, b.makeError(pos, "unsupported type in complex builtin: "+t.String())
}
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
case "copy":
dst := argValues[0]
src := argValues[1]
dstLen := b.CreateExtractValue(dst, 1, "copy.dstLen")
srcLen := b.CreateExtractValue(src, 1, "copy.srcLen")
dstBuf := b.CreateExtractValue(dst, 0, "copy.dstArray")
srcBuf := b.CreateExtractValue(src, 0, "copy.srcArray")
elemType := dstBuf.Type().ElementType()
dstBuf = b.CreateBitCast(dstBuf, b.i8ptrType, "copy.dstPtr")
srcBuf = b.CreateBitCast(srcBuf, b.i8ptrType, "copy.srcPtr")
elemSize := llvm.ConstInt(b.uintptrType, b.targetData.TypeAllocSize(elemType), false)
return b.createRuntimeCall("sliceCopy", []llvm.Value{dstBuf, srcBuf, dstLen, srcLen, elemSize}, "copy.n"), nil
case "delete":
m := argValues[0]
key := argValues[1]
return llvm.Value{}, b.createMapDelete(argTypes[1], m, key, pos)
case "imag":
cplx := argValues[0]
return b.CreateExtractValue(cplx, 1, "imag"), nil
case "len":
value := argValues[0]
var llvmLen llvm.Value
switch argTypes[0].Underlying().(type) {
case *types.Basic, *types.Slice:
// string or slice
llvmLen = b.CreateExtractValue(value, 1, "len")
case *types.Chan:
llvmLen = b.createRuntimeCall("chanLen", []llvm.Value{value}, "len")
case *types.Map:
llvmLen = b.createRuntimeCall("hashmapLen", []llvm.Value{value}, "len")
default:
return llvm.Value{}, b.makeError(pos, "todo: len: unknown type")
}
if b.targetData.TypeAllocSize(llvmLen.Type()) < b.targetData.TypeAllocSize(b.intType) {
llvmLen = b.CreateZExt(llvmLen, b.intType, "len.int")
}
return llvmLen, nil
case "print", "println":
for i, value := range argValues {
if i >= 1 && callName == "println" {
b.createRuntimeCall("printspace", nil, "")
}
typ := argTypes[i].Underlying()
switch typ := typ.(type) {
case *types.Basic:
switch typ.Kind() {
case types.String, types.UntypedString:
b.createRuntimeCall("printstring", []llvm.Value{value}, "")
case types.Uintptr:
b.createRuntimeCall("printptr", []llvm.Value{value}, "")
case types.UnsafePointer:
ptrValue := b.CreatePtrToInt(value, b.uintptrType, "")
b.createRuntimeCall("printptr", []llvm.Value{ptrValue}, "")
default:
// runtime.print{int,uint}{8,16,32,64}
if typ.Info()&types.IsInteger != 0 {
name := "print"
if typ.Info()&types.IsUnsigned != 0 {
name += "uint"
} else {
name += "int"
}
name += strconv.FormatUint(b.targetData.TypeAllocSize(value.Type())*8, 10)
b.createRuntimeCall(name, []llvm.Value{value}, "")
} else if typ.Kind() == types.Bool {
b.createRuntimeCall("printbool", []llvm.Value{value}, "")
} else if typ.Kind() == types.Float32 {
b.createRuntimeCall("printfloat32", []llvm.Value{value}, "")
} else if typ.Kind() == types.Float64 {
b.createRuntimeCall("printfloat64", []llvm.Value{value}, "")
} else if typ.Kind() == types.Complex64 {
b.createRuntimeCall("printcomplex64", []llvm.Value{value}, "")
} else if typ.Kind() == types.Complex128 {
b.createRuntimeCall("printcomplex128", []llvm.Value{value}, "")
} else {
return llvm.Value{}, b.makeError(pos, "unknown basic arg type: "+typ.String())
}
}
case *types.Interface:
b.createRuntimeCall("printitf", []llvm.Value{value}, "")
case *types.Map:
b.createRuntimeCall("printmap", []llvm.Value{value}, "")
case *types.Pointer:
ptrValue := b.CreatePtrToInt(value, b.uintptrType, "")
b.createRuntimeCall("printptr", []llvm.Value{ptrValue}, "")
default:
return llvm.Value{}, b.makeError(pos, "unknown arg type: "+typ.String())
}
}
if callName == "println" {
b.createRuntimeCall("printnl", nil, "")
}
return llvm.Value{}, nil // print() or println() returns void
case "real":
cplx := argValues[0]
return b.CreateExtractValue(cplx, 0, "real"), nil
case "recover":
return b.createRuntimeCall("_recover", nil, ""), nil
case "ssa:wrapnilchk":
// TODO: do an actual nil check?
return argValues[0], nil
// Builtins from the unsafe package.
case "Add": // unsafe.Add
// This is basically just a GEP operation.
// Note: the pointer is always of type *i8.
ptr := argValues[0]
len := argValues[1]
return b.CreateGEP(ptr, []llvm.Value{len}, ""), nil
case "Slice": // unsafe.Slice
// This creates a slice from a pointer and a length.
// Note that the exception mentioned in the documentation (if the
// pointer and length are nil, the slice is also nil) is trivially
// already the case.
ptr := argValues[0]
len := argValues[1]
slice := llvm.Undef(b.ctx.StructType([]llvm.Type{
ptr.Type(),
b.uintptrType,
b.uintptrType,
}, false))
b.createUnsafeSliceCheck(ptr, len, argTypes[1].Underlying().(*types.Basic))
if len.Type().IntTypeWidth() < b.uintptrType.IntTypeWidth() {
// Too small, zero-extend len.
len = b.CreateZExt(len, b.uintptrType, "")
} else if len.Type().IntTypeWidth() > b.uintptrType.IntTypeWidth() {
// Too big, truncate len.
len = b.CreateTrunc(len, b.uintptrType, "")
}
slice = b.CreateInsertValue(slice, ptr, 0, "")
slice = b.CreateInsertValue(slice, len, 1, "")
slice = b.CreateInsertValue(slice, len, 2, "")
return slice, nil
default:
return llvm.Value{}, b.makeError(pos, "todo: builtin: "+callName)
}
}
// createFunctionCall lowers a Go SSA call instruction (to a simple function,
// closure, function pointer, builtin, method, etc.) to LLVM IR, usually a call
// instruction.
//
// This is also where compiler intrinsics are implemented.
func (b *builder) createFunctionCall(instr *ssa.CallCommon) (llvm.Value, error) {
var params []llvm.Value
for _, param := range instr.Args {
params = append(params, b.getValue(param))
}
// Try to call the function directly for trivially static calls.
var callee, context llvm.Value
exported := false
if fn := instr.StaticCallee(); fn != nil {
// Direct function call, either to a named or anonymous (directly
// applied) function call. If it is anonymous, it may be a closure.
name := fn.RelString(nil)
switch {
case name == "runtime.memcpy" || name == "runtime.memmove" || name == "reflect.memcpy":
return b.createMemoryCopyCall(fn, instr.Args)
case name == "runtime.memzero":
return b.createMemoryZeroCall(instr.Args)
case name == "math.Ceil" || name == "math.Floor" || name == "math.Sqrt" || name == "math.Trunc":
result, ok := b.createMathOp(instr)
if ok {
return result, nil
}
case name == "device.Asm" || name == "device/arm.Asm" || name == "device/arm64.Asm" || name == "device/avr.Asm" || name == "device/riscv.Asm":
return b.createInlineAsm(instr.Args)
case name == "device.AsmFull" || name == "device/arm.AsmFull" || name == "device/arm64.AsmFull" || name == "device/avr.AsmFull" || name == "device/riscv.AsmFull":
return b.createInlineAsmFull(instr)
case strings.HasPrefix(name, "device/arm.SVCall"):
return b.emitSVCall(instr.Args)
case strings.HasPrefix(name, "device/arm64.SVCall"):
return b.emitSV64Call(instr.Args)
case strings.HasPrefix(name, "(device/riscv.CSR)."):
return b.emitCSROperation(instr)
case strings.HasPrefix(name, "syscall.Syscall"):
return b.createSyscall(instr)
case strings.HasPrefix(name, "syscall.rawSyscallNoError"):
return b.createRawSyscallNoError(instr)
case strings.HasPrefix(name, "runtime/volatile.Load"):
return b.createVolatileLoad(instr)
case strings.HasPrefix(name, "runtime/volatile.Store"):
return b.createVolatileStore(instr)
case strings.HasPrefix(name, "sync/atomic."):
val, ok := b.createAtomicOp(instr)
if ok {
// This call could be lowered as an atomic operation.
