You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1010 lines
25 KiB

/* $OpenBSD: subr_autoconf.c,v 1.27 2000/04/09 22:46:03 deraadt Exp $ */
/* $NetBSD: subr_autoconf.c,v 1.21 1996/04/04 06:06:18 cgd Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratories.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
*
* @(#)subr_autoconf.c 8.1 (Berkeley) 6/10/93
*/
#include <sys/param.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <machine/limits.h>
/* Extra stuff from Matthias Drochner <drochner@zelux6.zel.kfa-juelich.de> */
#include <sys/queue.h>
#include <stdbool.h>
/* Bleh! Need device_register proto */
#if defined(__alpha__) || defined(hp300)
#include <machine/autoconf.h>
#endif /* __alpha__ || hp300 */
#include <mod_usb_ohci.h>
/*
* Autoconfiguration subroutines.
*/
#ifdef INTERFACE_3A780E
#define DEV_MAX_NUM 8
char *b_name[DEV_MAX_NUM];
int b_idenum[DEV_MAX_NUM];
#endif
typedef int (*cond_predicate_t) __P((struct device *, void *));
/*
* ioconf.c exports exactly two names: cfdata and cfroots. All system
* devices and drivers are found via these tables.
*/
extern short cfroots[];
extern int ohci_index;
extern int dl_ohci_kbd(void);//deal with usb keyboard
#define ROOT ((struct device *)NULL)
struct matchinfo {
cfmatch_t fn;
struct device *parent;
void *match, *aux;
int indirect, pri;
};
struct cftable_head allcftables;
static struct cftable staticcftable = {
cfdata
};
#ifndef AUTOCONF_VERBOSE
#define AUTOCONF_VERBOSE 0
#endif /* AUTOCONF_VERBOSE */
int autoconf_verbose = AUTOCONF_VERBOSE; /* trace probe calls */
static char *number __P((char *, int));
static void mapply __P((struct matchinfo *, struct cfdata *));
struct deferred_config {
TAILQ_ENTRY(deferred_config) dc_queue;
struct device *dc_dev;
void (*dc_func) __P((struct device *));
};
TAILQ_HEAD(, deferred_config) deferred_config_queue;
void config_process_deferred_children __P((struct device *));
struct devicelist alldevs; /* list of all devices */
struct evcntlist allevents; /* list of all event counters */
/*
* Initialize autoconfiguration data structures. This occurs before console
* initialization as that might require use of this subsystem. Furthermore
* this means that malloc et al. isn't yet available.
*/
void
config_init()
{
TAILQ_INIT(&deferred_config_queue);
TAILQ_INIT(&alldevs);
TAILQ_INIT(&allevents);
TAILQ_INIT(&allcftables);
TAILQ_INSERT_TAIL(&allcftables, &staticcftable, list);
}
/*
* Apply the matching function and choose the best. This is used
* a few times and we want to keep the code small.
*/
void
mapply(m, cf)
register struct matchinfo *m;
register struct cfdata *cf;
{
register int pri;
void *match;
if (m->indirect)
match = config_make_softc(m->parent, cf);
else
match = cf;
if (autoconf_verbose) {
printf(">>> probing for %s", cf->cf_driver->cd_name);
if (cf->cf_fstate == FSTATE_STAR)
printf("*\n");
else
printf("%d\n", cf->cf_unit);
}
if (m->fn != NULL)
pri = (*m->fn)(m->parent, match, m->aux);
else {
if (cf->cf_attach->ca_match == NULL) {
panic("mapply: no match function for '%s' device",
cf->cf_driver->cd_name);
}
pri = (*cf->cf_attach->ca_match)(m->parent, match, m->aux);
}
if (autoconf_verbose)
printf(">>> %s probe returned %d\n", cf->cf_driver->cd_name,
pri);
if (pri > m->pri) {
if (m->indirect && m->match)
free(m->match, M_DEVBUF);
m->match = match;
m->pri = pri;
} else {
if (m->indirect)
free(match, M_DEVBUF);
}
}
/*
* Iterate over all potential children of some device, calling the given
* function (default being the child's match function) for each one.
* Nonzero returns are matches; the highest value returned is considered
* the best match. Return the `found child' if we got a match, or NULL
* otherwise. The `aux' pointer is simply passed on through.
*
* Note that this function is designed so that it can be used to apply
* an arbitrary function to all potential children (its return value
* can be ignored).
