You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2962 lines
80 KiB
2962 lines
80 KiB
/* $OpenBSD: tcp_input.c,v 1.60 2000/04/28 00:31:48 itojun Exp $ */
|
|
/* $NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
|
|
*/
|
|
|
|
/*
|
|
%%% portions-copyright-nrl-95
|
|
Portions of this software are Copyright 1995-1998 by Randall Atkinson,
|
|
Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
|
|
Reserved. All rights under this copyright have been assigned to the US
|
|
Naval Research Laboratory (NRL). The NRL Copyright Notice and License
|
|
Agreement Version 1.1 (January 17, 1995) applies to these portions of the
|
|
software.
|
|
You should have received a copy of the license with this software. If you
|
|
didn't get a copy, you may request one from <license@ipv6.nrl.navy.mil>.
|
|
*/
|
|
|
|
#ifndef TUBA_INCLUDE
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/errno.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/tcpip.h>
|
|
#include <netinet/tcp_debug.h>
|
|
#ifndef PMON
|
|
#include <dev/rndvar.h>
|
|
#endif /* PMON */
|
|
#include <machine/stdarg.h>
|
|
#ifdef TCP_SIGNATURE
|
|
#include <sys/md5k.h>
|
|
#endif /* TCP_SIGNATURE */
|
|
|
|
#ifdef PMON
|
|
#include <pmon.h>
|
|
#endif /* PMON */
|
|
|
|
#ifdef IPSEC
|
|
#include <netinet/ip_ipsp.h>
|
|
#endif /* IPSEC */
|
|
|
|
#ifdef INET6
|
|
#ifndef INET
|
|
#include <netinet/in.h>
|
|
#endif
|
|
#include <sys/domain.h>
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/tcpipv6.h>
|
|
#include <netinet/icmp6.h>
|
|
#include <netinet6/nd6.h>
|
|
|
|
#ifndef CREATE_IPV6_MAPPED
|
|
#define CREATE_IPV6_MAPPED(a6, a4) \
|
|
do { \
|
|
bzero(&(a6), sizeof(a6)); \
|
|
(a6).s6_addr[10] = (a6).s6_addr[11] = 0xff; \
|
|
*(u_int32_t *)&(a6).s6_addr[12] = (a4); \
|
|
} while (0)
|
|
#endif
|
|
|
|
struct tcpiphdr tcp_saveti;
|
|
struct tcpipv6hdr tcp_saveti6;
|
|
|
|
/* for the packet header length in the mbuf */
|
|
#define M_PH_LEN(m) (((struct mbuf *)(m))->m_pkthdr.len)
|
|
#define M_V6_LEN(m) (M_PH_LEN(m) - sizeof(struct ip6_hdr))
|
|
#define M_V4_LEN(m) (M_PH_LEN(m) - sizeof(struct ip))
|
|
#endif /* INET6 */
|
|
|
|
int tcprexmtthresh = 3;
|
|
struct tcpiphdr tcp_saveti;
|
|
int tcptv_keep_init = TCPTV_KEEP_INIT;
|
|
|
|
extern u_long sb_max;
|
|
|
|
#endif /* TUBA_INCLUDE */
|
|
#define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
|
|
|
|
/* for modulo comparisons of timestamps */
|
|
#define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
|
|
#define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
|
|
|
|
/*
|
|
* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
|
|
*/
|
|
#ifdef INET6
|
|
#define ND6_HINT(tp) \
|
|
do { \
|
|
if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) \
|
|
&& !(tp->t_inpcb->inp_flags & INP_IPV6_MAPPED) \
|
|
&& tp->t_inpcb->inp_route6.ro_rt) { \
|
|
nd6_nud_hint(tp->t_inpcb->inp_route6.ro_rt, NULL); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define ND6_HINT(tp)
|
|
#endif
|
|
|
|
/*
|
|
* Insert segment ti into reassembly queue of tcp with
|
|
* control block tp. Return TH_FIN if reassembly now includes
|
|
* a segment with FIN. The macro form does the common case inline
|
|
* (segment is the next to be received on an established connection,
|
|
* and the queue is empty), avoiding linkage into and removal
|
|
* from the queue and repetition of various conversions.
|
|
* Set DELACK for segments received in order, but ack immediately
|
|
* when segments are out of order (so fast retransmit can work).
|
|
*/
|
|
|
|
#ifndef TUBA_INCLUDE
|
|
|
|
int
|
|
tcp_reass(tp, th, m, tlen)
|
|
register struct tcpcb *tp;
|
|
register struct tcphdr *th;
|
|
struct mbuf *m;
|
|
int *tlen;
|
|
{
|
|
register struct ipqent *p, *q, *nq, *tiqe;
|
|
struct socket *so = tp->t_inpcb->inp_socket;
|
|
int flags;
|
|
|
|
/*
|
|
* Call with th==0 after become established to
|
|
* force pre-ESTABLISHED data up to user socket.
|
|
*/
|
|
if (th == 0)
|
|
goto present;
|
|
|
|
/*
|
|
* Allocate a new queue entry, before we throw away any data.
|
|
* If we can't, just drop the packet. XXX
|
|
*/
|
|
MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
|
|
if (tiqe == NULL) {
|
|
tcpstat.tcps_rcvmemdrop++;
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find a segment which begins after this one does.
|
|
*/
|
|
for (p = NULL, q = tp->segq.lh_first; q != NULL;
|
|
p = q, q = q->ipqe_q.le_next)
|
|
if (SEQ_GT(q->ipqe_tcp->th_seq, th->th_seq))
|
|
break;
|
|
|
|
/*
|
|
* If there is a preceding segment, it may provide some of
|
|
* our data already. If so, drop the data from the incoming
|
|
* segment. If it provides all of our data, drop us.
|
|
*/
|
|
if (p != NULL) {
|
|
register struct tcphdr *phdr = p->ipqe_tcp;
|
|
register int i;
|
|
|
|
/* conversion to int (in i) handles seq wraparound */
|
|
i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
|
|
if (i > 0) {
|
|
if (i >= *tlen) {
|
|
tcpstat.tcps_rcvduppack++;
|
|
tcpstat.tcps_rcvdupbyte += *tlen;
|
|
m_freem(m);
|
|
FREE(tiqe, M_IPQ);
|
|
return (0);
|
|
}
|
|
m_adj(m, i);
|
|
*tlen -= i;
|
|
th->th_seq += i;
|
|
}
|
|
}
|
|
tcpstat.tcps_rcvoopack++;
|
|
tcpstat.tcps_rcvoobyte += *tlen;
|
|
|
|
/*
|
|
* While we overlap succeeding segments trim them or,
|
|
* if they are completely covered, dequeue them.
|
|
*/
|
|
for (; q != NULL; q = nq) {
|
|
register struct tcphdr *qhdr = q->ipqe_tcp;
|
|
register int i = (th->th_seq + *tlen) - qhdr->th_seq;
|
|
|
|
if (i <= 0)
|
|
break;
|
|
if (i < qhdr->th_reseqlen) {
|
|
qhdr->th_seq += i;
|
|
qhdr->th_reseqlen -= i;
|
|
m_adj(q->ipqe_m, i);
|
|
break;
|
|
}
|
|
nq = q->ipqe_q.le_next;
|
|
m_freem(q->ipqe_m);
|
|
LIST_REMOVE(q, ipqe_q);
|
|
FREE(q, M_IPQ);
|
|
}
|
|
|
|
/* Insert the new fragment queue entry into place. */
|
|
tiqe->ipqe_m = m;
|
|
th->th_reseqlen = *tlen;
|
|
tiqe->ipqe_tcp = th;
|
|
if (p == NULL) {
|
|
LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
|
|
} else {
|
|
LIST_INSERT_AFTER(p, tiqe, ipqe_q);
|
|
}
|
|
|
|
present:
|
|
/*
|
|
* Present data to user, advancing rcv_nxt through
|
|
* completed sequence space.
|
|
*/
|
|
if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
|
|
return (0);
|
|
q = tp->segq.lh_first;
|
|
if (q == NULL || q->ipqe_tcp->th_seq != tp->rcv_nxt)
|
|
return (0);
|
|
if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->th_reseqlen)
|
|
return (0);
|
|
do {
|
|
tp->rcv_nxt += q->ipqe_tcp->th_reseqlen;
|
|
flags = q->ipqe_tcp->th_flags & TH_FIN;
|
|
|
|
nq = q->ipqe_q.le_next;
|
|
LIST_REMOVE(q, ipqe_q);
|
|
ND6_HINT(tp);
|
|
if (so->so_state & SS_CANTRCVMORE)
|
|
m_freem(q->ipqe_m);
|
|
else
|
|
sbappend(&so->so_rcv, q->ipqe_m);
|
|
FREE(q, M_IPQ);
|
|
q = nq;
|
|
} while (q != NULL && q->ipqe_tcp->th_seq == tp->rcv_nxt);
|
|
sorwakeup(so);
|
|
return (flags);
|
|
}
|
|
|
|
/*
|
|
* First check for a port-specific bomb. We do not want to drop half-opens
|
|
* for other ports if this is the only port being bombed. We only check
|
|
* the bottom 40 half open connections, to avoid wasting too much time.
|
|
*
|
|
* Or, otherwise it is more likely a generic syn bomb, so delete the oldest
|
|
* half-open connection.
|
|
*/
|
|
void
|
|
tcpdropoldhalfopen(avoidtp, port)
|
|
struct tcpcb *avoidtp;
|
|
u_int16_t port;
|
|
{
|
|
register struct inpcb *inp;
|
|
register struct tcpcb *tp;
|
|
int ncheck = 40;
|
|
int s;
|
|
|
|
s = splnet();
|
|
inp = tcbtable.inpt_queue.cqh_first;
|
|
if (inp) /* XXX */
|
|
for (; inp != (struct inpcb *)&tcbtable.inpt_queue && --ncheck;
|
|
inp = inp->inp_queue.cqe_prev) {
|
|
if ((tp = (struct tcpcb *)inp->inp_ppcb) &&
|
|
tp != avoidtp &&
|
|
tp->t_state == TCPS_SYN_RECEIVED &&
|
|
port == inp->inp_lport) {
|
|
tcp_close(tp);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
inp = tcbtable.inpt_queue.cqh_first;
|
|
if (inp) /* XXX */
|
|
for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
|
|
inp = inp->inp_queue.cqe_prev) {
|
|
if ((tp = (struct tcpcb *)inp->inp_ppcb) &&
|
|
tp != avoidtp &&
|
|
tp->t_state == TCPS_SYN_RECEIVED) {
|
|
tcp_close(tp);
|
|
goto done;
|
|
}
|
|
}
|
|
done:
|
|
splx(s);
|
|
}
|
|
|
|
#if defined(INET6) && !defined(TCP6)
|
|
int
|
|
tcp6_input(mp, offp, proto)
|
|
struct mbuf **mp;
|
|
int *offp, proto;
|
|
{
|
|
struct mbuf *m = *mp;
|
|
|
|
#if defined(NFAITH) && 0 < NFAITH
|
|
if (m->m_pkthdr.rcvif) {
|
|
if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
|
|
/* XXX send icmp6 host/port unreach? */
|
|
m_freem(m);
|
|
return IPPROTO_DONE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* draft-itojun-ipv6-tcp-to-anycast
|
|
* better place to put this in?
|
|
*/
|
|
if (m->m_flags & M_ANYCAST6) {
|
|
if (m->m_len >= sizeof(struct ip6_hdr)) {
|
|
struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
|
|
icmp6_error(m, ICMP6_DST_UNREACH,
|
|
ICMP6_DST_UNREACH_ADDR,
|
|
(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
|
|
} else
|
|
m_freem(m);
|
|
return IPPROTO_DONE;
|
|
}
|
|
|
|
tcp_input(m, *offp, proto);
|
|
return IPPROTO_DONE;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* TCP input routine, follows pages 65-76 of the
|
|
* protocol specification dated September, 1981 very closely.
|
|
*/
|
|
void
|
|
#if __STDC__
|
|
tcp_input(struct mbuf *m, ...)
|
|
#else
|
|
tcp_input(m, va_alist)
|
|
register struct mbuf *m;
|
|
#endif
|
|
{
|
|
register struct tcpiphdr *ti;
|
|
register struct inpcb *inp;
|
|
caddr_t optp = NULL;
|
|
int optlen = 0;
|
|
int len, tlen, off;
|
|
register struct tcpcb *tp = 0;
|
|
register int tiflags;
|
|
struct socket *so = NULL;
|
|
int todrop, acked, ourfinisacked, needoutput = 0;
|
|
int hdroptlen = 0;
|
|
short ostate = 0;
|
|
struct in_addr laddr;
|
|
int dropsocket = 0;
|
|
int iss = 0;
|
|
u_long tiwin;
|
|
u_int32_t ts_val, ts_ecr;
|
|
int ts_present = 0;
|
|
int iphlen;
|
|
va_list ap;
|
|
register struct tcphdr *th;
|
|
#ifdef IPSEC
|
|
struct tdb *tdb = NULL;
|
|
#endif /* IPSEC */
|
|
#ifdef INET6
|
|
struct in6_addr laddr6;
|
|
unsigned short is_ipv6; /* Type of incoming datagram. */
|
|
struct ip6_hdr *ipv6 = NULL;
|
|
#endif /* INET6 */
|
|
|
|
va_start(ap, m);
|
|
iphlen = va_arg(ap, int);
|
|
va_end(ap);
|
|
|
|
tcpstat.tcps_rcvtotal++;
|
|
|
|
#ifdef IPSEC
|
|
/* Save the last SA which was used to process the mbuf */
|
|
if ((m->m_flags & (M_CONF|M_AUTH)) && m->m_pkthdr.tdbi) {
|
|
struct tdb_ident *tdbi = m->m_pkthdr.tdbi;
|
|
/* XXX gettdb() should really be called at spltdb(). */
|
|
/* XXX this is splsoftnet(), currently they are the same. */
|
|
tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto);
|
|
free(m->m_pkthdr.tdbi, M_TEMP);
|
|
m->m_pkthdr.tdbi = NULL;
|
|
}
|
|
#endif /* IPSEC */
|
|
#ifdef INET6
|
|
/*
|
|
* Before we do ANYTHING, we have to figure out if it's TCP/IPv6 or
|
|
* TCP/IPv4.