return val, nil
}
// This call couldn't be lowered as an atomic operation, it's
// probably something else. Continue as usual.
case name == "runtime/interrupt.New":
return b.createInterruptGlobal(instr)
}
callee = b.getFunction(fn)
info := b.getFunctionInfo(fn)
if callee.IsNil() {
return llvm.Value{}, b.makeError(instr.Pos(), "undefined function: "+info.linkName)
}
switch value := instr.Value.(type) {
case *ssa.Function:
// Regular function call. No context is necessary.
context = llvm.Undef(b.i8ptrType)
case *ssa.MakeClosure:
// A call on a func value, but the callee is trivial to find. For
// example: immediately applied functions.
funcValue := b.getValue(value)
context = b.extractFuncContext(funcValue)
default:
panic("StaticCallee returned an unexpected value")
}
exported = info.exported
} else if call, ok := instr.Value.(*ssa.Builtin); ok {
// Builtin function (append, close, delete, etc.).)
var argTypes []types.Type
for _, arg := range instr.Args {
argTypes = append(argTypes, arg.Type())
}
return b.createBuiltin(argTypes, params, call.Name(), instr.Pos())
} else if instr.IsInvoke() {
// Interface method call (aka invoke call).
itf := b.getValue(instr.Value) // interface value (runtime._interface)
typecode := b.CreateExtractValue(itf, 0, "invoke.func.typecode")
value := b.CreateExtractValue(itf, 1, "invoke.func.value") // receiver
// Prefix the params with receiver value and suffix with typecode.
params = append([]llvm.Value{value}, params...)
params = append(params, typecode)
callee = b.getInvokeFunction(instr)
context = llvm.Undef(b.i8ptrType)
} else {
// Function pointer.
value := b.getValue(instr.Value)
// This is a func value, which cannot be called directly. We have to
// extract the function pointer and context first from the func value.
callee, context = b.decodeFuncValue(value, instr.Value.Type().Underlying().(*types.Signature))
b.createNilCheck(instr.Value, callee, "fpcall")
}
if !exported {
// This function takes a context parameter.
// Add it to the end of the parameter list.
params = append(params, context)
}
return b.createCall(callee, params, ""), nil
}
// getValue returns the LLVM value of a constant, function value, global, or
// already processed SSA expression.
func (b *builder) getValue(expr ssa.Value) llvm.Value {
switch expr := expr.(type) {
case *ssa.Const:
return b.createConst(expr)
case *ssa.Function:
if b.getFunctionInfo(expr).exported {
b.addError(expr.Pos(), "cannot use an exported function as value: "+expr.String())
return llvm.Undef(b.getLLVMType(expr.Type()))
}
return b.createFuncValue(b.getFunction(expr), llvm.Undef(b.i8ptrType), expr.Signature)
case *ssa.Global:
value := b.getGlobal(expr)
if value.IsNil() {
b.addError(expr.Pos(), "global not found: "+expr.RelString(nil))
return llvm.Undef(b.getLLVMType(expr.Type()))
}
return value
default:
// other (local) SSA value
if value, ok := b.locals[expr]; ok {
return value
} else {
// indicates a compiler bug
panic("local has not been parsed: " + expr.String())
}
}
}
// maxSliceSize determines the maximum size a slice of the given element type
// can be.
func (c *compilerContext) maxSliceSize(elementType llvm.Type) uint64 {
// Calculate ^uintptr(0), which is the max value that fits in uintptr.
maxPointerValue := llvm.ConstNot(llvm.ConstInt(c.uintptrType, 0, false)).ZExtValue()
// Calculate (^uint(0))/2, which is the max value that fits in an int.
maxIntegerValue := llvm.ConstNot(llvm.ConstInt(c.intType, 0, false)).ZExtValue() / 2
// Determine the maximum allowed size for a slice. The biggest possible
// pointer (starting from 0) would be maxPointerValue*sizeof(elementType) so
// divide by the element type to get the real maximum size.
maxSize := maxPointerValue / c.targetData.TypeAllocSize(elementType)
// len(slice) is an int. Make sure the length remains small enough to fit in
// an int.
if maxSize > maxIntegerValue {
maxSize = maxIntegerValue
}
return maxSize
}
// createExpr translates a Go SSA expression to LLVM IR. This can be zero, one,
// or multiple LLVM IR instructions and/or runtime calls.
func (b *builder) createExpr(expr ssa.Value) (llvm.Value, error) {
if _, ok := b.locals[expr]; ok {
// sanity check
panic("instruction has already been created: " + expr.String())
}
switch expr := expr.(type) {
case *ssa.Alloc:
typ := b.getLLVMType(expr.Type().Underlying().(*types.Pointer).Elem())
size := b.targetData.TypeAllocSize(typ)
// Move all "large" allocations to the heap. This value is also transform.maxStackAlloc.
if expr.Heap || size > 256 {
// Calculate ^uintptr(0)
maxSize := llvm.ConstNot(llvm.ConstInt(b.uintptrType, 0, false)).ZExtValue()
if size > maxSize {
// Size would be truncated if truncated to uintptr.
return llvm.Value{}, b.makeError(expr.Pos(), fmt.Sprintf("value is too big (%v bytes)", size))
}
sizeValue := llvm.ConstInt(b.uintptrType, size, false)
layoutValue := b.createObjectLayout(typ, expr.Pos())
buf := b.createRuntimeCall("alloc", []llvm.Value{sizeValue, layoutValue}, expr.Comment)
buf = b.CreateBitCast(buf, llvm.PointerType(typ, 0), "")
return buf, nil
} else {
buf := llvmutil.CreateEntryBlockAlloca(b.Builder, typ, expr.Comment)
if b.targetData.TypeAllocSize(typ) != 0 {
b.CreateStore(llvm.ConstNull(typ), buf) // zero-initialize var
}
return buf, nil
}
case *ssa.BinOp:
x := b.getValue(expr.X)
y := b.getValue(expr.Y)
return b.createBinOp(expr.Op, expr.X.Type(), expr.Y.Type(), x, y, expr.Pos())
case *ssa.Call:
return b.createFunctionCall(expr.Common())
case *ssa.ChangeInterface:
// Do not change between interface types: always use the underlying
// (concrete) type in the type number of the interface. Every method
// call on an interface will do a lookup which method to call.
// This is different from how the official Go compiler works, because of
// heap allocation and because it's easier to implement, see:
// https://research.swtch.com/interfaces
return b.getValue(expr.X), nil
case *ssa.ChangeType:
// This instruction changes the type, but the underlying value remains
// the same. This is often a no-op, but sometimes we have to change the
// LLVM type as well.
x := b.getValue(expr.X)
llvmType := b.getLLVMType(expr.Type())
if x.Type() == llvmType {
// Different Go type but same LLVM type (for example, named int).