*/
void *
config_search(fn, parent, aux)
cfmatch_t fn;
register struct device *parent;
void *aux;
{
register struct cfdata *cf;
register short *p;
struct matchinfo m;
struct cftable *t;
m.fn = fn;
m.parent = parent;
m.match = NULL;
m.aux = aux;
m.indirect = parent && parent->dv_cfdata->cf_driver->cd_indirect;
m.pri = 0;
for(t = allcftables.tqh_first; t; t = t->list.tqe_next) {
for (cf = t->tab; cf->cf_driver; cf++) {
/*
* Skip cf if no longer eligible, otherwise scan
* through parents for one matching `parent',
* and try match function.
*/
if (cf->cf_fstate == FSTATE_FOUND)
continue;
if (cf->cf_fstate == FSTATE_DNOTFOUND ||
cf->cf_fstate == FSTATE_DSTAR)
continue;
for (p = cf->cf_parents; *p >= 0; p++)
if (parent->dv_cfdata == &(t->tab)[*p])
mapply(&m, cf);
}
}
if (autoconf_verbose) {
if (m.match)
printf(">>> %s probe won\n",
((struct cfdata *)m.match)->cf_driver->cd_name);
else
printf(">>> no winning probe\n");
}
return (m.match);
}
/*
* Iterate over all potential children of some device, calling the given
* function for each one.
*
* Note that this function is designed so that it can be used to apply
* an arbitrary function to all potential children (its return value
* can be ignored).
*/
void
config_scan(fn, parent)
cfscan_t fn;
register struct device *parent;
{
register struct cfdata *cf;
register short *p;
void *match;
int indirect;
struct cftable *t;
indirect = parent && parent->dv_cfdata->cf_driver->cd_indirect;
for (t = allcftables.tqh_first; t; t = t->list.tqe_next) {
for (cf = t->tab; cf->cf_driver; cf++) {
/*
* Skip cf if no longer eligible, otherwise scan
* through parents for one matching `parent',
* and try match function.
*/
if (cf->cf_fstate == FSTATE_FOUND)
continue;
if (cf->cf_fstate == FSTATE_DNOTFOUND ||
cf->cf_fstate == FSTATE_DSTAR)
continue;
for (p = cf->cf_parents; *p >= 0; p++)
if (parent->dv_cfdata == &(t->tab)[*p]) {
match = indirect?
config_make_softc(parent, cf) :
(void *)cf;
(*fn)(parent, match);
}
}
}
}
/*
* Find the given root device.
* This is much like config_search, but there is no parent.
*/
void *
config_rootsearch(fn, rootname, aux)
register cfmatch_t fn;
register char *rootname;
register void *aux;
{
register struct cfdata *cf;
register short *p;
struct matchinfo m;
m.fn = fn;
m.parent = ROOT;
m.match = NULL;
m.aux = aux;
m.indirect = 0;
m.pri = 0;
/*
* Look at root entries for matching name. We do not bother
* with found-state here since only one root should ever be
* searched (and it must be done first).
*/
for (p = cfroots; *p >= 0; p++) {
cf = &cfdata[*p];
if (strcmp(cf->cf_driver->cd_name, rootname) == 0)
mapply(&m, cf);
}
return (m.match);
}
char *msgs[3] = { "", " not configured\n", " unsupported\n" };
struct device *sata_devs[6]={NULL}; //array for pointers of sata devs
extern int sata_flags[6];
/*
* The given `aux' argument describes a device that has been found
* on the given parent, but not necessarily configured. Locate the
* configuration data for that device (using the submatch function
* provided, or using candidates' cd_match configuration driver
* functions) and attach it, and return true. If the device was
* not configured, call the given `print' function and return 0.
*/
struct device *
config_found_sm(parent, aux, print, submatch)
struct device *parent;
void *aux;
cfprint_t print;
cfmatch_t submatch;
{
void *match;
struct device *dev = NULL;
static int i = 1;
char tmp[10] = {0};
int len = 0 ;
if ((match = config_search(submatch, parent, aux)) != NULL)
{
dev =config_attach(parent, match, aux, print);
strcpy(tmp,parent->dv_xname);
len = strlen(tmp);
if((sata_flags[i] == 1) && (len) && (tmp[len -1] == '0'))
{
sata_devs[i] = dev; //save pointer of dev when port1 and port2 have satadisks controlled by pciide0
i++;
}
return dev;
}
if (print)
printf(msgs[(*print)(aux, parent->dv_xname)]);
#if NMOD_USB_OHCI
if(ohci_index)
dl_ohci_kbd(); //deal with usb keyboard
#endif
return (NULL);
}
/*
* As above, but for root devices.