|
|
*/
|
|
is_ipv6 = mtod(m, struct ip *)->ip_v == 6;
|
|
#endif /* INET6 */
|
|
|
|
/*
|
|
* Get IP and TCP header together in first mbuf.
|
|
* Note: IP leaves IP header in first mbuf.
|
|
*/
|
|
#ifndef INET6
|
|
ti = mtod(m, struct tcpiphdr *);
|
|
#else /* INET6 */
|
|
if (!is_ipv6)
|
|
#endif /* INET6 */
|
|
if (iphlen > sizeof (struct ip)) {
|
|
#if 0 /*XXX*/
|
|
ip_stripoptions(m, (struct mbuf *)0);
|
|
#else
|
|
printf("extension headers are not allowed\n");
|
|
m_freem(m);
|
|
return;
|
|
#endif
|
|
}
|
|
if (m->m_len < iphlen + sizeof(struct tcphdr)) {
|
|
if ((m = m_pullup2(m, iphlen + sizeof(struct tcphdr))) == 0) {
|
|
tcpstat.tcps_rcvshort++;
|
|
return;
|
|
}
|
|
#ifndef INET6
|
|
ti = mtod(m, struct tcpiphdr *);
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
tlen = m->m_pkthdr.len - iphlen;
|
|
|
|
#ifdef INET6
|
|
/*
|
|
* After that, do initial segment processing which is still very
|
|
* dependent on what IP version you're using.
|
|
*/
|
|
|
|
if (is_ipv6) {
|
|
#ifdef DIAGNOSTIC
|
|
if (iphlen < sizeof(struct ip6_hdr)) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
#endif /* DIAGNOSTIC */
|
|
|
|
/* strip off any options */
|
|
if (iphlen > sizeof(struct ip6_hdr)) {
|
|
#if 0 /*XXX*/
|
|
ipv6_stripoptions(m, iphlen);
|
|
#else
|
|
printf("extension headers are not allowed\n");
|
|
m_freem(m);
|
|
return;
|
|
#endif
|
|
iphlen = sizeof(struct ip6_hdr);
|
|
}
|
|
|
|
ti = NULL;
|
|
ipv6 = mtod(m, struct ip6_hdr *);
|
|
|
|
/* Be proactive about malicious use of IPv4 mapped address */
|
|
if (IN6_IS_ADDR_V4MAPPED(&ipv6->ip6_src) ||
|
|
IN6_IS_ADDR_V4MAPPED(&ipv6->ip6_dst)) {
|
|
/* XXX stat */
|
|
goto drop;
|
|
}
|
|
|
|
if (in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr), tlen)) {
|
|
tcpstat.tcps_rcvbadsum++;
|
|
goto drop;
|
|
} /* endif in6_cksum */
|
|
} else {
|
|
ti = mtod(m, struct tcpiphdr *);
|
|
#endif /* INET6 */
|
|
|
|
/*
|
|
* Checksum extended TCP header and data.
|
|
*/
|
|
#ifndef INET6
|
|
tlen = ((struct ip *)ti)->ip_len;
|
|
#endif /* INET6 */
|
|
len = sizeof (struct ip) + tlen;
|
|
bzero(ti->ti_x1, sizeof ti->ti_x1);
|
|
ti->ti_len = (u_int16_t)tlen;
|
|
HTONS(ti->ti_len);
|
|
if ((ti->ti_sum = in_cksum(m, len)) != 0) {
|
|
tcpstat.tcps_rcvbadsum++;
|
|
goto drop;
|
|
}
|
|
#ifdef INET6
|
|
}
|
|
#endif /* INET6 */
|
|
#endif /* TUBA_INCLUDE */
|
|
|
|
th = (struct tcphdr *)(mtod(m, caddr_t) + iphlen);
|
|
|
|
/*
|
|
* Check that TCP offset makes sense,
|
|
* pull out TCP options and adjust length. XXX
|
|
*/
|
|
off = th->th_off << 2;
|
|
if (off < sizeof (struct tcphdr) || off > tlen) {
|
|
tcpstat.tcps_rcvbadoff++;
|
|
goto drop;
|
|
}
|
|
tlen -= off;
|
|
if (off > sizeof (struct tcphdr)) {
|
|
if (m->m_len < iphlen + off) {
|
|
if ((m = m_pullup2(m, iphlen + off)) == 0) {
|
|
tcpstat.tcps_rcvshort++;
|
|
return;
|
|
}
|
|
#ifdef INET6
|
|
if (is_ipv6)
|
|
ipv6 = mtod(m, struct ip6_hdr *);
|
|
else
|
|
#endif /* INET6 */
|
|
ti = mtod(m, struct tcpiphdr *);
|
|
th = (struct tcphdr *)(mtod(m, caddr_t) + iphlen);
|
|
}
|
|
optlen = off - sizeof (struct tcphdr);
|
|
optp = mtod(m, caddr_t) + iphlen + sizeof(struct tcphdr);
|
|
/*
|
|
* Do quick retrieval of timestamp options ("options
|
|
* prediction?"). If timestamp is the only option and it's
|
|
* formatted as recommended in RFC 1323 appendix A, we
|
|
* quickly get the values now and not bother calling
|
|
* tcp_dooptions(), etc.
|
|
*/
|
|
if ((optlen == TCPOLEN_TSTAMP_APPA ||
|
|
(optlen > TCPOLEN_TSTAMP_APPA &&
|
|
optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
|
|
*(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
|
|
(th->th_flags & TH_SYN) == 0) {
|
|
ts_present = 1;
|
|
ts_val = ntohl(*(u_int32_t *)(optp + 4));
|
|
ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
|
|
optp = NULL; /* we've parsed the options */
|
|
}
|
|
}
|
|
tiflags = th->th_flags;
|
|
|
|
/*
|
|
* Convert TCP protocol specific fields to host format.
|
|
*/
|
|
NTOHL(th->th_seq);
|
|
NTOHL(th->th_ack);
|
|
NTOHS(th->th_win);
|
|
NTOHS(th->th_urp);
|
|
|
|
/*
|
|
* Locate pcb for segment.
|
|
*/
|
|
findpcb:
|
|
#ifdef INET6
|
|
if (is_ipv6) {
|
|
inp = in6_pcbhashlookup(&tcbtable, &ipv6->ip6_src, th->th_sport,
|
|
&ipv6->ip6_dst, th->th_dport);
|
|
} else
|
|
#endif /* INET6 */
|
|
inp = in_pcbhashlookup(&tcbtable, ti->ti_src, ti->ti_sport,
|
|
ti->ti_dst, ti->ti_dport);
|
|
if (inp == 0) {
|
|
++tcpstat.tcps_pcbhashmiss;
|
|
#ifdef INET6
|
|
if (is_ipv6)
|
|
inp = in_pcblookup(&tcbtable, &ipv6->ip6_src,
|
|
th->th_sport, &ipv6->ip6_dst, th->th_dport,
|
|
INPLOOKUP_WILDCARD | INPLOOKUP_IPV6);
|
|
else
|
|
#endif /* INET6 */
|
|
inp = in_pcblookup(&tcbtable, &ti->ti_src, ti->ti_sport,
|
|
&ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
|
|
/*
|
|
* If the state is CLOSED (i.e., TCB does not exist) then
|
|
* all data in the incoming segment is discarded.
|
|
* If the TCB exists but is in CLOSED state, it is embryonic,
|
|
* but should either do a listen or a connect soon.
|
|
*/
|
|
if (inp == 0) {
|
|
++tcpstat.tcps_noport;
|
|
goto dropwithreset;
|
|
}
|
|
}
|
|
|
|
tp = intotcpcb(inp);
|
|
if (tp == 0)
|
|
goto dropwithreset;
|
|
if (tp->t_state == TCPS_CLOSED)
|
|
goto drop;
|
|
|
|
/* Unscale the window into a 32-bit value. */
|
|
if ((tiflags & TH_SYN) == 0)
|
|
tiwin = th->th_win << tp->snd_scale;
|
|
else
|
|
tiwin = th->th_win;
|
|
|
|
so = inp->inp_socket;
|
|
if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
|
|
if (so->so_options & SO_DEBUG) {
|
|
ostate = tp->t_state;
|
|
#ifdef INET6
|
|
if (is_ipv6)
|
|
tcp_saveti6 = *(mtod(m, struct tcpipv6hdr *));
|
|
else
|
|
#endif /* INET6 */
|
|
tcp_saveti = *ti;
|
|
}
|
|
if (so->so_options & SO_ACCEPTCONN) {
|
|
struct socket *so1;
|
|
|
|
so1 = sonewconn(so, 0);
|
|
if (so1 == NULL) {
|
|
tcpdropoldhalfopen(tp, th->th_dport);
|
|
so1 = sonewconn(so, 0);
|
|
if (so1 == NULL)
|
|
goto drop;
|
|
}
|
|
so = so1;
|
|
/*
|
|
* This is ugly, but ....
|
|
*
|
|
* Mark socket as temporary until we're
|
|
* committed to keeping it. The code at
|
|
* ``drop'' and ``dropwithreset'' check the
|
|
* flag dropsocket to see if the temporary
|
|
* socket created here should be discarded.
|
|
* We mark the socket as discardable until
|
|
* we're committed to it below in TCPS_LISTEN.
|
|
*/
|
|
dropsocket++;
|
|
#ifdef IPSEC
|
|
/*
|
|
* We need to copy the required security levels
|
|
* from the old pcb.
|
|
*/
|
|
{
|
|
struct inpcb *newinp = (struct inpcb *)so->so_pcb;
|
|
bcopy(inp->inp_seclevel, newinp->inp_seclevel,
|
|
sizeof(inp->inp_seclevel));
|
|
newinp->inp_secrequire = inp->inp_secrequire;
|
|
}
|
|
#endif /* IPSEC */
|
|
#ifdef INET6
|
|
/*
|
|
* inp still has the OLD in_pcb stuff, set the
|
|
* v6-related flags on the new guy, too. This is
|
|
* done particularly for the case where an AF_INET6
|
|
* socket is bound only to a port, and a v4 connection
|
|
* comes in on that port.
|
|
* we also copy the flowinfo from the original pcb
|
|
* to the new one.
|
|
*/
|
|
{
|
|
int flags = inp->inp_flags;
|
|
struct inpcb *oldinpcb = inp;
|
|
|
|
inp = (struct inpcb *)so->so_pcb;
|
|
inp->inp_flags |= (flags & (INP_IPV6 | INP_IPV6_UNDEC
|
|
| INP_IPV6_MAPPED));
|
|
if ((inp->inp_flags & INP_IPV6) &&
|
|
!(inp->inp_flags & INP_IPV6_MAPPED)) {
|
|
inp->inp_ipv6.ip6_hlim =
|
|
oldinpcb->inp_ipv6.ip6_hlim;
|
|
inp->inp_ipv6.ip6_flow =
|
|
oldinpcb->inp_ipv6.ip6_flow;
|
|
}
|
|
}
|
|
#else /* INET6 */
|
|
inp = (struct inpcb *)so->so_pcb;
|
|
#endif /* INET6 */
|
|
inp->inp_lport = th->th_dport;
|
|
#ifdef INET6
|
|
if (is_ipv6) {
|
|
inp->inp_laddr6 = ipv6->ip6_dst;
|
|
inp->inp_fflowinfo = htonl(0x0fffffff) &
|
|
ipv6->ip6_flow;
|
|
|
|
/*inp->inp_options = ip6_srcroute();*/ /* soon. */
|
|
/* still need to tweak outbound options
|
|
processing to include this mbuf in
|
|
the right place and put the correct
|
|
NextHdr values in the right places.
|
|
XXX rja */
|
|
} else {
|
|
if (inp->inp_flags & INP_IPV6) {/* v4 to v6 socket */
|
|
CREATE_IPV6_MAPPED(inp->inp_laddr6,
|
|
ti->ti_dst.s_addr);
|
|
} else {
|
|
#endif /* INET6 */
|
|
inp->inp_laddr = ti->ti_dst;
|
|
inp->inp_options = ip_srcroute();
|
|
#if INET6
|
|
}
|
|
}
|
|
#endif /* INET6 */
|
|
in_pcbrehash(inp);
|
|
tp = intotcpcb(inp);
|
|
tp->t_state = TCPS_LISTEN;
|
|
|
|
/* Compute proper scaling value from buffer space
|
|
*/
|
|
while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
|
|
TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
|
|
tp->request_r_scale++;
|
|
}
|
|
}
|
|
|
|
#ifdef IPSEC
|
|
/* Check if this socket requires security for incoming packets */
|
|
if ((inp->inp_seclevel[SL_AUTH] >= IPSEC_LEVEL_REQUIRE &&
|
|
!(m->m_flags & M_AUTH)) ||
|
|
(inp->inp_seclevel[SL_ESP_TRANS] >= IPSEC_LEVEL_REQUIRE &&
|
|
!(m->m_flags & M_CONF))) {
|
|
#ifdef notyet
|
|
#ifdef INET6
|
|
if (is_ipv6)
|
|
icmp6_error(m, ICMPV6_BLAH, ICMPV6_BLAH, 0);
|
|
else
|
|
#endif /* INET6 */
|
|
icmp_error(m, ICMP_BLAH, ICMP_BLAH, 0, 0);
|
|
#endif /* notyet */
|
|
tcpstat.tcps_rcvnosec++;
|
|
goto drop;
|
|
}
|
|
/* Use tdb_bind_out for this inp's outbound communication */
|
|
if (tdb)
|
|
tdb_add_inp(tdb, inp);
|
|
#endif /*IPSEC */
|
|
|
|
/*
|
|
* Segment received on connection.
|
|
* Reset idle time and keep-alive timer.