// This is the common case.
return x, nil
}
// Figure out what kind of type we need to cast.
switch llvmType.TypeKind() {
case llvm.StructTypeKind:
// Unfortunately, we can't just bitcast structs. We have to
// actually create a new struct of the correct type and insert the
// values from the previous struct in there.
value := llvm.Undef(llvmType)
for i := 0; i < llvmType.StructElementTypesCount(); i++ {
field := b.CreateExtractValue(x, i, "changetype.field")
value = b.CreateInsertValue(value, field, i, "changetype.struct")
}
return value, nil
case llvm.PointerTypeKind:
// This can happen with pointers to structs. This case is easy:
// simply bitcast the pointer to the destination type.
return b.CreateBitCast(x, llvmType, "changetype.pointer"), nil
default:
return llvm.Value{}, errors.New("todo: unknown ChangeType type: " + expr.X.Type().String())
}
case *ssa.Const:
panic("const is not an expression")
case *ssa.Convert:
x := b.getValue(expr.X)
return b.createConvert(expr.X.Type(), expr.Type(), x, expr.Pos())
case *ssa.Extract:
if _, ok := expr.Tuple.(*ssa.Select); ok {
return b.getChanSelectResult(expr), nil
}
value := b.getValue(expr.Tuple)
return b.CreateExtractValue(value, expr.Index, ""), nil
case *ssa.Field:
value := b.getValue(expr.X)
result := b.CreateExtractValue(value, expr.Field, "")
return result, nil
case *ssa.FieldAddr:
val := b.getValue(expr.X)
// Check for nil pointer before calculating the address, from the spec:
// > For an operand x of type T, the address operation &x generates a
// > pointer of type *T to x. [...] If the evaluation of x would cause a
// > run-time panic, then the evaluation of &x does too.
b.createNilCheck(expr.X, val, "gep")
// Do a GEP on the pointer to get the field address.
indices := []llvm.Value{
llvm.ConstInt(b.ctx.Int32Type(), 0, false),
llvm.ConstInt(b.ctx.Int32Type(), uint64(expr.Field), false),
}
return b.CreateInBoundsGEP(val, indices, ""), nil
case *ssa.Function:
panic("function is not an expression")
case *ssa.Global:
panic("global is not an expression")
case *ssa.Index:
array := b.getValue(expr.X)
index := b.getValue(expr.Index)
// Extend index to at least uintptr size, because getelementptr assumes
// index is a signed integer.
index = b.extendInteger(index, expr.Index.Type(), b.uintptrType)
// Check bounds.
arrayLen := expr.X.Type().Underlying().(*types.Array).Len()
arrayLenLLVM := llvm.ConstInt(b.uintptrType, uint64(arrayLen), false)
b.createLookupBoundsCheck(arrayLenLLVM, index)
// Can't load directly from array (as index is non-constant), so have to
// do it using an alloca+gep+load.
alloca, allocaPtr, allocaSize := b.createTemporaryAlloca(array.Type(), "index.alloca")
b.CreateStore(array, alloca)
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
ptr := b.CreateInBoundsGEP(alloca, []llvm.Value{zero, index}, "index.gep")
result := b.CreateLoad(ptr, "index.load")
b.emitLifetimeEnd(allocaPtr, allocaSize)
return result, nil
case *ssa.IndexAddr:
val := b.getValue(expr.X)
index := b.getValue(expr.Index)
// Get buffer pointer and length
var bufptr, buflen llvm.Value
switch ptrTyp := expr.X.Type().Underlying().(type) {
case *types.Pointer:
typ := expr.X.Type().Underlying().(*types.Pointer).Elem().Underlying()
switch typ := typ.(type) {
case *types.Array:
bufptr = val
buflen = llvm.ConstInt(b.uintptrType, uint64(typ.Len()), false)
// Check for nil pointer before calculating the address, from
// the spec:
// > For an operand x of type T, the address operation &x
// > generates a pointer of type *T to x. [...] If the
// > evaluation of x would cause a run-time panic, then the
// > evaluation of &x does too.
b.createNilCheck(expr.X, bufptr, "gep")
default:
return llvm.Value{}, b.makeError(expr.Pos(), "todo: indexaddr: "+typ.String())
}
case *types.Slice:
bufptr = b.CreateExtractValue(val, 0, "indexaddr.ptr")
buflen = b.CreateExtractValue(val, 1, "indexaddr.len")
default:
return llvm.Value{}, b.makeError(expr.Pos(), "todo: indexaddr: "+ptrTyp.String())
}
// Make sure index is at least the size of uintptr becuase getelementptr
// assumes index is a signed integer.
index = b.extendInteger(index, expr.Index.Type(), b.uintptrType)
// Bounds check.
b.createLookupBoundsCheck(buflen, index)
switch expr.X.Type().Underlying().(type) {
case *types.Pointer:
indices := []llvm.Value{
llvm.ConstInt(b.ctx.Int32Type(), 0, false),
index,
}
return b.CreateInBoundsGEP(bufptr, indices, ""), nil
case *types.Slice:
return b.CreateInBoundsGEP(bufptr, []llvm.Value{index}, ""), nil
default:
panic("unreachable")
}
case *ssa.Lookup:
value := b.getValue(expr.X)
index := b.getValue(expr.Index)
switch xType := expr.X.Type().Underlying().(type) {
case *types.Basic:
// Value type must be a string, which is a basic type.
if xType.Info()&types.IsString == 0 {
panic("lookup on non-string?")
}
// Sometimes, the index can be e.g. an uint8 or int8, and we have to
// correctly extend that type for two reasons:
// 1. The lookup bounds check expects an index of at least uintptr
// size.
// 2. getelementptr has signed operands, and therefore s[uint8(x)]
// can be lowered as s[int8(x)]. That would be a bug.
index = b.extendInteger(index, expr.Index.Type(), b.uintptrType)
// Bounds check.
length := b.CreateExtractValue(value, 1, "len")
b.createLookupBoundsCheck(length, index)
// Lookup byte
buf := b.CreateExtractValue(value, 0, "")
bufPtr := b.CreateInBoundsGEP(buf, []llvm.Value{index}, "")
return b.CreateLoad(bufPtr, ""), nil
case *types.Map:
valueType := expr.Type()
if expr.CommaOk {
valueType = valueType.(*types.Tuple).At(0).Type()
}
return b.createMapLookup(xType.Key(), valueType, value, index, expr.CommaOk, expr.Pos())
default:
panic("unknown lookup type: " + expr.String())
}
case *ssa.MakeChan:
return b.createMakeChan(expr), nil
case *ssa.MakeClosure:
return b.parseMakeClosure(expr)
case *ssa.MakeInterface:
val := b.getValue(expr.X)
return b.createMakeInterface(val, expr.X.Type(), expr.Pos()), nil
case *ssa.MakeMap:
return b.createMakeMap(expr)
case *ssa.MakeSlice:
sliceLen := b.getValue(expr.Len)
sliceCap := b.getValue(expr.Cap)
sliceType := expr.Type().Underlying().(*types.Slice)
llvmElemType := b.getLLVMType(sliceType.Elem())
elemSize := b.targetData.TypeAllocSize(llvmElemType)
elemSizeValue := llvm.ConstInt(b.uintptrType, elemSize, false)
maxSize := b.maxSliceSize(llvmElemType)
if elemSize > maxSize {
// This seems to be checked by the typechecker already, but let's
// check it again just to be sure.
return llvm.Value{}, b.makeError(expr.Pos(), fmt.Sprintf("slice element type is too big (%v bytes)", elemSize))
}
// Bounds checking.
lenType := expr.Len.Type().Underlying().(*types.Basic)
capType := expr.Cap.Type().Underlying().(*types.Basic)
maxSizeValue := llvm.ConstInt(b.uintptrType, maxSize, false)
b.createSliceBoundsCheck(maxSizeValue, sliceLen, sliceCap, sliceCap, lenType, capType, capType)
// Allocate the backing array.
sliceCapCast, err := b.createConvert(expr.Cap.Type(), types.Typ[types.Uintptr], sliceCap, expr.Pos())
if err != nil {
return llvm.Value{}, err
}
sliceSize := b.CreateBinOp(llvm.Mul, elemSizeValue, sliceCapCast, "makeslice.cap")
layoutValue := b.createObjectLayout(llvmElemType, expr.Pos())
slicePtr := b.createRuntimeCall("alloc", []llvm.Value{sliceSize, layoutValue}, "makeslice.buf")
slicePtr = b.CreateBitCast(slicePtr, llvm.PointerType(llvmElemType, 0), "makeslice.array")
// Extend or truncate if necessary. This is safe as we've already done
// the bounds check.
sliceLen, err = b.createConvert(expr.Len.Type(), types.Typ[types.Uintptr], sliceLen, expr.Pos())
if err != nil {
return llvm.Value{}, err
}
sliceCap, err = b.createConvert(expr.Cap.Type(), types.Typ[types.Uintptr], sliceCap, expr.Pos())
if err != nil {
return llvm.Value{}, err
}
// Create the slice.