*/
struct device *
config_rootfound(rootname, aux)
char *rootname;
void *aux;
{
void *match;
if ((match = config_rootsearch((cfmatch_t)NULL, rootname, aux)) != NULL)
return (config_attach(ROOT, match, aux, (cfprint_t)NULL));
printf("root device %s not configured\n", rootname);
return (NULL);
}
/* just like sprintf(buf, "%d") except that it works from the end */
char *
number(ep, n)
register char *ep;
register int n;
{
*--ep = 0;
while (n >= 10) {
*--ep = (n % 10) + '0';
n /= 10;
}
*--ep = n + '0';
return (ep);
}
/*
* Attach a found device. Allocates memory for device variables.
*/
#ifdef PCIE_GRAPHIC_CARD
extern bool is_pcie_vga_card();
#endif
struct device *
config_attach(parent, match, aux, print)
register struct device *parent;
void *match;
register void *aux;
cfprint_t print;
{
register struct cfdata *cf;
register struct device *dev;
register struct cfdriver *cd;
register struct cfattach *ca;
struct cftable *t;
if (parent && parent->dv_cfdata->cf_driver->cd_indirect) {
dev = match;
cf = dev->dv_cfdata;
} else {
cf = match;
dev = config_make_softc(parent, cf);
#ifdef LOONGSON_3A2H
#ifdef PCIE_GRAPHIC_CARD
if ((strcmp(dev->dv_xname,"pcibr2") == 0) && (is_x4_mode() || is_pcie_vga_card()) )
#else
if ((strcmp(dev->dv_xname,"pcibr2") == 0) && is_x4_mode())
#endif
return NULL;
#endif
}
cd = cf->cf_driver;
ca = cf->cf_attach;
cd->cd_devs[dev->dv_unit] = dev;
/*
* If this is a "STAR" device and we used the last unit, prepare for
* another one.
*/
if (cf->cf_fstate == FSTATE_STAR) {
if (dev->dv_unit == cf->cf_unit)
cf->cf_unit++;
} else
cf->cf_fstate = FSTATE_FOUND;
TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
device_ref(dev);
if (parent == ROOT)
printf("%s (root)", dev->dv_xname);
else {
#ifdef INTERFACE_3A780E
{
static i = 0;
if (strstr(dev->dv_xname, "wd") != NULL || strstr(dev->dv_xname, "cd") != NULL || strstr(dev->dv_xname,"usb") != NULL) {
/* use for BIOS code find the drive */
b_name[i] = dev->dv_xname;
if (strstr(parent->dv_xname, "pciide") != NULL) {
/* use for BIOS code to differentiate the IDE controller or SATA controller. b_idenum = 0 : SATA controller, b_idenum = 1 : IDE controller */
b_idenum[i] = parent->dv_xname[6] - 48;
}
i++;
}
b_name[i] = NULL;
}
#endif
printf("%s at %s", dev->dv_xname, parent->dv_xname);
if (print)
(void) (*print)(aux, (char *)0);
#if NMOD_USB_OHCI
if(ohci_index)
dl_ohci_kbd(); //deal with usb keyboard
#endif
}
/*
* Before attaching, clobber any unfound devices that are
* otherwise identical, or bump the unit number on all starred
* cfdata for this device.