|
|
*/
|
|
tp->t_idle = 0;
|
|
if (tp->t_state != TCPS_SYN_RECEIVED)
|
|
tp->t_timer[TCPT_KEEP] = tcp_keepidle;
|
|
|
|
#ifdef TCP_SACK
|
|
if (!tp->sack_disable)
|
|
tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
|
|
#endif /* TCP_SACK */
|
|
|
|
/*
|
|
* Process options if not in LISTEN state,
|
|
* else do it below (after getting remote address).
|
|
*/
|
|
if (optp && tp->t_state != TCPS_LISTEN)
|
|
tcp_dooptions(tp, optp, optlen, th,
|
|
&ts_present, &ts_val, &ts_ecr);
|
|
|
|
#ifdef TCP_SACK
|
|
if (!tp->sack_disable) {
|
|
tp->rcv_laststart = th->th_seq; /* last rec'vd segment*/
|
|
tp->rcv_lastend = th->th_seq + tlen;
|
|
}
|
|
#endif /* TCP_SACK */
|
|
/*
|
|
* Header prediction: check for the two common cases
|
|
* of a uni-directional data xfer. If the packet has
|
|
* no control flags, is in-sequence, the window didn't
|
|
* change and we're not retransmitting, it's a
|
|
* candidate. If the length is zero and the ack moved
|
|
* forward, we're the sender side of the xfer. Just
|
|
* free the data acked & wake any higher level process
|
|
* that was blocked waiting for space. If the length
|
|
* is non-zero and the ack didn't move, we're the
|
|
* receiver side. If we're getting packets in-order
|
|
* (the reassembly queue is empty), add the data to
|
|
* the socket buffer and note that we need a delayed ack.
|
|
*/
|
|
if (tp->t_state == TCPS_ESTABLISHED &&
|
|
(tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
|
|
(!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
|
|
th->th_seq == tp->rcv_nxt &&
|
|
tiwin && tiwin == tp->snd_wnd &&
|
|
tp->snd_nxt == tp->snd_max) {
|
|
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers,
|
|
* record the timestamp.
|
|
* Fix from Braden, see Stevens p. 870
|
|
*/
|
|
if (ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
|
|
tp->ts_recent_age = tcp_now;
|
|
tp->ts_recent = ts_val;
|
|
}
|
|
|
|
if (tlen == 0) {
|
|
if (SEQ_GT(th->th_ack, tp->snd_una) &&
|
|
SEQ_LEQ(th->th_ack, tp->snd_max) &&
|
|
tp->snd_cwnd >= tp->snd_wnd &&
|
|
tp->t_dupacks == 0) {
|
|
/*
|
|
* this is a pure ack for outstanding data.
|
|
*/
|
|
++tcpstat.tcps_predack;
|
|
if (ts_present)
|
|
tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
|
|
else if (tp->t_rtt &&
|
|
SEQ_GT(th->th_ack, tp->t_rtseq))
|
|
tcp_xmit_timer(tp, tp->t_rtt);
|
|
acked = th->th_ack - tp->snd_una;
|
|
tcpstat.tcps_rcvackpack++;
|
|
tcpstat.tcps_rcvackbyte += acked;
|
|
ND6_HINT(tp);
|
|
sbdrop(&so->so_snd, acked);
|
|
tp->snd_una = th->th_ack;
|
|
#if defined(TCP_SACK)
|
|
/*
|
|
* We want snd_last to track snd_una so
|
|
* as to avoid sequence wraparound problems
|
|
* for very large transfers.
|
|
*/
|
|
tp->snd_last = tp->snd_una;
|
|
#endif /* TCP_SACK */
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
|
tp->snd_fack = tp->snd_una;
|
|
tp->retran_data = 0;
|
|
#endif /* TCP_FACK */
|
|
m_freem(m);
|
|
|
|
/*
|
|
* If all outstanding data are acked, stop
|
|
* retransmit timer, otherwise restart timer
|
|
* using current (possibly backed-off) value.
|
|
* If process is waiting for space,
|
|
* wakeup/selwakeup/signal. If data
|
|
* are ready to send, let tcp_output
|
|
* decide between more output or persist.
|
|
*/
|
|
if (tp->snd_una == tp->snd_max)
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
else if (tp->t_timer[TCPT_PERSIST] == 0)
|
|
tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
|
|
|
|
if (sb_notify(&so->so_snd))
|
|
sowwakeup(so);
|
|
if (so->so_snd.sb_cc)
|
|
(void) tcp_output(tp);
|
|
return;
|
|
}
|
|
} else if (th->th_ack == tp->snd_una &&
|
|
tp->segq.lh_first == NULL &&
|
|
tlen <= sbspace(&so->so_rcv)) {
|
|
/*
|
|
* This is a pure, in-sequence data packet
|
|
* with nothing on the reassembly queue and
|
|
* we have enough buffer space to take it.
|
|
*/
|
|
#ifdef TCP_SACK
|
|
/* Clean receiver SACK report if present */
|
|
if (!tp->sack_disable && tp->rcv_numsacks)
|
|
tcp_clean_sackreport(tp);
|
|
#endif /* TCP_SACK */
|
|
++tcpstat.tcps_preddat;
|
|
tp->rcv_nxt += tlen;
|
|
tcpstat.tcps_rcvpack++;
|
|
tcpstat.tcps_rcvbyte += tlen;
|
|
ND6_HINT(tp);
|
|
/*
|
|
* Drop TCP, IP headers and TCP options then add data
|
|
* to socket buffer.
|
|
*/
|
|
if (th->th_flags & TH_PUSH)
|
|
tp->t_flags |= TF_ACKNOW;
|
|
else
|
|
tp->t_flags |= TF_DELACK;
|
|
m_adj(m, iphlen + off);
|
|
sbappend(&so->so_rcv, m);
|
|
sorwakeup(so);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute mbuf offset to TCP data segment.
|
|
*/
|
|
hdroptlen = iphlen + off;
|
|
|
|
/*
|
|
* Calculate amount of space in receive window,
|
|
* and then do TCP input processing.
|
|
* Receive window is amount of space in rcv queue,
|
|
* but not less than advertised window.
|
|
*/
|
|
{ int win;
|
|
|
|
win = sbspace(&so->so_rcv);
|
|
if (win < 0)
|
|
win = 0;
|
|
tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
|
|
}
|
|
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* If the state is LISTEN then ignore segment if it contains an RST.
|
|
* If the segment contains an ACK then it is bad and send a RST.
|
|
* If it does not contain a SYN then it is not interesting; drop it.
|
|
* If it is from this socket, drop it, it must be forged.
|
|
* Don't bother responding if the destination was a broadcast.
|
|
* Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
|
|
* tp->iss, and send a segment:
|
|
* <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
|
|
* Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
|
|
* Fill in remote peer address fields if not previously specified.
|
|
* Enter SYN_RECEIVED state, and process any other fields of this
|
|
* segment in this state.
|
|
*/
|
|
case TCPS_LISTEN: {
|
|
struct mbuf *am;
|
|
register struct sockaddr_in *sin;
|
|
#ifdef INET6
|
|
register struct sockaddr_in6 *sin6;
|
|
#endif /* INET6 */
|
|
|
|
if (tiflags & TH_RST)
|
|
goto drop;
|
|
if (tiflags & TH_ACK)
|
|
goto dropwithreset;
|
|
if ((tiflags & TH_SYN) == 0)
|
|
goto drop;
|
|
if (th->th_dport == th->th_sport) {
|
|
#ifdef INET6
|
|
if (is_ipv6) {
|
|
if (IN6_ARE_ADDR_EQUAL(&ipv6->ip6_src, &ipv6->ip6_dst))
|
|
goto drop;
|
|
} else {
|
|
#endif /* INET6 */
|
|
if (ti->ti_dst.s_addr == ti->ti_src.s_addr)
|
|
goto drop;
|
|
#ifdef INET6
|
|
}
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
/*
|
|
* RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
|
|
* in_broadcast() should never return true on a received
|
|
* packet with M_BCAST not set.
|
|
*/
|
|
if (m->m_flags & (M_BCAST|M_MCAST))
|
|
goto drop;
|
|
#ifdef INET6
|
|
if (is_ipv6) {
|
|
/* XXX What about IPv6 Anycasting ?? :-( rja */
|
|
if (IN6_IS_ADDR_MULTICAST(&ipv6->ip6_dst))
|
|
goto drop;
|
|
} else
|
|
#endif /* INET6 */
|
|
if (IN_MULTICAST(ti->ti_dst.s_addr))
|
|
goto drop;
|
|
am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
|
|
if (am == NULL)
|
|
goto drop;
|
|
#ifdef INET6
|
|
if (is_ipv6) {
|
|
/*
|
|
* This is probably the place to set the tp->pf value.
|
|
* (Don't forget to do it in the v4 code as well!)
|
|
*
|
|
* Also, remember to blank out things like flowlabel, or
|
|
* set flowlabel for accepted sockets in v6.
|
|
*
|
|
* FURTHERMORE, this is PROBABLY the place where the whole
|
|
* business of key munging is set up for passive
|
|
* connections.
|
|
*/
|
|
am->m_len = sizeof(struct sockaddr_in6);
|
|
sin6 = mtod(am, struct sockaddr_in6 *);
|
|
sin6->sin6_family = AF_INET6;
|
|
sin6->sin6_len = sizeof(struct sockaddr_in6);
|
|
sin6->sin6_addr = ipv6->ip6_src;
|
|
sin6->sin6_port = th->th_sport;
|
|
sin6->sin6_flowinfo = htonl(0x0fffffff) &
|
|
inp->inp_ipv6.ip6_flow;
|
|
laddr6 = inp->inp_laddr6;
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6))
|
|
inp->inp_laddr6 = ipv6->ip6_dst;
|
|
/* This is a good optimization. */
|
|
if (in6_pcbconnect(inp, am)) {
|
|
inp->inp_laddr6 = laddr6;
|
|
(void) m_free(am);
|
|
goto drop;
|
|
} /* endif in6_pcbconnect() */
|
|
tp->pf = PF_INET6;
|
|
} else {
|
|
/*
|
|
* Letting v4 incoming datagrams to reach valid
|
|
* PF_INET6 sockets causes some overhead here.
|
|
*/
|
|
if (inp->inp_flags & INP_IPV6) {
|
|
if (!(inp->inp_flags & (INP_IPV6_UNDEC|INP_IPV6_MAPPED))) {
|
|
(void) m_free(am);
|
|
goto drop;
|
|
}
|
|
|
|
am->m_len = sizeof(struct sockaddr_in6);
|
|
|
|
sin6 = mtod(am, struct sockaddr_in6 *);
|
|
sin6->sin6_family = AF_INET6;
|
|
sin6->sin6_len = sizeof(*sin6);
|
|
CREATE_IPV6_MAPPED(sin6->sin6_addr, ti->ti_src.s_addr);
|
|
sin6->sin6_port = th->th_sport;
|
|
sin6->sin6_flowinfo = 0;
|
|
|
|
laddr6 = inp->inp_laddr6;
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY)
|
|
CREATE_IPV6_MAPPED(inp->inp_laddr6, ti->ti_dst.s_addr);
|
|
|
|
/*
|
|
* The pcb initially has the v6 default hoplimit
|
|
* set. We're sending v4 packets so we need to set
|
|
* the v4 ttl and tos.
|
|
*/
|
|
inp->inp_ip.ip_ttl = ip_defttl;
|
|
inp->inp_ip.ip_tos = 0;
|
|
|
|
if (in6_pcbconnect(inp, am)) {
|
|
inp->inp_laddr6 = laddr6;
|
|
(void) m_freem(am);
|
|
goto drop;
|
|
}
|
|
tp->pf = PF_INET;
|
|
} else {
|
|
#endif /* INET6 */
|
|
am->m_len = sizeof (struct sockaddr_in);
|
|
sin = mtod(am, struct sockaddr_in *);
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
sin->sin_addr = ti->ti_src;
|
|
sin->sin_port = ti->ti_sport;
|
|
bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
|
|
laddr = inp->inp_laddr;
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY)
|
|
inp->inp_laddr = ti->ti_dst;
|
|
if (in_pcbconnect(inp, am)) {
|
|
inp->inp_laddr = laddr;
|
|
(void) m_free(am);
|
|
goto drop;
|
|
}
|
|
(void) m_free(am);
|
|
tp->pf = PF_INET;
|
|
#ifdef INET6
|
|
} /* if (inp->inp_flags & INP_IPV6) */
|
|
} /* if (is_ipv6) */
|
|
#endif /* INET6 */
|
|
tp->t_template = tcp_template(tp);
|
|
if (tp->t_template == 0) {
|
|
tp = tcp_drop(tp, ENOBUFS);
|
|
dropsocket = 0; /* socket is already gone */
|
|
goto drop;
|
|
}
|
|
if (optp)
|
|
tcp_dooptions(tp, optp, optlen, th,
|
|
&ts_present, &ts_val, &ts_ecr);
|
|
#ifdef TCP_SACK
|
|
/*
|
|
* If peer did not send a SACK_PERMITTED option (i.e., if
|
|
* tcp_dooptions() did not set TF_SACK_PERMIT), set
|
|
* sack_disable to 1 if it is currently 0.
|
|
*/
|
|
if (!tp->sack_disable)
|
|
if ((tp->t_flags & TF_SACK_PERMIT) == 0)
|
|
tp->sack_disable = 1;
|
|
#endif
|
|
|
|
if (iss)
|
|
tp->iss = iss;
|
|
else
|
|
tp->iss = tcp_iss;
|
|
#ifdef TCP_COMPAT_42
|
|
tcp_iss += TCP_ISSINCR/2;
|
|
#else /* TCP_COMPAT_42 */
|
|
tcp_iss += arc4random() % TCP_ISSINCR + 1;
|
|
#endif /* !TCP_COMPAT_42 */
|
|
tp->irs = th->th_seq;
|
|
tcp_sendseqinit(tp);
|
|
#if defined (TCP_SACK)
|
|
tp->snd_last = tp->snd_una;
|
|
#endif /* TCP_SACK */
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
|
tp->snd_fack = tp->snd_una;
|
|
tp->retran_data = 0;
|
|
tp->snd_awnd = 0;
|
|
#endif /* TCP_FACK */
|
|
tcp_rcvseqinit(tp);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
tp->t_state = TCPS_SYN_RECEIVED;
|
|
tp->t_timer[TCPT_KEEP] = tcptv_keep_init;
|
|
dropsocket = 0; /* committed to socket */
|
|
tcpstat.tcps_accepts++;
|
|
goto trimthenstep6;
|
|
}
|
|
|
|
/*
|
|
* If the state is SYN_RECEIVED:
|
|
* if seg contains SYN/ACK, send an RST.