slice := b.ctx.ConstStruct([]llvm.Value{
llvm.Undef(slicePtr.Type()),
llvm.Undef(b.uintptrType),
llvm.Undef(b.uintptrType),
}, false)
slice = b.CreateInsertValue(slice, slicePtr, 0, "")
slice = b.CreateInsertValue(slice, sliceLen, 1, "")
slice = b.CreateInsertValue(slice, sliceCap, 2, "")
return slice, nil
case *ssa.Next:
rangeVal := expr.Iter.(*ssa.Range).X
llvmRangeVal := b.getValue(rangeVal)
it := b.getValue(expr.Iter)
if expr.IsString {
return b.createRuntimeCall("stringNext", []llvm.Value{llvmRangeVal, it}, "range.next"), nil
} else { // map
return b.createMapIteratorNext(rangeVal, llvmRangeVal, it), nil
}
case *ssa.Phi:
phi := b.CreatePHI(b.getLLVMType(expr.Type()), "")
b.phis = append(b.phis, phiNode{expr, phi})
return phi, nil
case *ssa.Range:
var iteratorType llvm.Type
switch typ := expr.X.Type().Underlying().(type) {
case *types.Basic: // string
iteratorType = b.getLLVMRuntimeType("stringIterator")
case *types.Map:
iteratorType = b.getLLVMRuntimeType("hashmapIterator")
default:
panic("unknown type in range: " + typ.String())
}
it, _, _ := b.createTemporaryAlloca(iteratorType, "range.it")
b.CreateStore(llvm.ConstNull(iteratorType), it)
return it, nil
case *ssa.Select:
return b.createSelect(expr), nil
case *ssa.Slice:
value := b.getValue(expr.X)
var lowType, highType, maxType *types.Basic
var low, high, max llvm.Value
if expr.Low != nil {
lowType = expr.Low.Type().Underlying().(*types.Basic)
low = b.getValue(expr.Low)
low = b.extendInteger(low, lowType, b.uintptrType)
} else {
lowType = types.Typ[types.Uintptr]
low = llvm.ConstInt(b.uintptrType, 0, false)
}
if expr.High != nil {
highType = expr.High.Type().Underlying().(*types.Basic)
high = b.getValue(expr.High)
high = b.extendInteger(high, highType, b.uintptrType)
} else {
highType = types.Typ[types.Uintptr]
}
if expr.Max != nil {
maxType = expr.Max.Type().Underlying().(*types.Basic)
max = b.getValue(expr.Max)
max = b.extendInteger(max, maxType, b.uintptrType)
} else {
maxType = types.Typ[types.Uintptr]
}
switch typ := expr.X.Type().Underlying().(type) {
case *types.Pointer: // pointer to array
// slice an array
length := typ.Elem().Underlying().(*types.Array).Len()
llvmLen := llvm.ConstInt(b.uintptrType, uint64(length), false)
if high.IsNil() {
high = llvmLen
}
if max.IsNil() {
max = llvmLen
}
indices := []llvm.Value{
llvm.ConstInt(b.ctx.Int32Type(), 0, false),
low,
}
b.createNilCheck(expr.X, value, "slice")
b.createSliceBoundsCheck(llvmLen, low, high, max, lowType, highType, maxType)
// Truncate ints bigger than uintptr. This is after the bounds
// check so it's safe.
if b.targetData.TypeAllocSize(low.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
low = b.CreateTrunc(low, b.uintptrType, "")
}
if b.targetData.TypeAllocSize(high.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
high = b.CreateTrunc(high, b.uintptrType, "")
}
if b.targetData.TypeAllocSize(max.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
max = b.CreateTrunc(max, b.uintptrType, "")
}
sliceLen := b.CreateSub(high, low, "slice.len")
slicePtr := b.CreateInBoundsGEP(value, indices, "slice.ptr")
sliceCap := b.CreateSub(max, low, "slice.cap")
slice := b.ctx.ConstStruct([]llvm.Value{
llvm.Undef(slicePtr.Type()),
llvm.Undef(b.uintptrType),
llvm.Undef(b.uintptrType),
}, false)
slice = b.CreateInsertValue(slice, slicePtr, 0, "")
slice = b.CreateInsertValue(slice, sliceLen, 1, "")
slice = b.CreateInsertValue(slice, sliceCap, 2, "")
return slice, nil
case *types.Slice:
// slice a slice
oldPtr := b.CreateExtractValue(value, 0, "")
oldLen := b.CreateExtractValue(value, 1, "")
oldCap := b.CreateExtractValue(value, 2, "")
if high.IsNil() {
high = oldLen
}
if max.IsNil() {
max = oldCap
}
b.createSliceBoundsCheck(oldCap, low, high, max, lowType, highType, maxType)
// Truncate ints bigger than uintptr. This is after the bounds
// check so it's safe.
if b.targetData.TypeAllocSize(low.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
low = b.CreateTrunc(low, b.uintptrType, "")
}
if b.targetData.TypeAllocSize(high.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
high = b.CreateTrunc(high, b.uintptrType, "")
}
if b.targetData.TypeAllocSize(max.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
max = b.CreateTrunc(max, b.uintptrType, "")
}
newPtr := b.CreateInBoundsGEP(oldPtr, []llvm.Value{low}, "")
newLen := b.CreateSub(high, low, "")
newCap := b.CreateSub(max, low, "")
slice := b.ctx.ConstStruct([]llvm.Value{
llvm.Undef(newPtr.Type()),
llvm.Undef(b.uintptrType),
llvm.Undef(b.uintptrType),
}, false)
slice = b.CreateInsertValue(slice, newPtr, 0, "")
slice = b.CreateInsertValue(slice, newLen, 1, "")
slice = b.CreateInsertValue(slice, newCap, 2, "")
return slice, nil
case *types.Basic:
if typ.Info()&types.IsString == 0 {
return llvm.Value{}, b.makeError(expr.Pos(), "unknown slice type: "+typ.String())
}
// slice a string
if expr.Max != nil {
// This might as well be a panic, as the frontend should have
// handled this already.
return llvm.Value{}, b.makeError(expr.Pos(), "slicing a string with a max parameter is not allowed by the spec")
}
oldPtr := b.CreateExtractValue(value, 0, "")
oldLen := b.CreateExtractValue(value, 1, "")
if high.IsNil() {
high = oldLen
}
b.createSliceBoundsCheck(oldLen, low, high, high, lowType, highType, maxType)
// Truncate ints bigger than uintptr. This is after the bounds
// check so it's safe.
if b.targetData.TypeAllocSize(low.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
low = b.CreateTrunc(low, b.uintptrType, "")
}
if b.targetData.TypeAllocSize(high.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
high = b.CreateTrunc(high, b.uintptrType, "")
}
newPtr := b.CreateInBoundsGEP(oldPtr, []llvm.Value{low}, "")
newLen := b.CreateSub(high, low, "")
str := llvm.Undef(b.getLLVMRuntimeType("_string"))
str = b.CreateInsertValue(str, newPtr, 0, "")
str = b.CreateInsertValue(str, newLen, 1, "")
return str, nil
default:
return llvm.Value{}, b.makeError(expr.Pos(), "unknown slice type: "+typ.String())
}
case *ssa.SliceToArrayPointer:
// Conversion from a slice to an array pointer, as the name clearly
// says. This requires a runtime check to make sure the slice is at
// least as big as the array.
slice := b.getValue(expr.X)
sliceLen := b.CreateExtractValue(slice, 1, "")
arrayLen := expr.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Array).Len()
b.createSliceToArrayPointerCheck(sliceLen, arrayLen)
ptr := b.CreateExtractValue(slice, 0, "")
ptr = b.CreateBitCast(ptr, b.getLLVMType(expr.Type()), "")
return ptr, nil
case *ssa.TypeAssert:
return b.createTypeAssert(expr), nil
case *ssa.UnOp:
return b.createUnOp(expr)
default:
return llvm.Value{}, b.makeError(expr.Pos(), "todo: unknown expression: "+expr.String())
}
}
// createBinOp creates a LLVM binary operation (add, sub, mul, etc) for a Go
// binary operation. This is almost a direct mapping, but there are some subtle
// differences such as the requirement in LLVM IR that both sides must have the
// same type, even for bitshifts. Also, signedness in Go is encoded in the type
// and is encoded in the operation in LLVM IR: this is important for some
// operations such as divide.
func (b *builder) createBinOp(op token.Token, typ, ytyp types.Type, x, y llvm.Value, pos token.Pos) (llvm.Value, error) {
switch typ := typ.Underlying().(type) {
case *types.Basic:
if typ.Info()&types.IsInteger != 0 {
// Operations on integers
signed := typ.Info()&types.IsUnsigned == 0
switch op {
case token.ADD: // +
return b.CreateAdd(x, y, ""), nil
case token.SUB: // -
return b.CreateSub(x, y, ""), nil
case token.MUL: // *
return b.CreateMul(x, y, ""), nil
case token.QUO, token.REM: // /, %
// Check for a divide by zero. If y is zero, the Go
// specification says that a runtime error must be triggered.
b.createDivideByZeroCheck(y)
if signed {
// Deal with signed division overflow.
