You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

578 lines
17 KiB

// +build gc.conservative
package runtime
// This memory manager is a textbook mark/sweep implementation, heavily inspired
// by the MicroPython garbage collector.
//
// The memory manager internally uses blocks of 4 pointers big (see
// bytesPerBlock). Every allocation first rounds up to this size to align every
// block. It will first try to find a chain of blocks that is big enough to
// satisfy the allocation. If it finds one, it marks the first one as the "head"
// and the following ones (if any) as the "tail" (see below). If it cannot find
// any free space, it will perform a garbage collection cycle and try again. If
// it still cannot find any free space, it gives up.
//
// Every block has some metadata, which is stored at the beginning of the heap.
// The four states are "free", "head", "tail", and "mark". During normal
// operation, there are no marked blocks. Every allocated object starts with a
// "head" and is followed by "tail" blocks. The reason for this distinction is
// that this way, the start and end of every object can be found easily.
//
// Metadata is stored in a special area at the end of the heap, in the area
// metadataStart..heapEnd. The actual blocks are stored in
// heapStart..metadataStart.
//
// More information:
// https://github.com/micropython/micropython/wiki/Memory-Manager
// "The Garbage Collection Handbook" by Richard Jones, Antony Hosking, Eliot
// Moss.
import (
"internal/task"
"runtime/interrupt"
"unsafe"
)
// Set gcDebug to true to print debug information.
const (
gcDebug = false // print debug info
gcAsserts = gcDebug // perform sanity checks
)
// Some globals + constants for the entire GC.
const (
wordsPerBlock = 4 // number of pointers in an allocated block
bytesPerBlock = wordsPerBlock * unsafe.Sizeof(heapStart)
stateBits = 2 // how many bits a block state takes (see blockState type)
blocksPerStateByte = 8 / stateBits
markStackSize = 4 * unsafe.Sizeof((*int)(nil)) // number of to-be-marked blocks to queue before forcing a rescan
)
var (
metadataStart unsafe.Pointer // pointer to the start of the heap
nextAlloc gcBlock // the next block that should be tried by the allocator
endBlock gcBlock // the block just past the end of the available space
)
// zeroSizedAlloc is just a sentinel that gets returned when allocating 0 bytes.
var zeroSizedAlloc uint8
// Provide some abstraction over heap blocks.
// blockState stores the four states in which a block can be. It is two bits in
// size.
type blockState uint8
const (
blockStateFree blockState = 0 // 00
blockStateHead blockState = 1 // 01
blockStateTail blockState = 2 // 10
blockStateMark blockState = 3 // 11
blockStateMask blockState = 3 // 11
)
// String returns a human-readable version of the block state, for debugging.
func (s blockState) String() string {
switch s {
case blockStateFree:
return "free"
case blockStateHead:
return "head"
case blockStateTail:
return "tail"
case blockStateMark:
return "mark"
default:
// must never happen
return "!err"
}
}
// The block number in the pool.
type gcBlock uintptr
// blockFromAddr returns a block given an address somewhere in the heap (which
// might not be heap-aligned).
func blockFromAddr(addr uintptr) gcBlock {
if gcAsserts && (addr < heapStart || addr >= uintptr(metadataStart)) {
runtimePanic("gc: trying to get block from invalid address")
}
return gcBlock((addr - heapStart) / bytesPerBlock)
}
// Return a pointer to the start of the allocated object.
func (b gcBlock) pointer() unsafe.Pointer {
return unsafe.Pointer(b.address())
}
// Return the address of the start of the allocated object.
func (b gcBlock) address() uintptr {
return heapStart + uintptr(b)*bytesPerBlock
}
// findHead returns the head (first block) of an object, assuming the block
// points to an allocated object. It returns the same block if this block
// already points to the head.
func (b gcBlock) findHead() gcBlock {
for b.state() == blockStateTail {
b--
}
if gcAsserts {
if b.state() != blockStateHead && b.state() != blockStateMark {
runtimePanic("gc: found tail without head")
}
}
return b
}
// findNext returns the first block just past the end of the tail. This may or
// may not be the head of an object.
func (b gcBlock) findNext() gcBlock {
if b.state() == blockStateHead || b.state() == blockStateMark {
b++
}
for b.state() == blockStateTail {
b++
}
return b
}
// State returns the current block state.