|
|
* if seg contains an ACK, but not for our SYN/ACK, send an RST
|
|
*/
|
|
|
|
case TCPS_SYN_RECEIVED:
|
|
if (tiflags & TH_ACK) {
|
|
if (tiflags & TH_SYN) {
|
|
tcpstat.tcps_badsyn++;
|
|
goto dropwithreset;
|
|
}
|
|
if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
|
|
SEQ_GT(th->th_ack, tp->snd_max))
|
|
goto dropwithreset;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* If the state is SYN_SENT:
|
|
* if seg contains an ACK, but not for our SYN, drop the input.
|
|
* if seg contains a RST, then drop the connection.
|
|
* if seg does not contain SYN, then drop it.
|
|
* Otherwise this is an acceptable SYN segment
|
|
* initialize tp->rcv_nxt and tp->irs
|
|
* if seg contains ack then advance tp->snd_una
|
|
* if SYN has been acked change to ESTABLISHED else SYN_RCVD state
|
|
* arrange for segment to be acked (eventually)
|
|
* continue processing rest of data/controls, beginning with URG
|
|
*/
|
|
case TCPS_SYN_SENT:
|
|
if ((tiflags & TH_ACK) &&
|
|
(SEQ_LEQ(th->th_ack, tp->iss) ||
|
|
SEQ_GT(th->th_ack, tp->snd_max)))
|
|
goto dropwithreset;
|
|
if (tiflags & TH_RST) {
|
|
if (tiflags & TH_ACK)
|
|
tp = tcp_drop(tp, ECONNREFUSED);
|
|
goto drop;
|
|
}
|
|
if ((tiflags & TH_SYN) == 0)
|
|
goto drop;
|
|
if (tiflags & TH_ACK) {
|
|
tp->snd_una = th->th_ack;
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_una))
|
|
tp->snd_nxt = tp->snd_una;
|
|
}
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
tp->irs = th->th_seq;
|
|
tcp_rcvseqinit(tp);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
#ifdef TCP_SACK
|
|
/*
|
|
* If we've sent a SACK_PERMITTED option, and the peer
|
|
* also replied with one, then TF_SACK_PERMIT should have
|
|
* been set in tcp_dooptions(). If it was not, disable SACKs.
|
|
*/
|
|
if (!tp->sack_disable)
|
|
if ((tp->t_flags & TF_SACK_PERMIT) == 0)
|
|
tp->sack_disable = 1;
|
|
#endif
|
|
if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
|
|
tcpstat.tcps_connects++;
|
|
soisconnected(so);
|
|
tp->t_state = TCPS_ESTABLISHED;
|
|
/* Do window scaling on this connection? */
|
|
if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
|
|
(TF_RCVD_SCALE|TF_REQ_SCALE)) {
|
|
tp->snd_scale = tp->requested_s_scale;
|
|
tp->rcv_scale = tp->request_r_scale;
|
|
}
|
|
(void) tcp_reass(tp, (struct tcphdr *)0,
|
|
(struct mbuf *)0, &tlen);
|
|
/*
|
|
* if we didn't have to retransmit the SYN,
|
|
* use its rtt as our initial srtt & rtt var.
|
|
*/
|
|
if (tp->t_rtt)
|
|
tcp_xmit_timer(tp, tp->t_rtt);
|
|
/*
|
|
* Since new data was acked (the SYN), open the
|
|
* congestion window by one MSS. We do this
|
|
* here, because we won't go through the normal
|
|
* ACK processing below. And since this is the
|
|
* start of the connection, we know we are in
|
|
* the exponential phase of slow-start.
|
|
*/
|
|
tp->snd_cwnd += tp->t_maxseg;
|
|
} else
|
|
tp->t_state = TCPS_SYN_RECEIVED;
|
|
|
|
trimthenstep6:
|
|
/*
|
|
* Advance ti->ti_seq to correspond to first data byte.
|
|
* If data, trim to stay within window,
|
|
* dropping FIN if necessary.
|
|
*/
|
|
th->th_seq++;
|
|
if (tlen > tp->rcv_wnd) {
|
|
todrop = tlen - tp->rcv_wnd;
|
|
m_adj(m, -todrop);
|
|
tlen = tp->rcv_wnd;
|
|
tiflags &= ~TH_FIN;
|
|
tcpstat.tcps_rcvpackafterwin++;
|
|
tcpstat.tcps_rcvbyteafterwin += todrop;
|
|
}
|
|
tp->snd_wl1 = th->th_seq - 1;
|
|
tp->rcv_up = th->th_seq;
|
|
goto step6;
|
|
}
|
|
|
|
/*
|
|
* States other than LISTEN or SYN_SENT.
|
|
* First check timestamp, if present.
|
|
* Then check that at least some bytes of segment are within
|
|
* receive window. If segment begins before rcv_nxt,
|
|
* drop leading data (and SYN); if nothing left, just ack.
|
|
*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment
|
|
* and it's less than ts_recent, drop it.
|
|
*/
|
|
if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
|
|
TSTMP_LT(ts_val, tp->ts_recent)) {
|
|
|
|
/* Check to see if ts_recent is over 24 days old. */
|
|
if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
|
|
/*
|
|
* Invalidate ts_recent. If this segment updates
|
|
* ts_recent, the age will be reset later and ts_recent
|
|
* will get a valid value. If it does not, setting
|
|
* ts_recent to zero will at least satisfy the
|
|
* requirement that zero be placed in the timestamp
|
|
* echo reply when ts_recent isn't valid. The
|
|
* age isn't reset until we get a valid ts_recent
|
|
* because we don't want out-of-order segments to be
|
|
* dropped when ts_recent is old.
|
|
*/
|
|
tp->ts_recent = 0;
|
|
} else {
|
|
tcpstat.tcps_rcvduppack++;
|
|
tcpstat.tcps_rcvdupbyte += tlen;
|
|
tcpstat.tcps_pawsdrop++;
|
|
goto dropafterack;
|
|
}
|
|
}
|
|
|
|
todrop = tp->rcv_nxt - th->th_seq;
|
|
if (todrop > 0) {
|
|
if (tiflags & TH_SYN) {
|
|
tiflags &= ~TH_SYN;
|
|
th->th_seq++;
|
|
if (th->th_urp > 1)
|
|
th->th_urp--;
|
|
else
|
|
tiflags &= ~TH_URG;
|
|
todrop--;
|
|
}
|
|
if (todrop >= tlen ||
|
|
(todrop == tlen && (tiflags & TH_FIN) == 0)) {
|
|
/*
|
|
* Any valid FIN must be to the left of the
|
|
* window. At this point, FIN must be a
|
|
* duplicate or out-of-sequence, so drop it.
|
|
*/
|
|
tiflags &= ~TH_FIN;
|
|
/*
|
|
* Send ACK to resynchronize, and drop any data,
|
|
* but keep on processing for RST or ACK.
|
|
*/
|
|
tp->t_flags |= TF_ACKNOW;
|
|
tcpstat.tcps_rcvdupbyte += todrop = tlen;
|
|
tcpstat.tcps_rcvduppack++;
|
|
} else {
|
|
tcpstat.tcps_rcvpartduppack++;
|
|
tcpstat.tcps_rcvpartdupbyte += todrop;
|
|
}
|
|
hdroptlen += todrop; /* drop from head afterwards */
|
|
th->th_seq += todrop;
|
|
tlen -= todrop;
|
|
if (th->th_urp > todrop)
|
|
th->th_urp -= todrop;
|
|
else {
|
|
tiflags &= ~TH_URG;
|
|
th->th_urp = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If new data are received on a connection after the
|
|
* user processes are gone, then RST the other end.
|
|
*/
|
|
if ((so->so_state & SS_NOFDREF) &&
|
|
tp->t_state > TCPS_CLOSE_WAIT && tlen) {
|
|
tp = tcp_close(tp);
|
|
tcpstat.tcps_rcvafterclose++;
|
|
goto dropwithreset;
|
|
}
|
|
|
|
/*
|
|
* If segment ends after window, drop trailing data
|
|
* (and PUSH and FIN); if nothing left, just ACK.
|
|
*/
|
|
todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
|
|
if (todrop > 0) {
|
|
tcpstat.tcps_rcvpackafterwin++;
|
|
if (todrop >= tlen) {
|
|
tcpstat.tcps_rcvbyteafterwin += tlen;
|
|
/*
|
|
* If a new connection request is received
|
|
* while in TIME_WAIT, drop the old connection
|
|
* and start over if the sequence numbers
|
|
* are above the previous ones.
|
|
*/
|
|
if (tiflags & TH_SYN &&
|
|
tp->t_state == TCPS_TIME_WAIT &&
|
|
SEQ_GT(th->th_seq, tp->rcv_nxt)) {
|
|
iss = tp->snd_nxt + TCP_ISSINCR;
|
|
tp = tcp_close(tp);
|
|
goto findpcb;
|
|
}
|
|
/*
|
|
* If window is closed can only take segments at
|
|
* window edge, and have to drop data and PUSH from
|
|
* incoming segments. Continue processing, but
|
|
* remember to ack. Otherwise, drop segment
|
|
* and ack.
|
|
*/
|
|
if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
|
|
tp->t_flags |= TF_ACKNOW;
|
|
tcpstat.tcps_rcvwinprobe++;
|
|
} else
|
|
goto dropafterack;
|
|
} else
|
|
tcpstat.tcps_rcvbyteafterwin += todrop;
|
|
m_adj(m, -todrop);
|
|
tlen -= todrop;
|
|
tiflags &= ~(TH_PUSH|TH_FIN);
|
|
}
|
|
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers,
|
|
* record its timestamp.
|
|
* Fix from Braden, see Stevens p. 870
|
|
*/
|
|
if (ts_present && TSTMP_GEQ(ts_val, tp->ts_recent) &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
|
|
tp->ts_recent_age = tcp_now;
|
|
tp->ts_recent = ts_val;
|
|
}
|
|
|
|
/*
|
|
* If the RST bit is set examine the state:
|
|
* SYN_RECEIVED STATE:
|
|
* If passive open, return to LISTEN state.
|
|
* If active open, inform user that connection was refused.
|
|
* ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
|
|
* Inform user that connection was reset, and close tcb.
|
|
* CLOSING, LAST_ACK, TIME_WAIT STATES
|
|
* Close the tcb.
|
|
*/
|
|
if (tiflags & TH_RST) {
|
|
#ifndef INET6
|
|
if (ti->ti_seq != tp->last_ack_sent)
|
|
#else
|
|
if (th->th_seq != tp->last_ack_sent)
|
|
#endif
|
|
goto drop;
|
|
|
|
switch (tp->t_state) {
|
|
case TCPS_SYN_RECEIVED:
|
|
so->so_error = ECONNREFUSED;
|
|
goto close;
|
|
|
|
case TCPS_ESTABLISHED:
|
|
case TCPS_FIN_WAIT_1:
|
|
case TCPS_FIN_WAIT_2:
|
|
case TCPS_CLOSE_WAIT:
|
|
so->so_error = ECONNRESET;
|
|
close:
|
|
tp->t_state = TCPS_CLOSED;
|
|
tcpstat.tcps_drops++;
|
|
tp = tcp_close(tp);
|
|
goto drop;
|
|
case TCPS_CLOSING:
|
|
case TCPS_LAST_ACK:
|
|
case TCPS_TIME_WAIT:
|
|
tp = tcp_close(tp);
|
|
goto drop;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a SYN is in the window, then this is an
|
|
* error and we send an RST and drop the connection.
|
|
*/
|
|
if (tiflags & TH_SYN) {
|
|
tp = tcp_drop(tp, ECONNRESET);
|
|
goto dropwithreset;
|
|
}
|
|
|
|
/*
|
|
* If the ACK bit is off we drop the segment and return.
|
|
*/
|
|
if ((tiflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_ACKNOW)
|
|
goto dropafterack;
|
|
else
|
|
goto drop;
|
|
}
|
|
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* In SYN_RECEIVED state, the ack ACKs our SYN, so enter
|
|
* ESTABLISHED state and continue processing.
|
|
* The ACK was checked above.
|
|
*/
|
|
case TCPS_SYN_RECEIVED:
|
|
tcpstat.tcps_connects++;
|
|
soisconnected(so);
|
|
tp->t_state = TCPS_ESTABLISHED;
|
|
/* Do window scaling? */
|
|
if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
|
|
(TF_RCVD_SCALE|TF_REQ_SCALE)) {
|
|
tp->snd_scale = tp->requested_s_scale;
|
|
tp->rcv_scale = tp->request_r_scale;
|
|
}
|
|
(void) tcp_reass(tp, (struct tcphdr *)0, (struct mbuf *)0,
|
|
&tlen);
|
|
tp->snd_wl1 = th->th_seq - 1;
|
|
/* fall into ... */
|
|
|
|
/*
|
|
* In ESTABLISHED state: drop duplicate ACKs; ACK out of range
|
|
* ACKs. If the ack is in the range
|
|
* tp->snd_una < ti->ti_ack <= tp->snd_max
|
|
* then advance tp->snd_una to ti->ti_ack and drop
|
|
* data from the retransmission queue. If this ACK reflects
|
|
* more up to date window information we update our window information.