// The LLVM LangRef says:
//
// Overflow also leads to undefined behavior; this is a
// rare case, but can occur, for example, by doing a
// 32-bit division of -2147483648 by -1.
//
// The Go specification however says this about division:
//
// The one exception to this rule is that if the dividend
// x is the most negative value for the int type of x, the
// quotient q = x / -1 is equal to x (and r = 0) due to
// two's-complement integer overflow.
//
// In other words, in the special case that the lowest
// possible signed integer is divided by -1, the result of
// the division is the same as x (the dividend).
// This is implemented by checking for this condition and
// changing y to 1 if it occurs, for example for 32-bit
// ints:
//
// if x == -2147483648 && y == -1 {
// y = 1
// }
//
// Dividing x by 1 obviously returns x, therefore satisfying
// the Go specification without a branch.
llvmType := x.Type()
minusOne := llvm.ConstSub(llvm.ConstInt(llvmType, 0, false), llvm.ConstInt(llvmType, 1, false))
lowestInteger := llvm.ConstInt(x.Type(), 1<<(llvmType.IntTypeWidth()-1), false)
yIsMinusOne := b.CreateICmp(llvm.IntEQ, y, minusOne, "")
xIsLowestInteger := b.CreateICmp(llvm.IntEQ, x, lowestInteger, "")
hasOverflow := b.CreateAnd(yIsMinusOne, xIsLowestInteger, "")
y = b.CreateSelect(hasOverflow, llvm.ConstInt(llvmType, 1, true), y, "")
if op == token.QUO {
return b.CreateSDiv(x, y, ""), nil
} else {
return b.CreateSRem(x, y, ""), nil
}
} else {
if op == token.QUO {
return b.CreateUDiv(x, y, ""), nil
} else {
return b.CreateURem(x, y, ""), nil
}
}
case token.AND: // &
return b.CreateAnd(x, y, ""), nil
case token.OR: // |
return b.CreateOr(x, y, ""), nil
case token.XOR: // ^
return b.CreateXor(x, y, ""), nil
case token.SHL, token.SHR:
if ytyp.Underlying().(*types.Basic).Info()&types.IsUnsigned == 0 {
// Ensure that y is not negative.
b.createNegativeShiftCheck(y)
}
sizeX := b.targetData.TypeAllocSize(x.Type())
sizeY := b.targetData.TypeAllocSize(y.Type())
// Check if the shift is bigger than the bit-width of the shifted value.
// This is UB in LLVM, so it needs to be handled seperately.
// The Go spec indirectly defines the result as 0.
// Negative shifts are handled earlier, so we can treat y as unsigned.
overshifted := b.CreateICmp(llvm.IntUGE, y, llvm.ConstInt(y.Type(), 8*sizeX, false), "shift.overflow")
// Adjust the size of y to match x.
switch {
case sizeX > sizeY:
y = b.CreateZExt(y, x.Type(), "")
case sizeX < sizeY:
// If it gets truncated, overshifted will be true and it will not matter.
y = b.CreateTrunc(y, x.Type(), "")
}
// Create a shift operation.
var val llvm.Value
switch op {
case token.SHL: // <<
val = b.CreateShl(x, y, "")
case token.SHR: // >>
if signed {
// Arithmetic right shifts work differently, since shifting a negative number right yields -1.
// Cap the shift input rather than selecting the output.
y = b.CreateSelect(overshifted, llvm.ConstInt(y.Type(), 8*sizeX-1, false), y, "shift.offset")
return b.CreateAShr(x, y, ""), nil
} else {
val = b.CreateLShr(x, y, "")
}
default:
panic("unreachable")
}
// Select between the shift result and zero depending on whether there was an overshift.
return b.CreateSelect(overshifted, llvm.ConstInt(val.Type(), 0, false), val, "shift.result"), nil
case token.EQL: // ==
return b.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return b.CreateICmp(llvm.IntNE, x, y, ""), nil
case token.AND_NOT: // &^
// Go specific. Calculate "and not" with x & (~y)
inv := b.CreateNot(y, "") // ~y
return b.CreateAnd(x, inv, ""), nil
case token.LSS: // <
if signed {
return b.CreateICmp(llvm.IntSLT, x, y, ""), nil
} else {
return b.CreateICmp(llvm.IntULT, x, y, ""), nil
}
case token.LEQ: // <=
if signed {
return b.CreateICmp(llvm.IntSLE, x, y, ""), nil
} else {
return b.CreateICmp(llvm.IntULE, x, y, ""), nil
}
case token.GTR: // >
if signed {
return b.CreateICmp(llvm.IntSGT, x, y, ""), nil
} else {
return b.CreateICmp(llvm.IntUGT, x, y, ""), nil
}
case token.GEQ: // >=
if signed {
return b.CreateICmp(llvm.IntSGE, x, y, ""), nil
} else {
return b.CreateICmp(llvm.IntUGE, x, y, ""), nil
}
default:
panic("binop on integer: " + op.String())
}
} else if typ.Info()&types.IsFloat != 0 {
// Operations on floats
switch op {
case token.ADD: // +
return b.CreateFAdd(x, y, ""), nil
case token.SUB: // -
return b.CreateFSub(x, y, ""), nil
case token.MUL: // *
return b.CreateFMul(x, y, ""), nil
case token.QUO: // /
return b.CreateFDiv(x, y, ""), nil
case token.EQL: // ==
return b.CreateFCmp(llvm.FloatOEQ, x, y, ""), nil
case token.NEQ: // !=
return b.CreateFCmp(llvm.FloatUNE, x, y, ""), nil
case token.LSS: // <
return b.CreateFCmp(llvm.FloatOLT, x, y, ""), nil
case token.LEQ: // <=
return b.CreateFCmp(llvm.FloatOLE, x, y, ""), nil
case token.GTR: // >
return b.CreateFCmp(llvm.FloatOGT, x, y, ""), nil
case token.GEQ: // >=
return b.CreateFCmp(llvm.FloatOGE, x, y, ""), nil
default:
panic("binop on float: " + op.String())
}
} else if typ.Info()&types.IsComplex != 0 {
r1 := b.CreateExtractValue(x, 0, "r1")
r2 := b.CreateExtractValue(y, 0, "r2")
i1 := b.CreateExtractValue(x, 1, "i1")
i2 := b.CreateExtractValue(y, 1, "i2")
switch op {
case token.EQL: // ==
req := b.CreateFCmp(llvm.FloatOEQ, r1, r2, "")
ieq := b.CreateFCmp(llvm.FloatOEQ, i1, i2, "")
return b.CreateAnd(req, ieq, ""), nil
case token.NEQ: // !=
req := b.CreateFCmp(llvm.FloatOEQ, r1, r2, "")
ieq := b.CreateFCmp(llvm.FloatOEQ, i1, i2, "")
neq := b.CreateAnd(req, ieq, "")
return b.CreateNot(neq, ""), nil
case token.ADD, token.SUB:
var r, i llvm.Value
switch op {
case token.ADD:
r = b.CreateFAdd(r1, r2, "")
i = b.CreateFAdd(i1, i2, "")
case token.SUB:
r = b.CreateFSub(r1, r2, "")
i = b.CreateFSub(i1, i2, "")
default:
panic("unreachable")
}
cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{r.Type(), i.Type()}, false))
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
case token.MUL:
// Complex multiplication follows the current implementation in
// the Go compiler, with the difference that complex64
// components are not first scaled up to float64 for increased
// precision.