*/
for (t = allcftables.tqh_first; t; t = t->list.tqe_next) {
for (cf = t->tab; cf->cf_driver; cf++)
if (cf->cf_driver == cd &&
cf->cf_unit == dev->dv_unit) {
if (cf->cf_fstate == FSTATE_NOTFOUND)
cf->cf_fstate = FSTATE_FOUND;
if (cf->cf_fstate == FSTATE_STAR)
cf->cf_unit++;
}
}
#if defined(__alpha__) || defined(hp300)
device_register(dev, aux);
#endif
(*ca->ca_attach)(parent, dev, aux);
config_process_deferred_children(dev);
return (dev);
}
struct device *
config_make_softc(parent, cf)
struct device *parent;
struct cfdata *cf;
{
register struct device *dev;
register struct cfdriver *cd;
register struct cfattach *ca;
register size_t lname, lunit;
register char *xunit;
char num[10];
cd = cf->cf_driver;
ca = cf->cf_attach;
if (ca->ca_devsize < sizeof(struct device))
panic("config_make_softc");
/* get memory for all device vars */
dev = (struct device *)malloc(ca->ca_devsize, M_DEVBUF, M_NOWAIT);
if (!dev)
panic("config_make_softc: allocation for device softc failed");
bzero(dev, ca->ca_devsize);
dev->dv_class = cd->cd_class;
dev->dv_cfdata = cf;
dev->dv_flags = DVF_ACTIVE; /* always initially active */
/* If this is a STAR device, search for a free unit number */
if (cf->cf_fstate == FSTATE_STAR) {
for (dev->dv_unit = cf->cf_starunit1;
dev->dv_unit < cf->cf_unit; dev->dv_unit++)
if (cd->cd_ndevs == 0 ||
cd->cd_devs[dev->dv_unit] == NULL)
break;
} else
dev->dv_unit = cf->cf_unit;
/* compute length of name and decimal expansion of unit number */
lname = strlen(cd->cd_name);
xunit = number(&num[sizeof num], dev->dv_unit);
lunit = &num[sizeof num] - xunit;
if (lname + lunit >= sizeof(dev->dv_xname))
panic("config_make_softc: device name too long");
bcopy(cd->cd_name, dev->dv_xname, lname);
bcopy(xunit, dev->dv_xname + lname, lunit);
dev->dv_parent = parent;
/* put this device in the devices array */
if (dev->dv_unit >= cd->cd_ndevs) {
/*
* Need to expand the array.
*/
int old = cd->cd_ndevs, new;
void **nsp;
if (old == 0)
new = MINALLOCSIZE / sizeof(void *);
else
new = old * 2;
while (new <= dev->dv_unit)
new *= 2;
cd->cd_ndevs = new;
nsp = malloc(new * sizeof(void *), M_DEVBUF, M_NOWAIT);
if (nsp == 0)
panic("config_make_softc: %sing dev array",
old != 0 ? "expand" : "creat");
bzero(nsp + old, (new - old) * sizeof(void *));
if (old != 0) {
bcopy(cd->cd_devs, nsp, old * sizeof(void *));
free(cd->cd_devs, M_DEVBUF);
}
cd->cd_devs = nsp;
}
if (cd->cd_devs[dev->dv_unit])
panic("config_make_softc: duplicate %s", dev->dv_xname);
dev->dv_ref = 1;
return (dev);
}
/*
* Detach a device. Optionally forced (e.g. because of hardware
* removal) and quiet. Returns zero if successful, non-zero
* (an error code) otherwise.
*
* Note that this code wants to be run from a process context, so
* that the detach can sleep to allow processes which have a device
* open to run and unwind their stacks.
*/
int
config_detach(dev, flags)
struct device *dev;
int flags;
{
struct cfdata *cf;
struct cfattach *ca;
struct cfdriver *cd;
#ifdef DIAGNOSTIC
struct device *d;
#endif
int rv = 0, i;
cf = dev->dv_cfdata;
#ifdef DIAGNOSTIC
if (cf->cf_fstate != FSTATE_FOUND && cf->cf_fstate != FSTATE_STAR)
panic("config_detach: bad device fstate");
#endif
ca = cf->cf_attach;
cd = cf->cf_driver;
/*
* Ensure the device is deactivated. If the device doesn't
* have an activation entry point, we allow DVF_ACTIVE to
* remain set. Otherwise, if DVF_ACTIVE is still set, the
* device is busy, and the detach fails.
*/
if (ca->ca_activate != NULL)
rv = config_deactivate(dev);
/*
* Try to detach the device. If that's not possible, then
* we either panic() (for the forced but failed case), or
* return an error.
*/
if (rv == 0) {
if (ca->ca_detach != NULL)
rv = (*ca->ca_detach)(dev, flags);
else
rv = EOPNOTSUPP;
}
if (rv != 0) {
if ((flags & DETACH_FORCE) == 0)
return (rv);
else
panic("config_detach: forced detach of %s failed (%d)",
dev->dv_xname, rv);
}
/*
* The device has now been successfully detached.
*/
#ifdef DIAGNOSTIC
/*
* Sanity: If you're successfully detached, you should have no
* children. (Note that because children must be attached
* after parents, we only need to search the latter part of
* the list.)