|
|
*/
|
|
case TCPS_ESTABLISHED:
|
|
case TCPS_FIN_WAIT_1:
|
|
case TCPS_FIN_WAIT_2:
|
|
case TCPS_CLOSE_WAIT:
|
|
case TCPS_CLOSING:
|
|
case TCPS_LAST_ACK:
|
|
case TCPS_TIME_WAIT:
|
|
if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
|
|
/*
|
|
* Duplicate/old ACK processing.
|
|
* Increments t_dupacks:
|
|
* Pure duplicate (same seq/ack/window, no data)
|
|
* Doesn't affect t_dupacks:
|
|
* Data packets.
|
|
* Normal window updates (window opens)
|
|
* Resets t_dupacks:
|
|
* New data ACKed.
|
|
* Window shrinks
|
|
* Old ACK
|
|
*/
|
|
if (tlen)
|
|
break;
|
|
/*
|
|
* If we get an old ACK, there is probably packet
|
|
* reordering going on. Be conservative and reset
|
|
* t_dupacks so that we are less agressive in
|
|
* doing a fast retransmit.
|
|
*/
|
|
if (th->th_ack != tp->snd_una) {
|
|
tp->t_dupacks = 0;
|
|
break;
|
|
}
|
|
if (tiwin == tp->snd_wnd) {
|
|
tcpstat.tcps_rcvdupack++;
|
|
/*
|
|
* If we have outstanding data (other than
|
|
* a window probe), this is a completely
|
|
* duplicate ack (ie, window info didn't
|
|
* change), the ack is the biggest we've
|
|
* seen and we've seen exactly our rexmt
|
|
* threshhold of them, assume a packet
|
|
* has been dropped and retransmit it.
|
|
* Kludge snd_nxt & the congestion
|
|
* window so we send only this one
|
|
* packet.
|
|
*
|
|
* We know we're losing at the current
|
|
* window size so do congestion avoidance
|
|
* (set ssthresh to half the current window
|
|
* and pull our congestion window back to
|
|
* the new ssthresh).
|
|
*
|
|
* Dup acks mean that packets have left the
|
|
* network (they're now cached at the receiver)
|
|
* so bump cwnd by the amount in the receiver
|
|
* to keep a constant cwnd packets in the
|
|
* network.
|
|
*/
|
|
if (tp->t_timer[TCPT_REXMT] == 0)
|
|
tp->t_dupacks = 0;
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
|
/*
|
|
* In FACK, can enter fast rec. if the receiver
|
|
* reports a reass. queue longer than 3 segs.
|
|
*/
|
|
else if (++tp->t_dupacks == tcprexmtthresh ||
|
|
((SEQ_GT(tp->snd_fack, tcprexmtthresh *
|
|
tp->t_maxseg + tp->snd_una)) &&
|
|
SEQ_GT(tp->snd_una, tp->snd_last))) {
|
|
#else
|
|
else if (++tp->t_dupacks == tcprexmtthresh) {
|
|
#endif /* TCP_FACK */
|
|
tcp_seq onxt = tp->snd_nxt;
|
|
u_long win =
|
|
ulmin(tp->snd_wnd, tp->snd_cwnd) /
|
|
2 / tp->t_maxseg;
|
|
|
|
#if defined(TCP_SACK)
|
|
if (SEQ_LT(th->th_ack, tp->snd_last)){
|
|
/*
|
|
* False fast retx after
|
|
* timeout. Do not cut window.
|
|
*/
|
|
tp->snd_cwnd += tp->t_maxseg;
|
|
tp->t_dupacks = 0;
|
|
(void) tcp_output(tp);
|
|
goto drop;
|
|
}
|
|
#endif
|
|
if (win < 2)
|
|
win = 2;
|
|
tp->snd_ssthresh = win * tp->t_maxseg;
|
|
#if defined(TCP_SACK)
|
|
tp->snd_last = tp->snd_max;
|
|
#endif
|
|
#ifdef TCP_SACK
|
|
if (!tp->sack_disable) {
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
tp->t_rtt = 0;
|
|
tcpstat.tcps_sndrexmitfast++;
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
|
(void) tcp_output(tp);
|
|
/*
|
|
* During FR, snd_cwnd is held
|
|
* constant for FACK.
|
|
*/
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
|
tp->t_dupacks = tcprexmtthresh;
|
|
#else
|
|
/*
|
|
* tcp_output() will send
|
|
* oldest SACK-eligible rtx.
|
|
*/
|
|
(void) tcp_output(tp);
|
|
tp->snd_cwnd = tp->snd_ssthresh+
|
|
tp->t_maxseg * tp->t_dupacks;
|
|
#endif /* TCP_FACK */
|
|
goto drop;
|
|
}
|
|
#endif /* TCP_SACK */
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
tp->t_rtt = 0;
|
|
tp->snd_nxt = th->th_ack;
|
|
tp->snd_cwnd = tp->t_maxseg;
|
|
tcpstat.tcps_sndrexmitfast++;
|
|
(void) tcp_output(tp);
|
|
|
|
tp->snd_cwnd = tp->snd_ssthresh +
|
|
tp->t_maxseg * tp->t_dupacks;
|
|
if (SEQ_GT(onxt, tp->snd_nxt))
|
|
tp->snd_nxt = onxt;
|
|
goto drop;
|
|
} else if (tp->t_dupacks > tcprexmtthresh) {
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
|
/*
|
|
* while (awnd < cwnd)
|
|
* sendsomething();
|
|
*/
|
|
if (!tp->sack_disable) {
|
|
if (tp->snd_awnd < tp->snd_cwnd)
|
|
tcp_output(tp);
|
|
goto drop;
|
|
}
|
|
#endif /* TCP_FACK */
|
|
tp->snd_cwnd += tp->t_maxseg;
|
|
(void) tcp_output(tp);
|
|
goto drop;
|
|
}
|
|
} else if (tiwin < tp->snd_wnd) {
|
|
/*
|
|
* The window was retracted! Previous dup
|
|
* ACKs may have been due to packets arriving
|
|
* after the shrunken window, not a missing
|
|
* packet, so play it safe and reset t_dupacks
|
|
*/
|
|
tp->t_dupacks = 0;
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* If the congestion window was inflated to account
|
|
* for the other side's cached packets, retract it.
|
|
*/
|
|
#if defined(TCP_SACK)
|
|
if (!tp->sack_disable) {
|
|
if (tp->t_dupacks >= tcprexmtthresh) {
|
|
/* Check for a partial ACK */
|
|
if (tcp_sack_partialack(tp, th)) {
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
|
/* Force call to tcp_output */
|
|
if (tp->snd_awnd < tp->snd_cwnd)
|
|
needoutput = 1;
|
|
#else
|
|
tp->snd_cwnd += tp->t_maxseg;
|
|
needoutput = 1;
|
|
#endif /* TCP_FACK */
|
|
} else {
|
|
/* Out of fast recovery */
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
|
if (tcp_seq_subtract(tp->snd_max,
|
|
th->th_ack) < tp->snd_ssthresh)
|
|
tp->snd_cwnd =
|
|
tcp_seq_subtract(tp->snd_max,
|
|
th->th_ack) + tp->t_maxseg;
|
|
tp->t_dupacks = 0;
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
|
if (SEQ_GT(th->th_ack, tp->snd_fack))
|
|
tp->snd_fack = th->th_ack;
|
|
#endif /* TCP_FACK */
|
|
}
|
|
}
|
|
} else {
|
|
if (tp->t_dupacks >= tcprexmtthresh &&
|
|
!tcp_newreno(tp, th)) {
|
|
/* Out of fast recovery */
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
|
if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
|
|
tp->snd_ssthresh)
|
|
tp->snd_cwnd =
|
|
tcp_seq_subtract(tp->snd_max,
|
|
th->th_ack) + tp->t_maxseg;
|
|
tp->t_dupacks = 0;
|
|
}
|
|
}
|
|
if (tp->t_dupacks < tcprexmtthresh)
|
|
tp->t_dupacks = 0;
|
|
#else /* else no TCP_SACK */
|
|
if (tp->t_dupacks >= tcprexmtthresh &&
|
|
tp->snd_cwnd > tp->snd_ssthresh)
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
|
tp->t_dupacks = 0;
|
|
#endif
|
|
if (SEQ_GT(th->th_ack, tp->snd_max)) {
|
|
tcpstat.tcps_rcvacktoomuch++;
|
|
goto dropafterack;
|
|
}
|
|
acked = th->th_ack - tp->snd_una;
|
|
tcpstat.tcps_rcvackpack++;
|
|
tcpstat.tcps_rcvackbyte += acked;
|
|
|
|
/*
|
|
* If we have a timestamp reply, update smoothed
|
|
* round trip time. If no timestamp is present but
|
|
* transmit timer is running and timed sequence
|
|
* number was acked, update smoothed round trip time.
|
|
* Since we now have an rtt measurement, cancel the
|
|
* timer backoff (cf., Phil Karn's retransmit alg.).
|
|
* Recompute the initial retransmit timer.
|
|
*/
|
|
if (ts_present)
|
|
tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
|
|
else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
|
|
tcp_xmit_timer(tp,tp->t_rtt);
|
|
|
|
/*
|
|
* If all outstanding data is acked, stop retransmit
|
|
* timer and remember to restart (more output or persist).
|
|
* If there is more data to be acked, restart retransmit
|
|
* timer, using current (possibly backed-off) value.
|
|
*/
|
|
if (th->th_ack == tp->snd_max) {
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
needoutput = 1;
|
|
} else if (tp->t_timer[TCPT_PERSIST] == 0)
|
|
tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
|
|
/*
|
|
* When new data is acked, open the congestion window.
|
|
* If the window gives us less than ssthresh packets
|
|
* in flight, open exponentially (maxseg per packet).
|
|
* Otherwise open linearly: maxseg per window
|
|
* (maxseg^2 / cwnd per packet).
|
|
*/
|
|
{
|
|
register u_int cw = tp->snd_cwnd;
|
|
register u_int incr = tp->t_maxseg;
|
|
|
|
if (cw > tp->snd_ssthresh)
|
|
incr = incr * incr / cw;
|
|
#if defined (TCP_SACK)
|
|
if (SEQ_GEQ(th->th_ack, tp->snd_last))
|
|
#endif
|
|
tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
|
|
}
|
|
ND6_HINT(tp);
|
|
if (acked > so->so_snd.sb_cc) {
|
|
tp->snd_wnd -= so->so_snd.sb_cc;
|
|
sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
|
|
ourfinisacked = 1;
|
|
} else {
|
|
sbdrop(&so->so_snd, acked);
|
|
tp->snd_wnd -= acked;
|
|
ourfinisacked = 0;
|
|
}
|
|
if (sb_notify(&so->so_snd))
|
|
sowwakeup(so);
|
|
tp->snd_una = th->th_ack;
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_una))
|
|
tp->snd_nxt = tp->snd_una;
|
|
#if defined (TCP_SACK) && defined (TCP_FACK)
|
|
if (SEQ_GT(tp->snd_una, tp->snd_fack))
|
|
tp->snd_fack = tp->snd_una;
|
|
#endif
|
|
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* In FIN_WAIT_1 STATE in addition to the processing
|
|
* for the ESTABLISHED state if our FIN is now acknowledged
|
|
* then enter FIN_WAIT_2.
|
|
*/
|
|
case TCPS_FIN_WAIT_1:
|
|
if (ourfinisacked) {
|
|
/*
|
|
* If we can't receive any more
|
|
* data, then closing user can proceed.
|
|
* Starting the timer is contrary to the
|
|
* specification, but if we don't get a FIN
|
|
* we'll hang forever.
|
|
*/
|
|
if (so->so_state & SS_CANTRCVMORE) {
|
|
soisdisconnected(so);
|
|
tp->t_timer[TCPT_2MSL] = tcp_maxidle;
|
|
}
|
|
tp->t_state = TCPS_FIN_WAIT_2;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* In CLOSING STATE in addition to the processing for
|
|
* the ESTABLISHED state if the ACK acknowledges our FIN
|
|
* then enter the TIME-WAIT state, otherwise ignore
|
|
* the segment.
|
|
*/
|
|
case TCPS_CLOSING:
|
|
if (ourfinisacked) {
|
|
tp->t_state = TCPS_TIME_WAIT;
|
|
tcp_canceltimers(tp);
|
|
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
|
|
soisdisconnected(so);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* In LAST_ACK, we may still be waiting for data to drain
|
|
* and/or to be acked, as well as for the ack of our FIN.
|
|
* If our FIN is now acknowledged, delete the TCB,
|
|
* enter the closed state and return.
|
|
*/
|
|
case TCPS_LAST_ACK:
|
|
if (ourfinisacked) {
|
|
tp = tcp_close(tp);
|
|
goto drop;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* In TIME_WAIT state the only thing that should arrive
|
|
* is a retransmission of the remote FIN. Acknowledge
|
|
* it and restart the finack timer.
|
|
*/
|
|
case TCPS_TIME_WAIT:
|
|
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
|
|
goto dropafterack;
|
|
}
|
|
}
|
|
|
|
step6:
|
|
/*
|
|
* Update window information.
|
|
* Don't look at window if no ACK: TAC's send garbage on first SYN.
|
|
*/
|
|
if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
|
|
(tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
|
|
(tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
|
|
/* keep track of pure window updates */
|
|
if (tlen == 0 &&
|
|
tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
|
|
tcpstat.tcps_rcvwinupd++;
|
|
tp->snd_wnd = tiwin;
|
|
tp->snd_wl1 = th->th_seq;
|
|
tp->snd_wl2 = th->th_ack;
|
|
if (tp->snd_wnd > tp->max_sndwnd)
|
|
tp->max_sndwnd = tp->snd_wnd;
|
|
needoutput = 1;
|
|
}
|
|
|
|
/*
|
|
* Process segments with URG.
|
|
*/
|
|
if ((tiflags & TH_URG) && th->th_urp &&
|
|
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
/*
|
|
* This is a kludge, but if we receive and accept
|
|
* random urgent pointers, we'll crash in
|
|
* soreceive. It's hard to imagine someone
|
|
* actually wanting to send this much urgent data.
