You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

255 lines
7.2 KiB

package compiler
import (
"errors"
"github.com/tinygo-org/tinygo/transform"
"tinygo.org/x/go-llvm"
)
// Run the LLVM optimizer over the module.
// The inliner can be disabled (if necessary) by passing 0 to the inlinerThreshold.
func (c *Compiler) Optimize(optLevel, sizeLevel int, inlinerThreshold uint) error {
builder := llvm.NewPassManagerBuilder()
defer builder.Dispose()
builder.SetOptLevel(optLevel)
builder.SetSizeLevel(sizeLevel)
if inlinerThreshold != 0 {
builder.UseInlinerWithThreshold(inlinerThreshold)
}
builder.AddCoroutinePassesToExtensionPoints()
if c.PanicStrategy == "trap" {
c.replacePanicsWithTrap() // -panic=trap
}
// Run function passes for each function.
funcPasses := llvm.NewFunctionPassManagerForModule(c.mod)
defer funcPasses.Dispose()
builder.PopulateFunc(funcPasses)
funcPasses.InitializeFunc()
for fn := c.mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
funcPasses.RunFunc(fn)
}
funcPasses.FinalizeFunc()
if optLevel > 0 {
// Run some preparatory passes for the Go optimizer.
goPasses := llvm.NewPassManager()
defer goPasses.Dispose()
goPasses.AddGlobalOptimizerPass()
goPasses.AddConstantPropagationPass()
goPasses.AddAggressiveDCEPass()
goPasses.AddFunctionAttrsPass()
goPasses.Run(c.mod)
// Run Go-specific optimization passes.
transform.OptimizeMaps(c.mod)
c.OptimizeStringToBytes()
transform.OptimizeAllocs(c.mod)
c.LowerInterfaces()
c.LowerFuncValues()
// After interfaces are lowered, there are many more opportunities for
// interprocedural optimizations. To get them to work, function
// attributes have to be updated first.
goPasses.Run(c.mod)
// Run TinyGo-specific interprocedural optimizations.
transform.OptimizeAllocs(c.mod)
c.OptimizeStringToBytes()
// Lower runtime.isnil calls to regular nil comparisons.
isnil := c.mod.NamedFunction("runtime.isnil")
if !isnil.IsNil() {
for _, use := range getUses(isnil) {
c.builder.SetInsertPointBefore(use)
ptr := use.Operand(0)
if !ptr.IsABitCastInst().IsNil() {
ptr = ptr.Operand(0)
}
nilptr := llvm.ConstPointerNull(ptr.Type())
icmp := c.builder.CreateICmp(llvm.IntEQ, ptr, nilptr, "")
use.ReplaceAllUsesWith(icmp)
use.EraseFromParentAsInstruction()
}
}
err := c.LowerGoroutines()
if err != nil {
return err
}
} else {
// Must be run at any optimization level.
c.LowerInterfaces()
c.LowerFuncValues()
err := c.LowerGoroutines()
if err != nil {
return err
}
}
if err := c.Verify(); err != nil {
return errors.New("optimizations caused a verification failure")
}
if sizeLevel >= 2 {
// Set the "optsize" attribute to make slightly smaller binaries at the
// cost of some performance.
kind := llvm.AttributeKindID("optsize")
attr := c.ctx.CreateEnumAttribute(kind, 0)
for fn := c.mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
fn.AddFunctionAttr(attr)
}
}
// After TinyGo-specific transforms have finished, undo exporting these functions.
for _, name := range functionsUsedInTransforms {
fn := c.mod.NamedFunction(name)
if fn.IsNil() {
continue
}
fn.SetLinkage(llvm.InternalLinkage)
}
// Run function passes again, because without it, llvm.coro.size.i32()
// doesn't get lowered.
for fn := c.mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
funcPasses.RunFunc(fn)
}
funcPasses.FinalizeFunc()
// Run module passes.