*/
for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
d = TAILQ_NEXT(d, dv_list)) {
if (d->dv_parent == dev)
panic("config_detach: detached device has children");
}
#endif
/*
* Mark cfdata to show that the unit can be reused, if possible.
* Note that we can only re-use a starred unit number if the unit
* being detached had the last assigned unit number.
*/
for (cf = cfdata; cf->cf_driver; cf++) {
if (cf->cf_driver == cd) {
if (cf->cf_fstate == FSTATE_FOUND &&
cf->cf_unit == dev->dv_unit)
cf->cf_fstate = FSTATE_NOTFOUND;
if (cf->cf_fstate == FSTATE_STAR &&
cf->cf_unit == dev->dv_unit + 1)
cf->cf_unit--;
}
}
/*
* Unlink from device list.
*/
TAILQ_REMOVE(&alldevs, dev, dv_list);
device_unref(dev);
/*
* Remove from cfdriver's array, tell the world, and free softc.
*/
cd->cd_devs[dev->dv_unit] = NULL;
if ((flags & DETACH_QUIET) == 0)
printf("%s detached\n", dev->dv_xname);
device_unref(dev);
/*
* If the device now has no units in use, deallocate its softc array.
*/
for (i = 0; i < cd->cd_ndevs; i++)
if (cd->cd_devs[i] != NULL)
break;
if (i == cd->cd_ndevs) { /* nothing found; deallocate */
free(cd->cd_devs, M_DEVBUF);
cd->cd_devs = NULL;
cd->cd_ndevs = 0;
}
/*
* Return success.
*/
return (0);
}
int
config_activate(dev)
struct device *dev;
{
struct cfattach *ca = dev->dv_cfdata->cf_attach;
int rv = 0, oflags = dev->dv_flags;
if (ca->ca_activate == NULL)
return (EOPNOTSUPP);
if ((dev->dv_flags & DVF_ACTIVE) == 0) {
dev->dv_flags |= DVF_ACTIVE;
rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
if (rv)
dev->dv_flags = oflags;
}
return (rv);
}
int
config_deactivate(dev)
struct device *dev;
{
struct cfattach *ca = dev->dv_cfdata->cf_attach;
int rv = 0, oflags = dev->dv_flags;
if (ca->ca_activate == NULL)
return (EOPNOTSUPP);
if (dev->dv_flags & DVF_ACTIVE) {
dev->dv_flags &= ~DVF_ACTIVE;
rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
if (rv)
dev->dv_flags = oflags;
}
return (rv);
}
/*
* Defer the configuration of the specified device until all
* of its parent's devices have been attached.
*/
void
config_defer(dev, func)
struct device *dev;
void (*func) __P((struct device *));
{
struct deferred_config *dc;
if (dev->dv_parent == NULL)
panic("config_defer: can't defer config of a root device");
#ifdef DIAGNOSTIC
for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
dc = TAILQ_NEXT(dc, dc_queue)) {
if (dc->dc_dev == dev)
panic("config_defer: deferred twice");
}
#endif
if ((dc = malloc(sizeof(*dc), M_DEVBUF, M_NOWAIT)) == NULL)
panic("config_defer: can't allocate defer structure");
dc->dc_dev = dev;
dc->dc_func = func;
TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
}
/*
* Process the deferred configuration queue for a device.
*/
void
config_process_deferred_children(parent)
struct device *parent;
{
struct deferred_config *dc, *ndc;
for (dc = TAILQ_FIRST(&deferred_config_queue);
dc != NULL; dc = ndc) {
ndc = TAILQ_NEXT(dc, dc_queue);
if (dc->dc_dev->dv_parent == parent) {
TAILQ_REMOVE(&deferred_config_queue, dc, dc_queue);
(*dc->dc_func)(dc->dc_dev);
free(dc, M_DEVBUF);
}
}
}
int
config_detach_children(parent, flags)
struct device *parent;
int flags;
{
struct device *dev, *next_dev;
int rv = 0;
/* The config_detach routine may sleep, meaning devices
may be added to the queue. However, all devices will
be added to the tail of the queue, the queue won't
be re-organized, and the subtree of parent here should be locked
for purposes of adding/removing children.