|
|
*/
|
|
if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
|
|
th->th_urp = 0; /* XXX */
|
|
tiflags &= ~TH_URG; /* XXX */
|
|
goto dodata; /* XXX */
|
|
}
|
|
/*
|
|
* If this segment advances the known urgent pointer,
|
|
* then mark the data stream. This should not happen
|
|
* in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
|
|
* a FIN has been received from the remote side.
|
|
* In these states we ignore the URG.
|
|
*
|
|
* According to RFC961 (Assigned Protocols),
|
|
* the urgent pointer points to the last octet
|
|
* of urgent data. We continue, however,
|
|
* to consider it to indicate the first octet
|
|
* of data past the urgent section as the original
|
|
* spec states (in one of two places).
|
|
*/
|
|
if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
|
|
tp->rcv_up = th->th_seq + th->th_urp;
|
|
so->so_oobmark = so->so_rcv.sb_cc +
|
|
(tp->rcv_up - tp->rcv_nxt) - 1;
|
|
if (so->so_oobmark == 0)
|
|
so->so_state |= SS_RCVATMARK;
|
|
sohasoutofband(so);
|
|
tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
|
|
}
|
|
/*
|
|
* Remove out of band data so doesn't get presented to user.
|
|
* This can happen independent of advancing the URG pointer,
|
|
* but if two URG's are pending at once, some out-of-band
|
|
* data may creep in... ick.
|
|
*/
|
|
if (th->th_urp <= (u_int16_t) tlen
|
|
#ifdef SO_OOBINLINE
|
|
&& (so->so_options & SO_OOBINLINE) == 0
|
|
#endif
|
|
)
|
|
tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
|
|
} else
|
|
/*
|
|
* If no out of band data is expected,
|
|
* pull receive urgent pointer along
|
|
* with the receive window.
|
|
*/
|
|
if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
|
|
tp->rcv_up = tp->rcv_nxt;
|
|
dodata: /* XXX */
|
|
|
|
/*
|
|
* Process the segment text, merging it into the TCP sequencing queue,
|
|
* and arranging for acknowledgment of receipt if necessary.
|
|
* This process logically involves adjusting tp->rcv_wnd as data
|
|
* is presented to the user (this happens in tcp_usrreq.c,
|
|
* case PRU_RCVD). If a FIN has already been received on this
|
|
* connection then we just ignore the text.
|
|
*/
|
|
if ((tlen || (tiflags & TH_FIN)) &&
|
|
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
if (th->th_seq == tp->rcv_nxt && tp->segq.lh_first == NULL &&
|
|
tp->t_state == TCPS_ESTABLISHED) {
|
|
if (th->th_flags & TH_PUSH)
|
|
tp->t_flags |= TF_ACKNOW;
|
|
else
|
|
tp->t_flags |= TF_DELACK;
|
|
tp->rcv_nxt += tlen;
|
|
tiflags = th->th_flags & TH_FIN;
|
|
tcpstat.tcps_rcvpack++;
|
|
tcpstat.tcps_rcvbyte += tlen;
|
|
ND6_HINT(tp);
|
|
m_adj(m, hdroptlen);
|
|
sbappend(&so->so_rcv, m);
|
|
sorwakeup(so);
|
|
} else {
|
|
m_adj(m, hdroptlen);
|
|
tiflags = tcp_reass(tp, th, m, &tlen);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
}
|
|
#ifdef TCP_SACK
|
|
if (!tp->sack_disable)
|
|
tcp_update_sack_list(tp);
|
|
#endif
|
|
|
|
/*
|
|
* variable len never referenced again in modern BSD,
|
|
* so why bother computing it ??
|
|
*/
|
|
#if 0
|
|
/*
|
|
* Note the amount of data that peer has sent into
|
|
* our window, in order to estimate the sender's
|
|
* buffer size.
|
|
*/
|
|
len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
|
|
#endif /* 0 */
|
|
} else {
|
|
m_freem(m);
|
|
tiflags &= ~TH_FIN;
|
|
}
|
|
|
|
/*
|
|
* If FIN is received ACK the FIN and let the user know
|
|
* that the connection is closing. Ignore a FIN received before
|
|
* the connection is fully established.
|
|
*/
|
|
if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
|
|
if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
socantrcvmore(so);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
tp->rcv_nxt++;
|
|
}
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* In ESTABLISHED STATE enter the CLOSE_WAIT state.
|
|
*/
|
|
case TCPS_ESTABLISHED:
|
|
tp->t_state = TCPS_CLOSE_WAIT;
|
|
break;
|
|
|
|
/*
|
|
* If still in FIN_WAIT_1 STATE FIN has not been acked so
|
|
* enter the CLOSING state.
|
|
*/
|
|
case TCPS_FIN_WAIT_1:
|
|
tp->t_state = TCPS_CLOSING;
|
|
break;
|
|
|
|
/*
|
|
* In FIN_WAIT_2 state enter the TIME_WAIT state,
|
|
* starting the time-wait timer, turning off the other
|
|
* standard timers.
|
|
*/
|
|
case TCPS_FIN_WAIT_2:
|
|
tp->t_state = TCPS_TIME_WAIT;
|
|
tcp_canceltimers(tp);
|
|
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
|
|
soisdisconnected(so);
|
|
break;
|
|
|
|
/*
|
|
* In TIME_WAIT state restart the 2 MSL time_wait timer.
|
|
*/
|
|
case TCPS_TIME_WAIT:
|
|
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
|
|
break;
|
|
}
|
|
}
|
|
if (so->so_options & SO_DEBUG) {
|
|
#ifdef INET6
|
|
if (tp->pf == PF_INET6)
|
|
tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti6, 0, tlen);
|
|
else
|
|
#endif /* INET6 */
|
|
tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti, 0, tlen);
|
|
}
|
|
|
|
/*
|
|
* Return any desired output.
|
|
*/
|
|
if (needoutput || (tp->t_flags & TF_ACKNOW)) {
|
|
(void) tcp_output(tp);
|
|
}
|
|
return;
|
|
|
|
dropafterack:
|
|
/*
|
|
* Generate an ACK dropping incoming segment if it occupies
|
|
* sequence space, where the ACK reflects our state.
|
|
*/
|
|
if (tiflags & TH_RST)
|
|
goto drop;
|
|
m_freem(m);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
(void) tcp_output(tp);
|
|
return;
|
|
|
|
dropwithreset:
|
|
/*
|
|
* Generate a RST, dropping incoming segment.
|
|
* Make ACK acceptable to originator of segment.
|
|
* Don't bother to respond if destination was broadcast/multicast.
|
|
*/
|
|
if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
|
|
goto drop;
|
|
#ifdef INET6
|
|
if (is_ipv6) {
|
|
/* For following calls to tcp_respond */
|
|
ti = mtod(m, struct tcpiphdr *);
|
|
if (IN6_IS_ADDR_MULTICAST(&ipv6->ip6_dst))
|
|
goto drop;
|
|
} else {
|
|
#endif /* INET6 */
|
|
if (IN_MULTICAST(ti->ti_dst.s_addr))
|
|
goto drop;
|
|
#ifdef INET6
|
|
}
|
|
#endif /* INET6 */
|
|
if (tiflags & TH_ACK)
|
|
tcp_respond(tp, (caddr_t) ti, m, (tcp_seq)0, th->th_ack, TH_RST);
|
|
else {
|
|
if (tiflags & TH_SYN)
|
|
tlen++;
|
|
tcp_respond(tp, (caddr_t) ti, m, th->th_seq+tlen, (tcp_seq)0,
|
|
TH_RST|TH_ACK);
|
|
}
|
|
/* destroy temporarily created socket */
|
|
if (dropsocket)
|
|
(void) soabort(so);
|
|
return;
|
|
|
|
drop:
|
|
/*
|
|
* Drop space held by incoming segment and return.
|
|
*/
|
|
if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
|
|
#ifdef INET6
|
|
if (tp->pf == PF_INET6)
|
|
tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti6, 0, tlen);
|
|
else
|
|
#endif /* INET6 */
|
|
tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti, 0, tlen);
|
|
}
|
|
|
|
m_freem(m);
|
|
/* destroy temporarily created socket */
|
|
if (dropsocket)
|
|
(void) soabort(so);
|
|
return;
|
|
#ifndef TUBA_INCLUDE
|
|
}
|
|
|
|
void
|
|
tcp_dooptions(tp, cp, cnt, th, ts_present, ts_val, ts_ecr)
|
|
struct tcpcb *tp;
|
|
u_char *cp;
|
|
int cnt;
|
|
struct tcphdr *th;
|
|
int *ts_present;
|
|
u_int32_t *ts_val, *ts_ecr;
|
|
{
|
|
u_int16_t mss = 0;
|
|
int opt, optlen;
|
|
|
|
for (; cnt > 0; cnt -= optlen, cp += optlen) {
|
|
opt = cp[0];
|
|
if (opt == TCPOPT_EOL)
|
|
break;
|
|
if (opt == TCPOPT_NOP)
|
|
optlen = 1;
|
|
else {
|
|
optlen = cp[1];
|
|
if (optlen <= 0)
|
|
break;
|
|
}
|
|
switch (opt) {
|
|
|
|
default:
|
|
continue;
|
|
|
|
case TCPOPT_MAXSEG:
|
|
if (optlen != TCPOLEN_MAXSEG)
|
|
continue;
|
|
if (!(th->th_flags & TH_SYN))
|
|
continue;
|
|
bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
|
|
NTOHS(mss);
|
|
break;
|
|
|
|
case TCPOPT_WINDOW:
|
|
if (optlen != TCPOLEN_WINDOW)
|
|
continue;
|
|
if (!(th->th_flags & TH_SYN))
|
|
continue;
|
|
tp->t_flags |= TF_RCVD_SCALE;
|
|
tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
|
|
break;
|
|
|
|
case TCPOPT_TIMESTAMP:
|
|
if (optlen != TCPOLEN_TIMESTAMP)
|
|
continue;
|
|
*ts_present = 1;
|
|
bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
|
|
NTOHL(*ts_val);
|
|
bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
|
|
NTOHL(*ts_ecr);
|
|
|
|
/*
|
|
* A timestamp received in a SYN makes
|
|
* it ok to send timestamp requests and replies.
|
|
*/
|
|
if (th->th_flags & TH_SYN) {
|
|
tp->t_flags |= TF_RCVD_TSTMP;
|
|
tp->ts_recent = *ts_val;
|
|
tp->ts_recent_age = tcp_now;
|
|
}
|
|
break;
|
|
|
|
#ifdef TCP_SACK
|
|
case TCPOPT_SACK_PERMITTED:
|
|
if (tp->sack_disable || optlen!=TCPOLEN_SACK_PERMITTED)
|
|
continue;
|
|
if (th->th_flags & TH_SYN)
|
|
/* MUST only be set on SYN */
|
|
tp->t_flags |= TF_SACK_PERMIT;
|
|
break;
|
|
case TCPOPT_SACK:
|
|
if (tcp_sack_option(tp, th, cp, optlen))
|
|
continue;
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
/* Update t_maxopd and t_maxseg after all options are processed */
|
|
if (th->th_flags & TH_SYN)
|
|
(void) tcp_mss(tp, mss); /* sets t_maxseg */
|
|
}
|
|
|
|
#if defined(TCP_SACK)
|
|
u_long
|
|
tcp_seq_subtract(a, b)
|
|
u_long a, b;
|
|
{
|
|
return ((long)(a - b));
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef TCP_SACK
|
|
/*
|
|
* This function is called upon receipt of new valid data (while not in header
|
|
* prediction mode), and it updates the ordered list of sacks.
|
|
*/
|
|
void
|
|
tcp_update_sack_list(tp)
|
|
struct tcpcb *tp;
|
|
{
|
|
/*
|
|
* First reported block MUST be the most recent one. Subsequent
|
|
* blocks SHOULD be in the order in which they arrived at the
|
|
* receiver. These two conditions make the implementation fully
|
|
* compliant with RFC 2018.
|
|
*/
|
|
int i, j = 0, count = 0, lastpos = -1;
|
|
struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
|
|
|
|
/* First clean up current list of sacks */
|
|
for (i = 0; i < tp->rcv_numsacks; i++) {
|
|
sack = tp->sackblks[i];
|
|
if (sack.start == 0 && sack.end == 0) {
|
|
count++; /* count = number of blocks to be discarded */
|
|
continue;
|
|
}
|
|
if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
|
|
tp->sackblks[i].start = tp->sackblks[i].end = 0;
|
|
count++;
|
|
} else {
|
|
temp[j].start = tp->sackblks[i].start;
|
|
temp[j++].end = tp->sackblks[i].end;
|
|
}
|
|
}
|
|
tp->rcv_numsacks -= count;
|
|
if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
|
|
tcp_clean_sackreport(tp);
|
|
if (SEQ_LT(tp->rcv_nxt, tp->rcv_laststart)) {
|
|
/* ==> need first sack block */
|
|
tp->sackblks[0].start = tp->rcv_laststart;
|
|
tp->sackblks[0].end = tp->rcv_lastend;
|
|
tp->rcv_numsacks = 1;
|
|
}
|
|
return;
|
|
}
|
|
/* Otherwise, sack blocks are already present. */
|
|
for (i = 0; i < tp->rcv_numsacks; i++)
|
|
tp->sackblks[i] = temp[i]; /* first copy back sack list */
|
|
if (SEQ_GEQ(tp->rcv_nxt, tp->rcv_lastend))
|
|
return; /* sack list remains unchanged */
|
|
/*
|
|
* From here, segment just received should be (part of) the 1st sack.
|
|
* Go through list, possibly coalescing sack block entries.