modPasses := llvm.NewPassManager()
defer modPasses.Dispose()
builder.Populate(modPasses)
modPasses.Run(c.mod)
hasGCPass := c.addGlobalsBitmap()
hasGCPass = c.makeGCStackSlots() || hasGCPass
if hasGCPass {
if err := c.Verify(); err != nil {
return errors.New("GC pass caused a verification failure")
}
}
return nil
}
// Replace panic calls with calls to llvm.trap, to reduce code size. This is the
// -panic=trap intrinsic.
func (c *Compiler) replacePanicsWithTrap() {
trap := c.mod.NamedFunction("llvm.trap")
for _, name := range []string{"runtime._panic", "runtime.runtimePanic"} {
fn := c.mod.NamedFunction(name)
if fn.IsNil() {
continue
}
for _, use := range getUses(fn) {
if use.IsACallInst().IsNil() || use.CalledValue() != fn {
panic("expected use of a panic function to be a call")
}
c.builder.SetInsertPointBefore(use)
c.builder.CreateCall(trap, nil, "")
}
}
}
// Transform runtime.stringToBytes(...) calls into const []byte slices whenever
// possible. This optimizes the following pattern:
// w.Write([]byte("foo"))
// where Write does not store to the slice.
func (c *Compiler) OptimizeStringToBytes() {
stringToBytes := c.mod.NamedFunction("runtime.stringToBytes")
if stringToBytes.IsNil() {
// nothing to optimize
return
}
for _, call := range getUses(stringToBytes) {
strptr := call.Operand(0)
strlen := call.Operand(1)
// strptr is always constant because strings are always constant.
convertedAllUses := true
for _, use := range getUses(call) {
nilValue := llvm.Value{}
if use.IsAExtractValueInst() == nilValue {
convertedAllUses = false
continue
}
switch use.Type().TypeKind() {
case llvm.IntegerTypeKind:
// A length (len or cap). Propagate the length value.
use.ReplaceAllUsesWith(strlen)
use.EraseFromParentAsInstruction()
case llvm.PointerTypeKind:
// The string pointer itself.
if !c.isReadOnly(use) {
convertedAllUses = false
continue
}
use.ReplaceAllUsesWith(strptr)
use.EraseFromParentAsInstruction()
default:
// should not happen
panic("unknown return type of runtime.stringToBytes: " + use.Type().String())
}
}
if convertedAllUses {
// Call to runtime.stringToBytes can be eliminated: both the input
// and the output is constant.
call.EraseFromParentAsInstruction()
}
}
}
// Check whether the given value (which is of pointer type) is never stored to.
func (c *Compiler) isReadOnly(value llvm.Value) bool {
uses := getUses(value)
for _, use := range uses {
nilValue := llvm.Value{}
if use.IsAGetElementPtrInst() != nilValue {
if !c.isReadOnly(use) {
return false
}
} else if use.IsACallInst() != nilValue {
if !c.hasFlag(use, value, "readonly") {
return false
}
} else {
// Unknown instruction, might not be readonly.
return false
}
}
return true
}
// Check whether all uses of this param as parameter to the call have the given
// flag. In most cases, there will only be one use but a function could take the
// same parameter twice, in which case both must have the flag.
// A flag can be any enum flag, like "readonly".
func (c *Compiler) hasFlag(call, param llvm.Value, kind string) bool {
fn := call.CalledValue()
nilValue := llvm.Value{}
if fn.IsAFunction() == nilValue {
// This is not a function but something else, like a function pointer.
return false
}
kindID := llvm.AttributeKindID(kind)
for i := 0; i < fn.ParamsCount(); i++ {
if call.Operand(i) != param {
// This is not the parameter we're checking.
continue
}
index := i + 1 // param attributes start at 1
attr := fn.GetEnumAttributeAtIndex(index, kindID)
nilAttribute := llvm.Attribute{}
if attr == nilAttribute {
// At least one parameter doesn't have the flag (there may be
// multiple).
return false
}
}
return true
}