// https://github.com/golang/go/blob/170b8b4b12be50eeccbcdadb8523fb4fc670ca72/src/cmd/compile/internal/gc/ssa.go#L2089-L2127
// The implementation is as follows:
// r := real(a) * real(b) - imag(a) * imag(b)
// i := real(a) * imag(b) + imag(a) * real(b)
// Note: this does NOT follow the C11 specification (annex G):
// http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=549
// See https://github.com/golang/go/issues/29846 for a related
// discussion.
r := b.CreateFSub(b.CreateFMul(r1, r2, ""), b.CreateFMul(i1, i2, ""), "")
i := b.CreateFAdd(b.CreateFMul(r1, i2, ""), b.CreateFMul(i1, r2, ""), "")
cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{r.Type(), i.Type()}, false))
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
case token.QUO:
// Complex division.
// Do this in a library call because it's too difficult to do
// inline.
switch r1.Type().TypeKind() {
case llvm.FloatTypeKind:
return b.createRuntimeCall("complex64div", []llvm.Value{x, y}, ""), nil
case llvm.DoubleTypeKind:
return b.createRuntimeCall("complex128div", []llvm.Value{x, y}, ""), nil
default:
panic("unexpected complex type")
}
default:
panic("binop on complex: " + op.String())
}
} else if typ.Info()&types.IsBoolean != 0 {
// Operations on booleans
switch op {
case token.EQL: // ==
return b.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return b.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
panic("binop on bool: " + op.String())
}
} else if typ.Kind() == types.UnsafePointer {
// Operations on pointers
switch op {
case token.EQL: // ==
return b.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return b.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
panic("binop on pointer: " + op.String())
}
} else if typ.Info()&types.IsString != 0 {
// Operations on strings
switch op {
case token.ADD: // +
return b.createRuntimeCall("stringConcat", []llvm.Value{x, y}, ""), nil
case token.EQL: // ==
return b.createRuntimeCall("stringEqual", []llvm.Value{x, y}, ""), nil
case token.NEQ: // !=
result := b.createRuntimeCall("stringEqual", []llvm.Value{x, y}, "")
return b.CreateNot(result, ""), nil
case token.LSS: // x < y
return b.createRuntimeCall("stringLess", []llvm.Value{x, y}, ""), nil
case token.LEQ: // x <= y becomes NOT (y < x)
result := b.createRuntimeCall("stringLess", []llvm.Value{y, x}, "")
return b.CreateNot(result, ""), nil
case token.GTR: // x > y becomes y < x
return b.createRuntimeCall("stringLess", []llvm.Value{y, x}, ""), nil
case token.GEQ: // x >= y becomes NOT (x < y)
result := b.createRuntimeCall("stringLess", []llvm.Value{x, y}, "")
return b.CreateNot(result, ""), nil
default:
panic("binop on string: " + op.String())
}
} else {
return llvm.Value{}, b.makeError(pos, "todo: unknown basic type in binop: "+typ.String())
}
case *types.Signature:
// Get raw scalars from the function value and compare those.
// Function values may be implemented in multiple ways, but they all
// have some way of getting a scalar value identifying the function.
// This is safe: function pointers are generally not comparable
// against each other, only against nil. So one of these has to be nil.
x = b.extractFuncScalar(x)
y = b.extractFuncScalar(y)
switch op {
case token.EQL: // ==
return b.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return b.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
return llvm.Value{}, b.makeError(pos, "binop on signature: "+op.String())
}
case *types.Interface:
switch op {
case token.EQL, token.NEQ: // ==, !=
nilInterface := llvm.ConstNull(x.Type())
var result llvm.Value
if x == nilInterface || y == nilInterface {
// An interface value is compared against nil.
// This is a very common case and is easy to optimize: simply
// compare the typecodes (of which one is nil).
typecodeX := b.CreateExtractValue(x, 0, "")
typecodeY := b.CreateExtractValue(y, 0, "")
result = b.CreateICmp(llvm.IntEQ, typecodeX, typecodeY, "")
} else {
// Fall back to a full interface comparison.
result = b.createRuntimeCall("interfaceEqual", []llvm.Value{x, y}, "")
}
if op == token.NEQ {
result = b.CreateNot(result, "")
}
return result, nil
default:
return llvm.Value{}, b.makeError(pos, "binop on interface: "+op.String())
}
case *types.Chan, *types.Map, *types.Pointer:
// Maps are in general not comparable, but can be compared against nil
// (which is a nil pointer). This means they can be trivially compared
// by treating them as a pointer.
// Channels behave as pointers in that they are equal as long as they
// are created with the same call to make or if both are nil.
switch op {
case token.EQL: // ==
return b.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return b.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
return llvm.Value{}, b.makeError(pos, "todo: binop on pointer: "+op.String())
}
case *types.Slice:
// Slices are in general not comparable, but can be compared against
// nil. Assume at least one of them is nil to make the code easier.
xPtr := b.CreateExtractValue(x, 0, "")
yPtr := b.CreateExtractValue(y, 0, "")
switch op {
case token.EQL: // ==
return b.CreateICmp(llvm.IntEQ, xPtr, yPtr, ""), nil
case token.NEQ: // !=
return b.CreateICmp(llvm.IntNE, xPtr, yPtr, ""), nil
default:
return llvm.Value{}, b.makeError(pos, "todo: binop on slice: "+op.String())
}
case *types.Array:
// Compare each array element and combine the result. From the spec:
// Array values are comparable if values of the array element type
// are comparable. Two array values are equal if their corresponding
// elements are equal.
result := llvm.ConstInt(b.ctx.Int1Type(), 1, true)
for i := 0; i < int(typ.Len()); i++ {
xField := b.CreateExtractValue(x, i, "")
yField := b.CreateExtractValue(y, i, "")
fieldEqual, err := b.createBinOp(token.EQL, typ.Elem(), typ.Elem(), xField, yField, pos)
if err != nil {
return llvm.Value{}, err
}
result = b.CreateAnd(result, fieldEqual, "")
}
switch op {
case token.EQL: // ==
return result, nil
case token.NEQ: // !=
return b.CreateNot(result, ""), nil
default:
return llvm.Value{}, b.makeError(pos, "unknown: binop on struct: "+op.String())
}
case *types.Struct:
// Compare each struct field and combine the result. From the spec:
// Struct values are comparable if all their fields are comparable.
// Two struct values are equal if their corresponding non-blank
// fields are equal.
result := llvm.ConstInt(b.ctx.Int1Type(), 1, true)
for i := 0; i < typ.NumFields(); i++ {
if typ.Field(i).Name() == "_" {
// skip blank fields
continue
}
fieldType := typ.Field(i).Type()
xField := b.CreateExtractValue(x, i, "")
yField := b.CreateExtractValue(y, i, "")
fieldEqual, err := b.createBinOp(token.EQL, fieldType, fieldType, xField, yField, pos)
if err != nil {
return llvm.Value{}, err
}
result = b.CreateAnd(result, fieldEqual, "")
}
switch op {
case token.EQL: // ==
return result, nil
case token.NEQ: // !=
return b.CreateNot(result, ""), nil
default:
return llvm.Value{}, b.makeError(pos, "unknown: binop on struct: "+op.String())
}
default:
return llvm.Value{}, b.makeError(pos, "todo: binop type: "+typ.String())
}
}
// createConst creates a LLVM constant value from a Go constant.