|
|
*/
|
|
firstsack.start = tp->rcv_laststart;
|
|
firstsack.end = tp->rcv_lastend;
|
|
for (i = 0; i < tp->rcv_numsacks; i++) {
|
|
sack = tp->sackblks[i];
|
|
if (SEQ_LT(sack.end, firstsack.start) ||
|
|
SEQ_GT(sack.start, firstsack.end))
|
|
continue; /* no overlap */
|
|
if (sack.start == firstsack.start && sack.end == firstsack.end){
|
|
/*
|
|
* identical block; delete it here since we will
|
|
* move it to the front of the list.
|
|
*/
|
|
tp->sackblks[i].start = tp->sackblks[i].end = 0;
|
|
lastpos = i; /* last posn with a zero entry */
|
|
continue;
|
|
}
|
|
if (SEQ_LEQ(sack.start, firstsack.start))
|
|
firstsack.start = sack.start; /* merge blocks */
|
|
if (SEQ_GEQ(sack.end, firstsack.end))
|
|
firstsack.end = sack.end; /* merge blocks */
|
|
tp->sackblks[i].start = tp->sackblks[i].end = 0;
|
|
lastpos = i; /* last posn with a zero entry */
|
|
}
|
|
if (lastpos != -1) { /* at least one merge */
|
|
for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
|
|
sack = tp->sackblks[i];
|
|
if (sack.start == 0 && sack.end == 0)
|
|
continue;
|
|
temp[j++] = sack;
|
|
}
|
|
tp->rcv_numsacks = j; /* including first blk (added later) */
|
|
for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
|
|
tp->sackblks[i] = temp[i];
|
|
} else { /* no merges -- shift sacks by 1 */
|
|
if (tp->rcv_numsacks < MAX_SACK_BLKS)
|
|
tp->rcv_numsacks++;
|
|
for (i = tp->rcv_numsacks-1; i > 0; i--)
|
|
tp->sackblks[i] = tp->sackblks[i-1];
|
|
}
|
|
tp->sackblks[0] = firstsack;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Process the TCP SACK option. Returns 1 if tcp_dooptions() should continue,
|
|
* and 0 otherwise, if the option was fine. tp->snd_holes is an ordered list
|
|
* of holes (oldest to newest, in terms of the sequence space).
|
|
*/
|
|
int
|
|
tcp_sack_option(tp, th, cp, optlen)
|
|
struct tcpcb *tp;
|
|
struct tcphdr *th;
|
|
u_char *cp;
|
|
int optlen;
|
|
{
|
|
int tmp_olen;
|
|
u_char *tmp_cp;
|
|
struct sackhole *cur, *p, *temp;
|
|
|
|
if (tp->sack_disable)
|
|
return 1;
|
|
|
|
/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
|
|
if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
|
|
return 1;
|
|
tmp_cp = cp + 2;
|
|
tmp_olen = optlen - 2;
|
|
if (tp->snd_numholes < 0)
|
|
tp->snd_numholes = 0;
|
|
if (tp->t_maxseg == 0)
|
|
panic("tcp_sack_option"); /* Should never happen */
|
|
while (tmp_olen > 0) {
|
|
struct sackblk sack;
|
|
|
|
bcopy((char *) tmp_cp, (char *) &(sack.start), sizeof(tcp_seq));
|
|
NTOHL(sack.start);
|
|
bcopy((char *) tmp_cp + sizeof(tcp_seq),
|
|
(char *) &(sack.end), sizeof(tcp_seq));
|
|
NTOHL(sack.end);
|
|
tmp_olen -= TCPOLEN_SACK;
|
|
tmp_cp += TCPOLEN_SACK;
|
|
if (SEQ_LEQ(sack.end, sack.start))
|
|
continue; /* bad SACK fields */
|
|
if (SEQ_LEQ(sack.end, tp->snd_una))
|
|
continue; /* old block */
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
|
/* Updates snd_fack. */
|
|
if (SEQ_GEQ(sack.end, tp->snd_fack))
|
|
tp->snd_fack = sack.end;
|
|
#endif /* TCP_FACK */
|
|
if (SEQ_GT(th->th_ack, tp->snd_una)) {
|
|
if (SEQ_LT(sack.start, th->th_ack))
|
|
continue;
|
|
} else {
|
|
if (SEQ_LT(sack.start, tp->snd_una))
|
|
continue;
|
|
}
|
|
if (SEQ_GT(sack.end, tp->snd_max))
|
|
continue;
|
|
if (tp->snd_holes == 0) { /* first hole */
|
|
tp->snd_holes = (struct sackhole *)
|
|
malloc(sizeof(struct sackhole), M_PCB, M_NOWAIT);
|
|
if (tp->snd_holes == NULL) {
|
|
/* ENOBUFS, so ignore SACKed block for now*/
|
|
continue;
|
|
}
|
|
cur = tp->snd_holes;
|
|
cur->start = th->th_ack;
|
|
cur->end = sack.start;
|
|
cur->rxmit = cur->start;
|
|
cur->next = 0;
|
|
tp->snd_numholes = 1;
|
|
tp->rcv_lastsack = sack.end;
|
|
/*
|
|
* dups is at least one. If more data has been
|
|
* SACKed, it can be greater than one.
|
|
*/
|
|
cur->dups = min(tcprexmtthresh,
|
|
((sack.end - cur->end)/tp->t_maxseg));
|
|
if (cur->dups < 1)
|
|
cur->dups = 1;
|
|
continue; /* with next sack block */
|
|
}
|
|
/* Go thru list of holes: p = previous, cur = current */
|
|
p = cur = tp->snd_holes;
|
|
while (cur) {
|
|
if (SEQ_LEQ(sack.end, cur->start))
|
|
/* SACKs data before the current hole */
|
|
break; /* no use going through more holes */
|
|
if (SEQ_GEQ(sack.start, cur->end)) {
|
|
/* SACKs data beyond the current hole */
|
|
cur->dups++;
|
|
if ( ((sack.end - cur->end)/tp->t_maxseg) >=
|
|
tcprexmtthresh)
|
|
cur->dups = tcprexmtthresh;
|
|
p = cur;
|
|
cur = cur->next;
|
|
continue;
|
|
}
|
|
if (SEQ_LEQ(sack.start, cur->start)) {
|
|
/* Data acks at least the beginning of hole */
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
|
if (SEQ_GT(sack.end, cur->rxmit))
|
|
tp->retran_data -=
|
|
tcp_seq_subtract(cur->rxmit,
|
|
cur->start);
|
|
else
|
|
tp->retran_data -=
|
|
tcp_seq_subtract(sack.end,
|
|
cur->start);
|
|
#endif /* TCP_FACK */
|
|
if (SEQ_GEQ(sack.end,cur->end)){
|
|
/* Acks entire hole, so delete hole */
|
|
if (p != cur) {
|
|
p->next = cur->next;
|
|
free(cur, M_PCB);
|
|
cur = p->next;
|
|
} else {
|
|
cur=cur->next;
|
|
free(p, M_PCB);
|
|
p = cur;
|
|
tp->snd_holes = p;
|
|
}
|
|
tp->snd_numholes--;
|
|
continue;
|
|
}
|
|
/* otherwise, move start of hole forward */
|
|
cur->start = sack.end;
|
|
cur->rxmit = max (cur->rxmit, cur->start);
|
|
p = cur;
|
|
cur = cur->next;
|
|
continue;
|
|
}
|
|
/* move end of hole backward */
|
|
if (SEQ_GEQ(sack.end, cur->end)) {
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
|
if (SEQ_GT(cur->rxmit, sack.start))
|
|
tp->retran_data -=
|
|
tcp_seq_subtract(cur->rxmit,
|
|
sack.start);
|
|
#endif /* TCP_FACK */
|
|
cur->end = sack.start;
|
|
cur->rxmit = min (cur->rxmit, cur->end);
|
|
cur->dups++;
|
|
if ( ((sack.end - cur->end)/tp->t_maxseg) >=
|
|
tcprexmtthresh)
|
|
cur->dups = tcprexmtthresh;
|
|
p = cur;
|
|
cur = cur->next;
|
|
continue;
|
|
}
|
|
if (SEQ_LT(cur->start, sack.start) &&
|
|
SEQ_GT(cur->end, sack.end)) {
|
|
/*
|
|
* ACKs some data in middle of a hole; need to
|
|
* split current hole
|
|
*/
|
|
temp = (struct sackhole *)malloc(sizeof(*temp),
|
|
M_PCB,M_NOWAIT);
|
|
if (temp == NULL)
|
|
continue; /* ENOBUFS */
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
|
if (SEQ_GT(cur->rxmit, sack.end))
|
|
tp->retran_data -=
|
|
tcp_seq_subtract(sack.end,
|
|
sack.start);
|
|
else if (SEQ_GT(cur->rxmit, sack.start))
|
|
tp->retran_data -=
|
|
tcp_seq_subtract(cur->rxmit,
|
|
sack.start);
|
|
#endif /* TCP_FACK */
|
|
temp->next = cur->next;
|
|
temp->start = sack.end;
|
|
temp->end = cur->end;
|
|
temp->dups = cur->dups;
|
|
temp->rxmit = max (cur->rxmit, temp->start);
|
|
cur->end = sack.start;
|
|
cur->rxmit = min (cur->rxmit, cur->end);
|
|
cur->dups++;
|
|
if ( ((sack.end - cur->end)/tp->t_maxseg) >=
|
|
tcprexmtthresh)
|
|
cur->dups = tcprexmtthresh;
|
|
cur->next = temp;
|
|
p = temp;
|
|
cur = p->next;
|
|
tp->snd_numholes++;
|
|
}
|
|
}
|
|
/* At this point, p points to the last hole on the list */
|
|
if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
|
|
/*
|
|
* Need to append new hole at end.
|
|
* Last hole is p (and it's not NULL).
|
|
*/
|
|
temp = (struct sackhole *) malloc(sizeof(*temp),
|
|
M_PCB, M_NOWAIT);
|
|
if (temp == NULL)
|
|
continue; /* ENOBUFS */
|
|
temp->start = tp->rcv_lastsack;
|
|
temp->end = sack.start;
|
|
temp->dups = min(tcprexmtthresh,
|
|
((sack.end - sack.start)/tp->t_maxseg));
|
|
if (temp->dups < 1)
|
|
temp->dups = 1;
|
|
temp->rxmit = temp->start;
|
|
temp->next = 0;
|
|
p->next = temp;
|
|
tp->rcv_lastsack = sack.end;
|
|
tp->snd_numholes++;
|
|
}
|
|
}
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
|
/*
|
|
* Update retran_data and snd_awnd. Go through the list of
|
|
* holes. Increment retran_data by (hole->rxmit - hole->start).
|
|
*/
|
|
tp->retran_data = 0;
|
|
cur = tp->snd_holes;
|
|
while (cur) {
|
|
tp->retran_data += cur->rxmit - cur->start;
|
|
cur = cur->next;
|
|
}
|
|
tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt, tp->snd_fack) +
|
|
tp->retran_data;
|
|
#endif /* TCP_FACK */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Delete stale (i.e, cumulatively ack'd) holes. Hole is deleted only if
|
|
* it is completely acked; otherwise, tcp_sack_option(), called from
|
|
* tcp_dooptions(), will fix up the hole.
|
|
*/
|
|
void
|
|
tcp_del_sackholes(tp, th)
|
|
struct tcpcb *tp;
|
|
struct tcphdr *th;
|
|
{
|
|
if (!tp->sack_disable && tp->t_state != TCPS_LISTEN) {
|
|
/* max because this could be an older ack just arrived */
|
|
tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
|
|
th->th_ack : tp->snd_una;
|
|
struct sackhole *cur = tp->snd_holes;
|
|
struct sackhole *prev = cur;
|
|
while (cur)
|
|
if (SEQ_LEQ(cur->end, lastack)) {
|
|
cur = cur->next;
|
|
free(prev, M_PCB);
|
|
prev = cur;
|
|
tp->snd_numholes--;
|
|
} else if (SEQ_LT(cur->start, lastack)) {
|
|
cur->start = lastack;
|
|
break;
|
|
} else
|
|
break;
|
|
tp->snd_holes = cur;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Delete all receiver-side SACK information.
|
|
*/
|
|
void
|
|
tcp_clean_sackreport(tp)
|
|
struct tcpcb *tp;
|
|
{
|
|
int i;
|
|
|
|
tp->rcv_numsacks = 0;
|
|
for (i = 0; i < MAX_SACK_BLKS; i++)
|
|
tp->sackblks[i].start = tp->sackblks[i].end=0;
|
|
|
|
}
|
|
|
|
/*
|
|
* Checks for partial ack. If partial ack arrives, turn off retransmission
|
|
* timer, deflate the window, do not clear tp->t_dupacks, and return 1.
|
|
* If the ack advances at least to tp->snd_last, return 0.
|
|
*/
|
|
int
|
|
tcp_sack_partialack(tp, th)
|
|
struct tcpcb *tp;
|
|
struct tcphdr *th;
|
|
{
|
|
if (SEQ_LT(th->th_ack, tp->snd_last)) {
|
|
/* Turn off retx. timer (will start again next segment) */
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
tp->t_rtt = 0;
|
|
#ifndef TCP_FACK
|
|
/*
|
|
* Partial window deflation. This statement relies on the
|
|
* fact that tp->snd_una has not been updated yet. In FACK
|
|
* hold snd_cwnd constant during fast recovery.
|
|
*/
|
|
tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
|
|
#endif
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif TCP_SACK
|
|
|
|
/*
|
|
* Pull out of band byte out of a segment so
|
|
* it doesn't appear in the user's data queue.
|
|
* It is still reflected in the segment length for
|
|
* sequencing purposes.
|
|
*/
|
|
void
|
|
tcp_pulloutofband(so, urgent, m, off)
|
|
struct socket *so;
|
|
u_int urgent;
|
|
register struct mbuf *m;
|
|
int off;
|
|
{
|
|
int cnt = off + urgent - 1;
|
|
|
|
while (cnt >= 0) {
|
|
if (m->m_len > cnt) {
|
|
char *cp = mtod(m, caddr_t) + cnt;
|
|
struct tcpcb *tp = sototcpcb(so);
|
|
|
|
tp->t_iobc = *cp;
|
|
tp->t_oobflags |= TCPOOB_HAVEDATA;
|
|
bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
|
|
m->m_len--;
|
|
return;
|
|
}
|
|
cnt -= m->m_len;
|
|
m = m->m_next;
|
|
if (m == 0)
|
|
break;
|
|
}
|
|
panic("tcp_pulloutofband");
|
|
}
|
|
|
|
/*
|
|
* Collect new round-trip time estimate
|
|
* and update averages and current timeout.