func (b gcBlock) state() blockState {
stateBytePtr := (*uint8)(unsafe.Pointer(uintptr(metadataStart) + uintptr(b/blocksPerStateByte)))
return blockState(*stateBytePtr>>((b%blocksPerStateByte)*2)) % 4
}
// setState sets the current block to the given state, which must contain more
// bits than the current state. Allowed transitions: from free to any state and
// from head to mark.
func (b gcBlock) setState(newState blockState) {
stateBytePtr := (*uint8)(unsafe.Pointer(uintptr(metadataStart) + uintptr(b/blocksPerStateByte)))
*stateBytePtr |= uint8(newState << ((b % blocksPerStateByte) * 2))
if gcAsserts && b.state() != newState {
runtimePanic("gc: setState() was not successful")
}
}
// markFree sets the block state to free, no matter what state it was in before.
func (b gcBlock) markFree() {
stateBytePtr := (*uint8)(unsafe.Pointer(uintptr(metadataStart) + uintptr(b/blocksPerStateByte)))
*stateBytePtr &^= uint8(blockStateMask << ((b % blocksPerStateByte) * 2))
if gcAsserts && b.state() != blockStateFree {
runtimePanic("gc: markFree() was not successful")
}
}
// unmark changes the state of the block from mark to head. It must be marked
// before calling this function.
func (b gcBlock) unmark() {
if gcAsserts && b.state() != blockStateMark {
runtimePanic("gc: unmark() on a block that is not marked")
}
clearMask := blockStateMask ^ blockStateHead // the bits to clear from the state
stateBytePtr := (*uint8)(unsafe.Pointer(uintptr(metadataStart) + uintptr(b/blocksPerStateByte)))
*stateBytePtr &^= uint8(clearMask << ((b % blocksPerStateByte) * 2))
if gcAsserts && b.state() != blockStateHead {
runtimePanic("gc: unmark() was not successful")
}
}
// Initialize the memory allocator.
// No memory may be allocated before this is called. That means the runtime and
// any packages the runtime depends upon may not allocate memory during package
// initialization.
func initHeap() {
calculateHeapAddresses()
// Set all block states to 'free'.
metadataSize := heapEnd - uintptr(metadataStart)
memzero(unsafe.Pointer(metadataStart), metadataSize)
}
// setHeapEnd is called to expand the heap. The heap can only grow, not shrink.
// Also, the heap should grow substantially each time otherwise growing the heap
// will be expensive.
func setHeapEnd(newHeapEnd uintptr) {
if gcAsserts && newHeapEnd <= heapEnd {
panic("gc: setHeapEnd didn't grow the heap")
}
// Save some old variables we need later.
oldMetadataStart := metadataStart
oldMetadataSize := heapEnd - uintptr(metadataStart)
// Increase the heap. After setting the new heapEnd, calculateHeapAddresses
// will update metadataStart and the memcpy will copy the metadata to the
// new location.
// The new metadata will be bigger than the old metadata, but a simple
// memcpy is fine as it only copies the old metadata and the new memory will
// have been zero initialized.
heapEnd = newHeapEnd
calculateHeapAddresses()
memcpy(metadataStart, oldMetadataStart, oldMetadataSize)
// Note: the memcpy above assumes the heap grows enough so that the new
// metadata does not overlap the old metadata. If that isn't true, memmove
// should be used to avoid corruption.
// This assert checks whether that's true.
if gcAsserts && uintptr(metadataStart) < uintptr(oldMetadataStart)+oldMetadataSize {
panic("gc: heap did not grow enough at once")
}
}
// calculateHeapAddresses initializes variables such as metadataStart and
// numBlock based on heapStart and heapEnd.
//
// This function can be called again when the heap size increases. The caller is
// responsible for copying the metadata to the new location.
func calculateHeapAddresses() {
totalSize := heapEnd - heapStart
// Allocate some memory to keep 2 bits of information about every block.
metadataSize := totalSize / (blocksPerStateByte * bytesPerBlock)
metadataStart = unsafe.Pointer(heapEnd - metadataSize)
// Use the rest of the available memory as heap.
numBlocks := (uintptr(metadataStart) - heapStart) / bytesPerBlock
endBlock = gcBlock(numBlocks)
if gcDebug {
println("heapStart: ", heapStart)
println("heapEnd: ", heapEnd)
println("total size: ", totalSize)
println("metadata size: ", metadataSize)
println("metadataStart: ", metadataStart)
println("# of blocks: ", numBlocks)
println("# of block states:", metadataSize*blocksPerStateByte)
}
if gcAsserts && metadataSize*blocksPerStateByte < numBlocks {
// sanity check
runtimePanic("gc: metadata array is too small")
}
}
// alloc tries to find some free space on the heap, possibly doing a garbage
// collection cycle if needed. If no space is free, it panics.
