You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

228 lines
8.5 KiB

package compiler
// This file implements functions that do certain safety checks that are
// required by the Go programming language.
import (
"fmt"
"go/token"
"go/types"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// createLookupBoundsCheck emits a bounds check before doing a lookup into a
// slice. This is required by the Go language spec: an index out of bounds must
// cause a panic.
func (b *builder) createLookupBoundsCheck(arrayLen, index llvm.Value, indexType types.Type) {
if b.fn.IsNoBounds() {
// The //go:nobounds pragma was added to the function to avoid bounds
// checking.
return
}
if index.Type().IntTypeWidth() < arrayLen.Type().IntTypeWidth() {
// Sometimes, the index can be e.g. an uint8 or int8, and we have to
// correctly extend that type.
if indexType.Underlying().(*types.Basic).Info()&types.IsUnsigned == 0 {
index = b.CreateZExt(index, arrayLen.Type(), "")
} else {
index = b.CreateSExt(index, arrayLen.Type(), "")
}
} else if index.Type().IntTypeWidth() > arrayLen.Type().IntTypeWidth() {
// The index is bigger than the array length type, so extend it.
arrayLen = b.CreateZExt(arrayLen, index.Type(), "")
}
// Now do the bounds check: index >= arrayLen
outOfBounds := b.CreateICmp(llvm.IntUGE, index, arrayLen, "")
b.createRuntimeAssert(outOfBounds, "lookup", "lookupPanic")
}
// createSliceBoundsCheck emits a bounds check before a slicing operation to make
// sure it is within bounds.
//
// This function is both used for slicing a slice (low and high have their
// normal meaning) and for creating a new slice, where 'capacity' means the
// biggest possible slice capacity, 'low' means len and 'high' means cap. The
// logic is the same in both cases.
func (b *builder) createSliceBoundsCheck(capacity, low, high, max llvm.Value, lowType, highType, maxType *types.Basic) {
if b.fn.IsNoBounds() {
// The //go:nobounds pragma was added to the function to avoid bounds
// checking.
return
}
// Extend the capacity integer to be at least as wide as low and high.
capacityType := capacity.Type()
if low.Type().IntTypeWidth() > capacityType.IntTypeWidth() {
capacityType = low.Type()
}
if high.Type().IntTypeWidth() > capacityType.IntTypeWidth() {
capacityType = high.Type()
}
if max.Type().IntTypeWidth() > capacityType.IntTypeWidth() {
capacityType = max.Type()
}
if capacityType != capacity.Type() {
capacity = b.CreateZExt(capacity, capacityType, "")
}
// Extend low and high to be the same size as capacity.
if low.Type().IntTypeWidth() < capacityType.IntTypeWidth() {
if lowType.Info()&types.IsUnsigned != 0 {
low = b.CreateZExt(low, capacityType, "")
} else {
low = b.CreateSExt(low, capacityType, "")
}
}
if high.Type().IntTypeWidth() < capacityType.IntTypeWidth() {
if highType.Info()&types.IsUnsigned != 0 {
high = b.CreateZExt(high, capacityType, "")
} else {
high = b.CreateSExt(high, capacityType, "")
}
}
if max.Type().IntTypeWidth() < capacityType.IntTypeWidth() {
if maxType.Info()&types.IsUnsigned != 0 {
max = b.CreateZExt(max, capacityType, "")
} else {
max = b.CreateSExt(max, capacityType, "")
}
}
// Now do the bounds check: low > high || high > capacity
outOfBounds1 := b.CreateICmp(llvm.IntUGT, low, high, "slice.lowhigh")
outOfBounds2 := b.CreateICmp(llvm.IntUGT, high, max, "slice.highmax")
outOfBounds3 := b.CreateICmp(llvm.IntUGT, max, capacity, "slice.maxcap")
outOfBounds := b.CreateOr(outOfBounds1, outOfBounds2, "slice.lowmax")
outOfBounds = b.CreateOr(outOfBounds, outOfBounds3, "slice.lowcap")
b.createRuntimeAssert(outOfBounds, "slice", "slicePanic")
}
// createChanBoundsCheck creates a bounds check before creating a new channel to
// check that the value is not too big for runtime.chanMake.
func (b *builder) createChanBoundsCheck(elementSize uint64, bufSize llvm.Value, bufSizeType *types.Basic, pos token.Pos) {
if b.fn.IsNoBounds() {
// The //go:nobounds pragma was added to the function to avoid bounds
// checking.
return
}
// Check whether the bufSize parameter must be cast to a wider integer for
// comparison.
if bufSize.Type().IntTypeWidth() < b.uintptrType.IntTypeWidth() {
if bufSizeType.Info()&types.IsUnsigned != 0 {
// Unsigned, so zero-extend to uint type.