*/
for (dev = TAILQ_FIRST(&alldevs);
dev != NULL; dev = next_dev) {
next_dev = TAILQ_NEXT(dev, dv_list);
if (dev->dv_parent == parent &&
(rv = config_detach(dev, flags)))
return (rv);
}
return (rv);
}
int
config_activate_children(parent, act)
struct device *parent;
enum devact act;
{
struct device *dev, *next_dev;
int rv = 0;
/* The config_deactivate routine may sleep, meaning devices
may be added to the queue. However, all devices will
be added to the tail of the queue, the queue won't
be re-organized, and the subtree of parent here should be locked
for purposes of adding/removing children.
*/
for (dev = TAILQ_FIRST(&alldevs);
dev != NULL; dev = next_dev) {
next_dev = TAILQ_NEXT(dev, dv_list);
if (dev->dv_parent == parent) {
switch (act) {
case DVACT_ACTIVATE:
rv = config_activate(dev);
break;
case DVACT_DEACTIVATE:
rv = config_deactivate(dev);
break;
default:
#ifdef DIAGNOSTIC
printf ("config_activate_children: shouldn't get here");
#endif
rv = EOPNOTSUPP;
break;
}
if (rv)
break;
}
}
return (rv);
}
/*
* Lookup a device in the cfdriver device array. Does not return a
* device if it is not active.
*
* Increments ref count on the device by one, reflecting the
* new reference created on the stack.
*
* Context: process only
*/
struct device *
device_lookup(cd, unit)
struct cfdriver *cd;
int unit;
{
struct device *dv = NULL;
if (unit >= 0 && unit < cd->cd_ndevs)
dv = (struct device *)(cd->cd_devs[unit]);
if (!dv)
return (NULL);
if (!(dv->dv_flags & DVF_ACTIVE))
dv = NULL;
if (dv != NULL)
device_ref(dv);
return (dv);
}
/*
* Increments the ref count on the device structure. The device
* structure is freed when the ref count hits 0.
*
* Context: process or interrupt
*/
void
device_ref(dv)
struct device *dv;
{
dv->dv_ref++;
}
/*
* Decrement the ref count on the device structure.
*
* free's the structure when the ref count hits zero and calls the zeroref
* function.
*
* Context: process or interrupt
*/
void
device_unref(dv)
struct device *dv;
{
dv->dv_ref--;
if (dv->dv_ref == 0) {
if (dv->dv_cfdata->cf_attach->ca_zeroref)
(*dv->dv_cfdata->cf_attach->ca_zeroref)(dv);
free(dv, M_DEVBUF);
}
}
/*
* Attach an event. These must come from initially-zero space (see
* commented-out assignments below), but that occurs naturally for
* device instance variables.
*/
void
evcnt_attach(dev, name, ev)
struct device *dev;
const char *name;
struct evcnt *ev;
{
#ifdef DIAGNOSTIC
if (strlen(name) >= sizeof(ev->ev_name))
panic("evcnt_attach");
#endif
/* ev->ev_next = NULL; */
ev->ev_dev = dev;
/* ev->ev_count = 0; */
strcpy(ev->ev_name, name);
TAILQ_INSERT_TAIL(&allevents, ev, ev_list);
}
#if 0
int
attach_loadable(parentname, parentunit, cftable)
char *parentname;
int parentunit;
struct cftable *cftable;
{
int found = 0;
struct device *d;
TAILQ_INSERT_TAIL(&allcftables, cftable, list);
for(d = alldevs.tqh_first; d != NULL; d = d->dv_list.tqe_next) {
struct cfdriver *drv = d->dv_cfdata->cf_driver;
if (strcmp(parentname, drv->cd_name) == NULL &&
(parentunit == -1 || parentunit == d->dv_unit)) {
int s;
s = splhigh(); /* ??? */
found |= (*d->dv_cfdata->cf_attach->ca_reprobe)(d,
&(cftable->tab[0]));
splx(s);
}
}
if (!found)
TAILQ_REMOVE(&allcftables, cftable, list);
return(found);
}
int
devcf_intable __P((struct device *, void *));
int
devcf_intable(dev, arg)
struct device *dev;
void *arg;
{
struct cftable *tbl = arg;
struct cfdata *cf;
for(cf = tbl->tab; cf->cf_driver; cf++) {
if (dev->dv_cfdata == cf)
return(1);
}
return(0);
}
int
detach_loadable(cftable)
struct cftable *cftable;
{
if (!detach_devices(devcf_intable, cftable, 0, 0))
return(0);
TAILQ_REMOVE(&allcftables, cftable, list);
return(1);
}
#endif