//go:noinline
func alloc(size uintptr) unsafe.Pointer {
if size == 0 {
return unsafe.Pointer(&zeroSizedAlloc)
}
neededBlocks := (size + (bytesPerBlock - 1)) / bytesPerBlock
// Continue looping until a run of free blocks has been found that fits the
// requested size.
index := nextAlloc
numFreeBlocks := uintptr(0)
heapScanCount := uint8(0)
for {
if index == nextAlloc {
if heapScanCount == 0 {
heapScanCount = 1
} else if heapScanCount == 1 {
// The entire heap has been searched for free memory, but none
// could be found. Run a garbage collection cycle to reclaim
// free memory and try again.
heapScanCount = 2
GC()
} else {
// Even after garbage collection, no free memory could be found.
// Try to increase heap size.
if growHeap() {
// Success, the heap was increased in size. Try again with a
// larger heap.
} else {
// Unfortunately the heap could not be increased. This
// happens on baremetal systems for example (where all
// available RAM has already been dedicated to the heap).
runtimePanic("out of memory")
}
}
}
// Wrap around the end of the heap.
if index == endBlock {
index = 0
// Reset numFreeBlocks as allocations cannot wrap.
numFreeBlocks = 0
}
// Is the block we're looking at free?
if index.state() != blockStateFree {
// This block is in use. Try again from this point.
numFreeBlocks = 0
index++
continue
}
numFreeBlocks++
index++
// Are we finished?
if numFreeBlocks == neededBlocks {
// Found a big enough range of free blocks!
nextAlloc = index
thisAlloc := index - gcBlock(neededBlocks)
if gcDebug {
println("found memory:", thisAlloc.pointer(), int(size))
}
// Set the following blocks as being allocated.
thisAlloc.setState(blockStateHead)
for i := thisAlloc + 1; i != nextAlloc; i++ {
i.setState(blockStateTail)
}
// Return a pointer to this allocation.
pointer := thisAlloc.pointer()
memzero(pointer, size)
return pointer
}
}
}
func free(ptr unsafe.Pointer) {
// TODO: free blocks on request, when the compiler knows they're unused.
}
// GC performs a garbage collection cycle.
func GC() {
if gcDebug {
println("running collection cycle...")
}
// Mark phase: mark all reachable objects, recursively.
markStack()
markGlobals()
if baremetal && hasScheduler {
// Channel operations in interrupts may move task pointers around while we are marking.
// Therefore we need to scan the runqueue seperately.
var markedTaskQueue task.Queue
runqueueScan:
for !runqueue.Empty() {
// Pop the next task off of the runqueue.
t := runqueue.Pop()
// Mark the task if it has not already been marked.
markRoot(uintptr(unsafe.Pointer(&runqueue)), uintptr(unsafe.Pointer(t)))
// Push the task onto our temporary queue.
markedTaskQueue.Push(t)
}
finishMark()
// Restore the runqueue.
i := interrupt.Disable()
if !runqueue.Empty() {
// Something new came in while finishing the mark.
interrupt.Restore(i)
goto runqueueScan
}
runqueue = markedTaskQueue
interrupt.Restore(i)
} else {
finishMark()
}
// Sweep phase: free all non-marked objects and unmark marked objects for
// the next collection cycle.
sweep()
// Show how much has been sweeped, for debugging.
if gcDebug {
dumpHeap()
}
}
// markRoots reads all pointers from start to end (exclusive) and if they look
// like a heap pointer and are unmarked, marks them and scans that object as
// well (recursively). The start and end parameters must be valid pointers and
// must be aligned.
func markRoots(start, end uintptr) {
if gcDebug {
println("mark from", start, "to", end, int(end-start))
}
if gcAsserts {
if start >= end {
runtimePanic("gc: unexpected range to mark")
}
}
for addr := start; addr != end; addr += unsafe.Alignof(addr) {
root := *(*uintptr)(unsafe.Pointer(addr))
markRoot(addr, root)
}
}
// stackOverflow is a flag which is set when the GC scans too deep while marking.