bufSizeType = types.Typ[types.Uint]
bufSize = b.CreateZExt(bufSize, b.intType, "")
} else {
// Signed, so sign-extend to int type.
bufSizeType = types.Typ[types.Int]
bufSize = b.CreateSExt(bufSize, b.intType, "")
}
}
// Calculate (^uintptr(0)) >> 1, which is the max value that fits in an
// uintptr if uintptrs were signed.
maxBufSize := llvm.ConstLShr(llvm.ConstNot(llvm.ConstInt(b.uintptrType, 0, false)), llvm.ConstInt(b.uintptrType, 1, false))
if elementSize > maxBufSize.ZExtValue() {
b.addError(pos, fmt.Sprintf("channel element type is too big (%v bytes)", elementSize))
return
}
// Avoid divide-by-zero.
if elementSize == 0 {
elementSize = 1
}
// Make the maxBufSize actually the maximum allowed value (in number of
// elements in the channel buffer).
maxBufSize = llvm.ConstUDiv(maxBufSize, llvm.ConstInt(b.uintptrType, elementSize, false))
// Make sure maxBufSize has the same type as bufSize.
if maxBufSize.Type() != bufSize.Type() {
maxBufSize = llvm.ConstZExt(maxBufSize, bufSize.Type())
}
// Do the check for a too large (or negative) buffer size.
bufSizeTooBig := b.CreateICmp(llvm.IntUGE, bufSize, maxBufSize, "")
b.createRuntimeAssert(bufSizeTooBig, "chan", "chanMakePanic")
}
// createNilCheck checks whether the given pointer is nil, and panics if it is.
// It has no effect in well-behaved programs, but makes sure no uncaught nil
// pointer dereferences exist in valid Go code.
func (b *builder) createNilCheck(inst ssa.Value, ptr llvm.Value, blockPrefix string) {
// Check whether we need to emit this check at all.
if !ptr.IsAGlobalValue().IsNil() {
return
}
switch inst := inst.(type) {
case *ssa.IndexAddr:
// This pointer is the result of an index operation into a slice or
// array. Such slices/arrays are already bounds checked so the pointer
// must be a valid (non-nil) pointer. No nil checking is necessary.
return
case *ssa.Convert:
// This is a pointer that comes from a conversion from unsafe.Pointer.
// Don't do nil checking because this is unsafe code and the code should
// know what it is doing.
// Note: all *ssa.Convert instructions that result in a pointer must
// come from unsafe.Pointer. Testing here for unsafe.Pointer to be sure.
if inst.X.Type() == types.Typ[types.UnsafePointer] {
return
}
}
// Compare against nil.
var isnil llvm.Value
if ptr.Type().PointerAddressSpace() == 0 {
// Do the nil check using the isnil builtin, which marks the parameter
// as nocapture.
// The reason it has to go through a builtin, is that a regular icmp
// instruction may capture the pointer in LLVM semantics, see
// https://reviews.llvm.org/D60047 for details. Pointer capturing
// unfortunately breaks escape analysis, so we use this trick to let the
// functionattr pass know that this pointer doesn't really escape.
ptr = b.CreateBitCast(ptr, b.i8ptrType, "")
isnil = b.createRuntimeCall("isnil", []llvm.Value{ptr}, "")
} else {
// Do the nil check using a regular icmp. This can happen with function
// pointers on AVR, which don't benefit from escape analysis anyway.
nilptr := llvm.ConstPointerNull(ptr.Type())
isnil = b.CreateICmp(llvm.IntEQ, ptr, nilptr, "")
}
// Emit the nil check in IR.
b.createRuntimeAssert(isnil, blockPrefix, "nilPanic")
}
// createRuntimeAssert is a common function to create a new branch on an assert
// bool, calling an assert func if the assert value is true (1).
func (b *builder) createRuntimeAssert(assert llvm.Value, blockPrefix, assertFunc string) {
// Check whether we can resolve this check at compile time.
if !assert.IsAConstantInt().IsNil() {
val := assert.ZExtValue()
if val == 0 {
// Everything is constant so the check does not have to be emitted
// in IR. This avoids emitting some redundant IR.
return
}
}
faultBlock := b.ctx.AddBasicBlock(b.fn.LLVMFn, blockPrefix+".throw")
nextBlock := b.ctx.AddBasicBlock(b.fn.LLVMFn, blockPrefix+".next")
b.blockExits[b.currentBlock] = nextBlock // adjust outgoing block for phi nodes
// Now branch to the out-of-bounds or the regular block.
b.CreateCondBr(assert, faultBlock, nextBlock)
// Fail: the assert triggered so panic.
b.SetInsertPointAtEnd(faultBlock)
b.createRuntimeCall(assertFunc, nil, "")
b.CreateUnreachable()
// Ok: assert didn't trigger so continue normally.
b.SetInsertPointAtEnd(nextBlock)
}