func (b *builder) createConst(expr *ssa.Const) llvm.Value {
switch typ := expr.Type().Underlying().(type) {
case *types.Basic:
llvmType := b.getLLVMType(typ)
if typ.Info()&types.IsBoolean != 0 {
b := constant.BoolVal(expr.Value)
n := uint64(0)
if b {
n = 1
}
return llvm.ConstInt(llvmType, n, false)
} else if typ.Info()&types.IsString != 0 {
str := constant.StringVal(expr.Value)
strLen := llvm.ConstInt(b.uintptrType, uint64(len(str)), false)
var strPtr llvm.Value
if str != "" {
objname := b.pkg.Path() + "$string"
global := llvm.AddGlobal(b.mod, llvm.ArrayType(b.ctx.Int8Type(), len(str)), objname)
global.SetInitializer(b.ctx.ConstString(str, false))
global.SetLinkage(llvm.InternalLinkage)
global.SetGlobalConstant(true)
global.SetUnnamedAddr(true)
global.SetAlignment(1)
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
strPtr = b.CreateInBoundsGEP(global, []llvm.Value{zero, zero}, "")
} else {
strPtr = llvm.ConstNull(b.i8ptrType)
}
strObj := llvm.ConstNamedStruct(b.getLLVMRuntimeType("_string"), []llvm.Value{strPtr, strLen})
return strObj
} else if typ.Kind() == types.UnsafePointer {
if !expr.IsNil() {
value, _ := constant.Uint64Val(constant.ToInt(expr.Value))
return llvm.ConstIntToPtr(llvm.ConstInt(b.uintptrType, value, false), b.i8ptrType)
}
return llvm.ConstNull(b.i8ptrType)
} else if typ.Info()&types.IsUnsigned != 0 {
n, _ := constant.Uint64Val(constant.ToInt(expr.Value))
return llvm.ConstInt(llvmType, n, false)
} else if typ.Info()&types.IsInteger != 0 { // signed
n, _ := constant.Int64Val(constant.ToInt(expr.Value))
return llvm.ConstInt(llvmType, uint64(n), true)
} else if typ.Info()&types.IsFloat != 0 {
n, _ := constant.Float64Val(expr.Value)
return llvm.ConstFloat(llvmType, n)
} else if typ.Kind() == types.Complex64 {
r := b.createConst(ssa.NewConst(constant.Real(expr.Value), types.Typ[types.Float32]))
i := b.createConst(ssa.NewConst(constant.Imag(expr.Value), types.Typ[types.Float32]))
cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.FloatType(), b.ctx.FloatType()}, false))
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx
} else if typ.Kind() == types.Complex128 {
r := b.createConst(ssa.NewConst(constant.Real(expr.Value), types.Typ[types.Float64]))
i := b.createConst(ssa.NewConst(constant.Imag(expr.Value), types.Typ[types.Float64]))
cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.DoubleType(), b.ctx.DoubleType()}, false))
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx
} else {
panic("unknown constant of basic type: " + expr.String())
}
case *types.Chan:
if expr.Value != nil {
panic("expected nil chan constant")
}
return llvm.ConstNull(b.getLLVMType(expr.Type()))
case *types.Signature:
if expr.Value != nil {
panic("expected nil signature constant")
}
return llvm.ConstNull(b.getLLVMType(expr.Type()))
case *types.Interface:
if expr.Value != nil {
panic("expected nil interface constant")
}
// Create a generic nil interface with no dynamic type (typecode=0).
fields := []llvm.Value{
llvm.ConstInt(b.uintptrType, 0, false),
llvm.ConstPointerNull(b.i8ptrType),
}
return llvm.ConstNamedStruct(b.getLLVMRuntimeType("_interface"), fields)
case *types.Pointer:
if expr.Value != nil {
panic("expected nil pointer constant")
}
return llvm.ConstPointerNull(b.getLLVMType(typ))
case *types.Slice:
if expr.Value != nil {
panic("expected nil slice constant")
}
elemType := b.getLLVMType(typ.Elem())
llvmPtr := llvm.ConstPointerNull(llvm.PointerType(elemType, 0))
llvmLen := llvm.ConstInt(b.uintptrType, 0, false)
slice := b.ctx.ConstStruct([]llvm.Value{
llvmPtr, // backing array
llvmLen, // len
llvmLen, // cap
}, false)
return slice
case *types.Map:
if !expr.IsNil() {
// I believe this is not allowed by the Go spec.
panic("non-nil map constant")
}
llvmType := b.getLLVMType(typ)
return llvm.ConstNull(llvmType)
default:
panic("unknown constant: " + expr.String())
}
}
// createConvert creates a Go type conversion instruction.
func (b *builder) createConvert(typeFrom, typeTo types.Type, value llvm.Value, pos token.Pos) (llvm.Value, error) {
llvmTypeFrom := value.Type()
llvmTypeTo := b.getLLVMType(typeTo)
// Conversion between unsafe.Pointer and uintptr.
isPtrFrom := isPointer(typeFrom.Underlying())
isPtrTo := isPointer(typeTo.Underlying())
if isPtrFrom && !isPtrTo {
return b.CreatePtrToInt(value, llvmTypeTo, ""), nil
} else if !isPtrFrom && isPtrTo {
if !value.IsABinaryOperator().IsNil() && value.InstructionOpcode() == llvm.Add {
// This is probably a pattern like the following:
// unsafe.Pointer(uintptr(ptr) + index)
// Used in functions like memmove etc. for lack of pointer
// arithmetic. Convert it to real pointer arithmatic here.
ptr := value.Operand(0)
index := value.Operand(1)
if !index.IsAPtrToIntInst().IsNil() {
// Swap if necessary, if ptr and index are reversed.
ptr, index = index, ptr
}
if !ptr.IsAPtrToIntInst().IsNil() {
origptr := ptr.Operand(0)
if origptr.Type() == b.i8ptrType {
// This pointer can be calculated from the original
// ptrtoint instruction with a GEP. The leftover inttoptr
// instruction is trivial to optimize away.
// Making it an in bounds GEP even though it's easy to
// create a GEP that is not in bounds. However, we're
// talking about unsafe code here so the programmer has to
// be careful anyway.
return b.CreateInBoundsGEP(origptr, []llvm.Value{index}, ""), nil
}
}
}
return b.CreateIntToPtr(value, llvmTypeTo, ""), nil
}
// Conversion between pointers and unsafe.Pointer.
if isPtrFrom && isPtrTo {
return b.CreateBitCast(value, llvmTypeTo, ""), nil
}
switch typeTo := typeTo.Underlying().(type) {
case *types.Basic:
sizeFrom := b.targetData.TypeAllocSize(llvmTypeFrom)
if typeTo.Info()&types.IsString != 0 {
switch typeFrom := typeFrom.Underlying().(type) {
case *types.Basic:
// Assume a Unicode code point, as that is the only possible
// value here.
// Cast to an i32 value as expected by
// runtime.stringFromUnicode.
if sizeFrom > 4 {
value = b.CreateTrunc(value, b.ctx.Int32Type(), "")
} else if sizeFrom < 4 && typeTo.Info()&types.IsUnsigned != 0 {
value = b.CreateZExt(value, b.ctx.Int32Type(), "")
} else if sizeFrom < 4 {
value = b.CreateSExt(value, b.ctx.Int32Type(), "")
}
return b.createRuntimeCall("stringFromUnicode", []llvm.Value{value}, ""), nil
case *types.Slice:
switch typeFrom.Elem().(*types.Basic).Kind() {
case types.Byte:
return b.createRuntimeCall("stringFromBytes", []llvm.Value{value}, ""), nil
case types.Rune:
return b.createRuntimeCall("stringFromRunes", []llvm.Value{value}, ""), nil
default:
return llvm.Value{}, b.makeError(pos, "todo: convert to string: "+typeFrom.String())
}
default:
return llvm.Value{}, b.makeError(pos, "todo: convert to string: "+typeFrom.String())
}
}
typeFrom := typeFrom.Underlying().(*types.Basic)
sizeTo := b.targetData.TypeAllocSize(llvmTypeTo)
if typeFrom.Info()&types.IsInteger != 0 && typeTo.Info()&types.IsInteger != 0 {
// Conversion between two integers.
if sizeFrom > sizeTo {
return b.CreateTrunc(value, llvmTypeTo, ""), nil
} else if typeFrom.Info()&types.IsUnsigned != 0 { // if unsigned
return b.CreateZExt(value, llvmTypeTo, ""), nil
} else { // if signed
return b.CreateSExt(value, llvmTypeTo, ""), nil
}
}
if typeFrom.Info()&types.IsFloat != 0 && typeTo.Info()&types.IsFloat != 0 {
// Conversion between two floats.
if sizeFrom > sizeTo {
return b.CreateFPTrunc(value, llvmTypeTo, ""), nil
} else if sizeFrom < sizeTo {
return b.CreateFPExt(value, llvmTypeTo, ""), nil
} else {
return value, nil
}
}
if typeFrom.Info()&types.IsFloat != 0 && typeTo.Info()&types.IsInteger != 0 {
// Conversion from float to int.
// Passing an out-of-bounds float to LLVM would cause UB, so that UB is trapped by select instructions.
// The Go specification says that this should be implementation-defined behavior.