// After it is set, all marked allocations must be re-scanned.
var stackOverflow bool
// startMark starts the marking process on a root and all of its children.
func startMark(root gcBlock) {
var stack [markStackSize]gcBlock
stack[0] = root
root.setState(blockStateMark)
stackLen := 1
for stackLen > 0 {
// Pop a block off of the stack.
stackLen--
block := stack[stackLen]
if gcDebug {
println("stack popped, remaining stack:", stackLen)
}
// Scan all pointers inside the block.
start, end := block.address(), block.findNext().address()
for addr := start; addr != end; addr += unsafe.Alignof(addr) {
// Load the word.
word := *(*uintptr)(unsafe.Pointer(addr))
if !looksLikePointer(word) {
// Not a heap pointer.
continue
}
// Find the corresponding memory block.
referencedBlock := blockFromAddr(word)
if referencedBlock.state() == blockStateFree {
// The to-be-marked object doesn't actually exist.
// This is probably a false positive.
if gcDebug {
println("found reference to free memory:", word, "at:", addr)
}
continue
}
// Move to the block's head.
referencedBlock = referencedBlock.findHead()
if referencedBlock.state() == blockStateMark {
// The block has already been marked by something else.
continue
}
// Mark block.
if gcDebug {
println("marking block:", referencedBlock)
}
referencedBlock.setState(blockStateMark)
if stackLen == len(stack) {
// The stack is full.
// It is necessary to rescan all marked blocks once we are done.
stackOverflow = true
if gcDebug {
println("gc stack overflowed")
}
continue
}
// Push the pointer onto the stack to be scanned later.
stack[stackLen] = referencedBlock
stackLen++
}
}
}
// finishMark finishes the marking process by processing all stack overflows.
func finishMark() {
for stackOverflow {
// Re-mark all blocks.
stackOverflow = false
for block := gcBlock(0); block < endBlock; block++ {
if block.state() != blockStateMark {
// Block is not marked, so we do not need to rescan it.
continue
}
// Re-mark the block.
startMark(block)
}
}
}
// mark a GC root at the address addr.
func markRoot(addr, root uintptr) {
if looksLikePointer(root) {
block := blockFromAddr(root)
if block.state() == blockStateFree {
// The to-be-marked object doesn't actually exist.
// This could either be a dangling pointer (oops!) but most likely
// just a false positive.
return
}
head := block.findHead()
if head.state() != blockStateMark {
if gcDebug {
println("found unmarked pointer", root, "at address", addr)
}
startMark(head)
}
}
}
// Sweep goes through all memory and frees unmarked memory.
func sweep() {
freeCurrentObject := false
for block := gcBlock(0); block < endBlock; block++ {
switch block.state() {
case blockStateHead:
// Unmarked head. Free it, including all tail blocks following it.
block.markFree()
freeCurrentObject = true
case blockStateTail:
if freeCurrentObject {
// This is a tail object following an unmarked head.
// Free it now.
block.markFree()
}
case blockStateMark:
// This is a marked object. The next tail blocks must not be freed,
// but the mark bit must be removed so the next GC cycle will
// collect this object if it is unreferenced then.
block.unmark()
freeCurrentObject = false
}
}
}
// looksLikePointer returns whether this could be a pointer. Currently, it
// simply returns whether it lies anywhere in the heap. Go allows interior
// pointers so we can't check alignment or anything like that.
func looksLikePointer(ptr uintptr) bool {
return ptr >= heapStart && ptr < uintptr(metadataStart)
}
// dumpHeap can be used for debugging purposes. It dumps the state of each heap
// block to standard output.
func dumpHeap() {
println("heap:")
for block := gcBlock(0); block < endBlock; block++ {
switch block.state() {
case blockStateHead:
print("*")
case blockStateTail:
print("-")
case blockStateMark:
print("#")
default: // free
print("·")
}
if block%64 == 63 || block+1 == endBlock {
println()
}
}
}
func KeepAlive(x interface{}) {
// Unimplemented. Only required with SetFinalizer().
}
func SetFinalizer(obj interface{}, finalizer interface{}) {
// Unimplemented.
}