|
|
*/
|
|
void
|
|
tcp_xmit_timer(tp, rtt)
|
|
register struct tcpcb *tp;
|
|
short rtt;
|
|
{
|
|
register short delta;
|
|
short rttmin;
|
|
|
|
tcpstat.tcps_rttupdated++;
|
|
--rtt;
|
|
if (tp->t_srtt != 0) {
|
|
/*
|
|
* srtt is stored as fixed point with 3 bits after the
|
|
* binary point (i.e., scaled by 8). The following magic
|
|
* is equivalent to the smoothing algorithm in rfc793 with
|
|
* an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
|
|
* point). Adjust rtt to origin 0.
|
|
*/
|
|
delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
|
|
if ((tp->t_srtt += delta) <= 0)
|
|
tp->t_srtt = 1;
|
|
/*
|
|
* We accumulate a smoothed rtt variance (actually, a
|
|
* smoothed mean difference), then set the retransmit
|
|
* timer to smoothed rtt + 4 times the smoothed variance.
|
|
* rttvar is stored as fixed point with 2 bits after the
|
|
* binary point (scaled by 4). The following is
|
|
* equivalent to rfc793 smoothing with an alpha of .75
|
|
* (rttvar = rttvar*3/4 + |delta| / 4). This replaces
|
|
* rfc793's wired-in beta.
|
|
*/
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
|
|
if ((tp->t_rttvar += delta) <= 0)
|
|
tp->t_rttvar = 1;
|
|
} else {
|
|
/*
|
|
* No rtt measurement yet - use the unsmoothed rtt.
|
|
* Set the variance to half the rtt (so our first
|
|
* retransmit happens at 3*rtt).
|
|
*/
|
|
tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
|
|
tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
|
|
}
|
|
tp->t_rtt = 0;
|
|
tp->t_rxtshift = 0;
|
|
|
|
/*
|
|
* the retransmit should happen at rtt + 4 * rttvar.
|
|
* Because of the way we do the smoothing, srtt and rttvar
|
|
* will each average +1/2 tick of bias. When we compute
|
|
* the retransmit timer, we want 1/2 tick of rounding and
|
|
* 1 extra tick because of +-1/2 tick uncertainty in the
|
|
* firing of the timer. The bias will give us exactly the
|
|
* 1.5 tick we need. But, because the bias is
|
|
* statistical, we have to test that we don't drop below
|
|
* the minimum feasible timer (which is 2 ticks).
|
|
*/
|
|
if (tp->t_rttmin > rtt + 2)
|
|
rttmin = tp->t_rttmin;
|
|
else
|
|
rttmin = rtt + 2;
|
|
TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
|
|
|
|
/*
|
|
* We received an ack for a packet that wasn't retransmitted;
|
|
* it is probably safe to discard any error indications we've
|
|
* received recently. This isn't quite right, but close enough
|
|
* for now (a route might have failed after we sent a segment,
|
|
* and the return path might not be symmetrical).
|
|
*/
|
|
tp->t_softerror = 0;
|
|
}
|
|
|
|
/*
|
|
* Determine a reasonable value for maxseg size.
|
|
* If the route is known, check route for mtu.
|
|
* If none, use an mss that can be handled on the outgoing
|
|
* interface without forcing IP to fragment; if bigger than
|
|
* an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
|
|
* to utilize large mbufs. If no route is found, route has no mtu,
|
|
* or the destination isn't local, use a default, hopefully conservative
|
|
* size (usually 512 or the default IP max size, but no more than the mtu
|
|
* of the interface), as we can't discover anything about intervening
|
|
* gateways or networks. We also initialize the congestion/slow start
|
|
* window to be a single segment if the destination isn't local.
|
|
* While looking at the routing entry, we also initialize other path-dependent
|
|
* parameters from pre-set or cached values in the routing entry.
|
|
*
|
|
* Also take into account the space needed for options that we
|
|
* send regularly. Make maxseg shorter by that amount to assure
|
|
* that we can send maxseg amount of data even when the options
|
|
* are present. Store the upper limit of the length of options plus
|
|
* data in maxopd.
|
|
*/
|
|
int
|
|
tcp_mss(tp, offer)
|
|
register struct tcpcb *tp;
|
|
u_int offer;
|
|
{
|
|
struct route *ro;
|
|
register struct rtentry *rt;
|
|
struct ifnet *ifp;
|
|
register int rtt, mss;
|
|
u_long bufsize;
|
|
struct inpcb *inp;
|
|
struct socket *so;
|
|
|
|
inp = tp->t_inpcb;
|
|
ro = &inp->inp_route;
|
|
so = inp->inp_socket;
|
|
|
|
if ((rt = ro->ro_rt) == (struct rtentry *)0) {
|
|
/* No route yet, so try to acquire one */
|
|
#ifdef INET6
|
|
/*
|
|
* Get a new IPv6 route if an IPv6 destination, otherwise, get
|
|
* and IPv4 route (including those pesky IPv4-mapped addresses).
|
|
*/
|
|
bzero(ro,sizeof(struct route_in6));
|
|
if (sotopf(so) == AF_INET6) {
|
|
if (IN6_IS_ADDR_V4MAPPED(&inp->inp_faddr6)) {
|
|
/* Get an IPv4 route. */
|
|
ro->ro_dst.sa_family = AF_INET;
|
|
ro->ro_dst.sa_len = sizeof(ro->ro_dst);
|
|
((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
|
|
inp->inp_faddr;
|
|
rtalloc(ro);
|
|
} else {
|
|
ro->ro_dst.sa_family = AF_INET6;
|
|
ro->ro_dst.sa_len = sizeof(struct sockaddr_in6);
|
|
((struct sockaddr_in6 *) &ro->ro_dst)->sin6_addr =
|
|
inp->inp_faddr6;
|
|
rtalloc(ro);
|
|
}
|
|
} else
|
|
#endif /* INET6 */
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY) {
|
|
ro->ro_dst.sa_family = AF_INET;
|
|
ro->ro_dst.sa_len = sizeof(ro->ro_dst);
|
|
satosin(&ro->ro_dst)->sin_addr = inp->inp_faddr;
|
|
rtalloc(ro);
|
|
}
|
|
if ((rt = ro->ro_rt) == (struct rtentry *)0) {
|
|
tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
|
|
return (tcp_mssdflt);
|
|
}
|
|
}
|
|
ifp = rt->rt_ifp;
|
|
|
|
#ifdef RTV_MTU /* if route characteristics exist ... */
|
|
/*
|
|
* While we're here, check if there's an initial rtt
|
|
* or rttvar. Convert from the route-table units
|
|
* to scaled multiples of the slow timeout timer.
|
|
*/
|
|
if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
|
|
/*
|
|
* XXX the lock bit for MTU indicates that the value
|
|
* is also a minimum value; this is subject to time.
|
|
*/
|
|
if (rt->rt_rmx.rmx_locks & RTV_RTT)
|
|
TCPT_RANGESET(tp->t_rttmin,
|
|
rtt / (RTM_RTTUNIT / PR_SLOWHZ),
|
|
TCPTV_MIN, TCPTV_REXMTMAX);
|
|
tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
|
|
if (rt->rt_rmx.rmx_rttvar)
|
|
tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
|
|
(RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
|
|
else
|
|
/* default variation is +- 1 rtt */
|
|
tp->t_rttvar =
|
|
tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
|
|
TCPT_RANGESET(tp->t_rxtcur,
|
|
((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
|
|
tp->t_rttmin, TCPTV_REXMTMAX);
|
|
}
|
|
/*
|
|
* if there's an mtu associated with the route and we support
|
|
* path MTU discovery for the underlying protocol family, use it.
|
|
*/
|
|
if (rt->rt_rmx.rmx_mtu) {
|
|
/*
|
|
* One may wish to lower MSS to take into account options,
|
|
* especially security-related options.
|
|
*/
|
|
mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcphdr);
|
|
switch (tp->pf) {
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
mss -= sizeof(struct ip6_hdr);
|
|
break;
|
|
#endif
|
|
#ifdef notdef /* no IPv4 path MTU discovery yet */
|
|
case AF_INET:
|
|
mss -= sizeof(struct ip);
|
|
break;
|
|
#endif
|
|
default:
|
|
/* the family does not support path MTU discovery */
|
|
mss = 0;
|
|
break;
|
|
}
|
|
} else
|
|
mss = 0;
|
|
#else
|
|
mss = 0;
|
|
#endif /* RTV_MTU */
|
|
if (mss == 0) {
|
|
/*
|
|
* ifp may be null and rmx_mtu may be zero in certain
|
|
* v6 cases (e.g., if ND wasn't able to resolve the
|
|
* destination host.
|
|
*/
|
|
mss = ifp ? ifp->if_mtu - sizeof(struct tcpiphdr) : 0;
|
|
switch (tp->pf) {
|
|
case AF_INET:
|
|
if (!in_localaddr(inp->inp_faddr))
|
|
mss = min(mss, tcp_mssdflt);
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* The current mss, t_maxseg, is initialized to the default value.
|
|
* If we compute a smaller value, reduce the current mss.
|
|
* If we compute a larger value, return it for use in sending
|
|
* a max seg size option, but don't store it for use
|
|
* unless we received an offer at least that large from peer.
|
|
* However, do not accept offers under 32 bytes.
|
|
*/
|
|
if (offer)
|
|
mss = min(mss, offer);
|
|
mss = max(mss, 64); /* sanity - at least max opt. space */
|
|
/*
|
|
* maxopd stores the maximum length of data AND options
|
|
* in a segment; maxseg is the amount of data in a normal
|
|
* segment. We need to store this value (maxopd) apart
|
|
* from maxseg, because now every segment carries options
|
|
* and thus we normally have somewhat less data in segments.
|
|
*/
|
|
tp->t_maxopd = mss;
|
|
|
|
if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
|
|
(tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
|
|
mss -= TCPOLEN_TSTAMP_APPA;
|
|
|
|
#if (MCLBYTES & (MCLBYTES - 1)) == 0
|
|
if (mss > MCLBYTES)
|
|
mss &= ~(MCLBYTES-1);
|
|
#else
|
|
if (mss > MCLBYTES)
|
|
mss = mss / MCLBYTES * MCLBYTES;
|
|
#endif
|
|
/*
|
|
* If there's a pipesize, change the socket buffer
|
|
* to that size. Make the socket buffers an integral
|
|
* number of mss units; if the mss is larger than
|
|
* the socket buffer, decrease the mss.
|
|
*/
|
|
#ifdef RTV_SPIPE
|
|
if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
|
|
#endif
|
|
bufsize = so->so_snd.sb_hiwat;
|
|
if (bufsize < mss)
|
|
mss = bufsize;
|
|
else {
|
|
bufsize = roundup(bufsize, mss);
|
|
if (bufsize > sb_max)
|
|
bufsize = sb_max;
|
|
(void)sbreserve(&so->so_snd, bufsize);
|
|
}
|
|
tp->t_maxseg = mss;
|
|
|
|
#ifdef RTV_RPIPE
|
|
if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
|
|
#endif
|
|
bufsize = so->so_rcv.sb_hiwat;
|
|
if (bufsize > mss) {
|
|
bufsize = roundup(bufsize, mss);
|
|
if (bufsize > sb_max)
|
|
bufsize = sb_max;
|
|
(void)sbreserve(&so->so_rcv, bufsize);
|
|
}
|
|
tp->snd_cwnd = mss;
|
|
|
|
#ifdef RTV_SSTHRESH
|
|
if (rt->rt_rmx.rmx_ssthresh) {
|
|
/*
|
|
* There's some sort of gateway or interface
|
|
* buffer limit on the path. Use this to set
|
|
* the slow start threshhold, but set the
|
|
* threshold to no less than 2*mss.
|
|
*/
|
|
tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
|
|
}
|
|
#endif /* RTV_MTU */
|
|
return (mss);
|
|
}
|
|
#endif /* TUBA_INCLUDE */
|
|
|
|
#if defined (TCP_SACK)
|
|
/*
|
|
* Checks for partial ack. If partial ack arrives, force the retransmission
|
|
* of the next unacknowledged segment, do not clear tp->t_dupacks, and return
|
|
* 1. By setting snd_nxt to ti_ack, this forces retransmission timer to
|
|
* be started again. If the ack advances at least to tp->snd_last, return 0.
|
|
*/
|
|
int
|
|
tcp_newreno(tp, th)
|
|
struct tcpcb *tp;
|
|
struct tcphdr *th;
|
|
{
|
|
if (SEQ_LT(th->th_ack, tp->snd_last)) {
|
|
/*
|
|
* snd_una has not been updated and the socket send buffer
|
|
* not yet drained of the acked data, so we have to leave
|
|
* snd_una as it was to get the correct data offset in
|
|
* tcp_output().
|
|
*/
|
|
tcp_seq onxt = tp->snd_nxt;
|
|
u_long ocwnd = tp->snd_cwnd;
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
|
tp->t_rtt = 0;
|
|
tp->snd_nxt = th->th_ack;
|
|
/*
|
|
* Set snd_cwnd to one segment beyond acknowledged offset
|
|
* (tp->snd_una not yet updated when this function is called)
|
|
*/
|
|
tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
|
|
(void) tcp_output(tp);
|
|
tp->snd_cwnd = ocwnd;
|
|
if (SEQ_GT(onxt, tp->snd_nxt))
|
|
tp->snd_nxt = onxt;
|
|
/*
|
|
* Partial window deflation. Relies on fact that tp->snd_una
|
|
* not updated yet.
|
|
*/
|
|
tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* TCP_SACK */
|
|
|