// This implements saturating behavior, except that NaN is mapped to the minimum value.
var significandBits int
switch typeFrom.Kind() {
case types.Float32:
significandBits = 23
case types.Float64:
significandBits = 52
}
if typeTo.Info()&types.IsUnsigned != 0 { // if unsigned
// Select the maximum value for this unsigned integer type.
max := ^(^uint64(0) << uint(llvmTypeTo.IntTypeWidth()))
maxFloat := float64(max)
if bits.Len64(max) > significandBits {
// Round the max down to fit within the significand.
maxFloat = float64(max & (^uint64(0) << uint(bits.Len64(max)-significandBits)))
}
// Check if the value is in-bounds (0 <= value <= max).
positive := b.CreateFCmp(llvm.FloatOLE, llvm.ConstNull(llvmTypeFrom), value, "positive")
withinMax := b.CreateFCmp(llvm.FloatOLE, value, llvm.ConstFloat(llvmTypeFrom, maxFloat), "withinmax")
inBounds := b.CreateAnd(positive, withinMax, "inbounds")
// Assuming that the value is out-of-bounds, select a saturated value.
saturated := b.CreateSelect(positive,
llvm.ConstInt(llvmTypeTo, max, false), // value > max
llvm.ConstNull(llvmTypeTo), // value < 0 (or NaN)
"saturated",
)
// Do a normal conversion.
normal := b.CreateFPToUI(value, llvmTypeTo, "normal")
return b.CreateSelect(inBounds, normal, saturated, ""), nil
} else { // if signed
// Select the minimum value for this signed integer type.
min := uint64(1) << uint(llvmTypeTo.IntTypeWidth()-1)
minFloat := -float64(min)
// Select the maximum value for this signed integer type.
max := ^(^uint64(0) << uint(llvmTypeTo.IntTypeWidth()-1))
maxFloat := float64(max)
if bits.Len64(max) > significandBits {
// Round the max down to fit within the significand.
maxFloat = float64(max & (^uint64(0) << uint(bits.Len64(max)-significandBits)))
}
// Check if the value is in-bounds (min <= value <= max).
aboveMin := b.CreateFCmp(llvm.FloatOLE, llvm.ConstFloat(llvmTypeFrom, minFloat), value, "abovemin")
belowMax := b.CreateFCmp(llvm.FloatOLE, value, llvm.ConstFloat(llvmTypeFrom, maxFloat), "belowmax")
inBounds := b.CreateAnd(aboveMin, belowMax, "inbounds")
// Assuming that the value is out-of-bounds, select a saturated value.
saturated := b.CreateSelect(aboveMin,
llvm.ConstInt(llvmTypeTo, max, false), // value > max
llvm.ConstInt(llvmTypeTo, min, false), // value < min
"saturated",
)
// Map NaN to 0.
saturated = b.CreateSelect(b.CreateFCmp(llvm.FloatUNO, value, value, "isnan"),
llvm.ConstNull(llvmTypeTo),
saturated,
"remapped",
)
// Do a normal conversion.
normal := b.CreateFPToSI(value, llvmTypeTo, "normal")
return b.CreateSelect(inBounds, normal, saturated, ""), nil
}
}
if typeFrom.Info()&types.IsInteger != 0 && typeTo.Info()&types.IsFloat != 0 {
// Conversion from int to float.
if typeFrom.Info()&types.IsUnsigned != 0 { // if unsigned
return b.CreateUIToFP(value, llvmTypeTo, ""), nil
} else { // if signed
return b.CreateSIToFP(value, llvmTypeTo, ""), nil
}
}
if typeFrom.Kind() == types.Complex128 && typeTo.Kind() == types.Complex64 {
// Conversion from complex128 to complex64.
r := b.CreateExtractValue(value, 0, "real.f64")
i := b.CreateExtractValue(value, 1, "imag.f64")
r = b.CreateFPTrunc(r, b.ctx.FloatType(), "real.f32")
i = b.CreateFPTrunc(i, b.ctx.FloatType(), "imag.f32")
cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.FloatType(), b.ctx.FloatType()}, false))
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
}
if typeFrom.Kind() == types.Complex64 && typeTo.Kind() == types.Complex128 {
// Conversion from complex64 to complex128.
r := b.CreateExtractValue(value, 0, "real.f32")
i := b.CreateExtractValue(value, 1, "imag.f32")
r = b.CreateFPExt(r, b.ctx.DoubleType(), "real.f64")
i = b.CreateFPExt(i, b.ctx.DoubleType(), "imag.f64")
cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.DoubleType(), b.ctx.DoubleType()}, false))
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
}
return llvm.Value{}, b.makeError(pos, "todo: convert: basic non-integer type: "+typeFrom.String()+" -> "+typeTo.String())
case *types.Slice:
if basic, ok := typeFrom.Underlying().(*types.Basic); !ok || basic.Info()&types.IsString == 0 {
panic("can only convert from a string to a slice")
}
elemType := typeTo.Elem().Underlying().(*types.Basic) // must be byte or rune
switch elemType.Kind() {
case types.Byte:
return b.createRuntimeCall("stringToBytes", []llvm.Value{value}, ""), nil
case types.Rune:
return b.createRuntimeCall("stringToRunes", []llvm.Value{value}, ""), nil
default:
panic("unexpected type in string to slice conversion")
}
default:
return llvm.Value{}, b.makeError(pos, "todo: convert "+typeTo.String()+" <- "+typeFrom.String())
}
}
// createUnOp creates LLVM IR for a given Go unary operation.
// Most unary operators are pretty simple, such as the not and minus operator
// which can all be directly lowered to IR. However, there is also the channel
// receive operator which is handled in the runtime directly.
func (b *builder) createUnOp(unop *ssa.UnOp) (llvm.Value, error) {
x := b.getValue(unop.X)
switch unop.Op {
case token.NOT: // !x
return b.CreateNot(x, ""), nil
case token.SUB: // -x
if typ, ok := unop.X.Type().Underlying().(*types.Basic); ok {
if typ.Info()&types.IsInteger != 0 {
return b.CreateSub(llvm.ConstInt(x.Type(), 0, false), x, ""), nil
} else if typ.Info()&types.IsFloat != 0 {
return b.CreateFNeg(x, ""), nil
} else if typ.Info()&types.IsComplex != 0 {
// Negate both components of the complex number.
r := b.CreateExtractValue(x, 0, "r")
i := b.CreateExtractValue(x, 1, "i")
r = b.CreateFNeg(r, "")
i = b.CreateFNeg(i, "")
cplx := llvm.Undef(x.Type())
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
} else {
return llvm.Value{}, b.makeError(unop.Pos(), "todo: unknown basic type for negate: "+typ.String())
}
} else {
return llvm.Value{}, b.makeError(unop.Pos(), "todo: unknown type for negate: "+unop.X.Type().Underlying().String())
}
case token.MUL: // *x, dereference pointer
unop.X.Type().Underlying().(*types.Pointer).Elem()
if b.targetData.TypeAllocSize(x.Type().ElementType()) == 0 {
// zero-length data
return llvm.ConstNull(x.Type().ElementType()), nil
} else if strings.HasSuffix(unop.X.String(), "$funcaddr") {
// CGo function pointer. The cgo part has rewritten CGo function
// pointers as stub global variables of the form:
// var C.add unsafe.Pointer
// Instead of a load from the global, create a bitcast of the
// function pointer itself.
name := strings.TrimSuffix(unop.X.(*ssa.Global).Name(), "$funcaddr")
fn := b.getFunction(b.fn.Pkg.Members[name].(*ssa.Function))
if fn.IsNil() {
return llvm.Value{}, b.makeError(unop.Pos(), "cgo function not found: "+name)
}
return b.CreateBitCast(fn, b.i8ptrType, ""), nil
} else {
b.createNilCheck(unop.X, x, "deref")
load := b.CreateLoad(x, "")
return load, nil
}
case token.XOR: // ^x, toggle all bits in integer
return b.CreateXor(x, llvm.ConstInt(x.Type(), ^uint64(0), false), ""), nil
case token.ARROW: // <-x, receive from channel
return b.createChanRecv(unop), nil
default:
return llvm.Value{}, b.makeError(unop.Pos(), "todo: unknown unop")
}
}