You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

907 lines
22 KiB

/*
* Copyright (c) 2003-2013 Broadcom Corporation
*
* Copyright (c) 2009-2010 Micron Technology, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include<pmon.h>
#include<asm.h>
#include<machine/types.h>
#include<linux/mtd/mtd.h>
#include<linux/mtd/nand.h>
#include<linux/mtd/partitions.h>
#include<sys/malloc.h>
#include <sys/mbuf.h>
#include <linux/mtd/spinand.h>
#include <linux/spi.h>
#include <sys/time.h>
#define BUFSIZE (10 * 64 * 2048)
#define NAND_CMD_PARAM 0xec
/*
* OOB area specification layout: Total 32 available free bytes.
*/
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
static int enable_hw_ecc;
static int enable_read_hw_ecc;
#endif
static struct nand_ecclayout spinand_oob_64 = {
.eccbytes = 24,
.eccpos = {
1, 2, 3, 4, 5, 6,
17, 18, 19, 20, 21, 22,
33, 34, 35, 36, 37, 38,
49, 50, 51, 52, 53, 54, },
.oobavail = 32,
.oobfree = {
{.offset = 8,
.length = 8},
{.offset = 24,
.length = 8},
{.offset = 40,
.length = 8},
{.offset = 56,
.length = 8}, }
};
/*
* spinand_cmd - to process a command to send to the SPI Nand
* Description:
* Set up the command buffer to send to the SPI controller.
* The command buffer has to initized to 0
*/
int spinand_cmd(struct spi_device *spi, struct spinand_cmd *cmd)
{
struct spi_message message;
struct spi_transfer x[4];
char cmdbuf[16];
u8 dummy = 0xff;
int ret;
spi_message_init(&message);
memset(x, 0, sizeof(x));
x[0].len = 1;
x[0].tx_buf = cmdbuf;
cmdbuf[0] = cmd->cmd;
if (cmd->n_addr) {
x[0].len += cmd->n_addr;
memcpy(&cmdbuf[1], cmd->addr, cmd->n_addr);
}
spi_message_add_tail(&x[0], &message);
if (cmd->n_dummy) {
x[2].len = cmd->n_dummy;
x[2].tx_buf = &dummy;
spi_message_add_tail(&x[2], &message);
}
if (cmd->n_tx) {
x[3].len = cmd->n_tx;
x[3].tx_buf = cmd->tx_buf;
spi_message_add_tail(&x[3], &message);
}
if (cmd->n_rx) {
x[3].len = cmd->n_rx;
x[3].rx_buf = cmd->rx_buf;
spi_message_add_tail(&x[3], &message);
}
ret = spi_sync(spi, &message);
return ret;
}
/*
* spinand_read_id- Read SPI Nand ID
* Description:
* Read ID: read two ID bytes from the SPI Nand device
*/
static int spinand_read_id(struct spi_device *spi_nand, u8 *id)
{
int retval;
u8 nand_id[3];
struct spinand_cmd cmd = {0};
cmd.cmd = CMD_READ_ID;
cmd.n_rx = 3;
cmd.rx_buf = &nand_id[0];
retval = spinand_cmd(spi_nand, &cmd);
if (retval != 0) {
printf( "error %d reading id\n", retval);
return retval;
}
id[0] = nand_id[0];
id[1] = nand_id[1];
id[2] = nand_id[2];
printk("nand id is 0x%x 0x%x 0x%x\n", nand_id[0], nand_id[1],nand_id[2]);
return 0;
}
/*
* spinand_read_status- send command 0xf to the SPI Nand status register
* Description:
* After read, write, or erase, the Nand device is expected to set the
* busy status.
* This function is to allow reading the status of the command: read,
* write, and erase.
* Once the status turns to be ready, the other status bits also are
* valid status bits.
*/
static int spinand_read_status(struct spi_device *spi_nand, uint8_t *status)
{
struct spinand_cmd cmd = {0};
int ret;
cmd.cmd = CMD_READ_REG;
cmd.n_addr = 1;
cmd.addr[0] = REG_STATUS;
cmd.n_rx = 1;
cmd.rx_buf = status;
ret = spinand_cmd(spi_nand, &cmd);
if (ret != 0) {
printf( "err: %d read status register\n", ret);
return ret;
}
return 0;
}
#define time_after_eq(a,b) ((long)(a) - (long)(b) >= 0)
#define time_after(a,b) ((long)(b) - (long)(a) < 0)
#define time_before(a,b) time_after(b,a)
#define MAX_WAIT_JIFFIES (40 * HZ)
static int wait_till_ready(struct spi_device *spi_nand)
{
unsigned long deadline;
int retval;
u8 stat = 0;
deadline = ticks + MAX_WAIT_JIFFIES;
do {
retval = spinand_read_status(spi_nand, &stat);
if (retval < 0)
return -1;
else if (!(stat & 0x1))
break;
//idle();
tgt_clkpoll();
} while (!time_after_eq(jiffies, deadline));
if ((stat & 0x1) == 0)
return 0;
return -1;
}
static inline void driver_strength(struct spi_device *spi_nand)
{
int ret;
char lock = 0x60;
struct spinand_cmd cmd = {0};
cmd.cmd = CMD_WRITE_REG;
cmd.n_addr = 1;
cmd.addr[0] = 0xd0; //ADDR_STRENGTH
cmd.n_tx = 1;
cmd.tx_buf = &lock;
ret = spinand_cmd(spi_nand, &cmd);
if (ret != 0) {
printf( "error %d lock block\n", ret);
return ret;
}
return 0;
}
/**
* spinand_get_otp- send command 0xf to read the SPI Nand OTP register
* Description:
* There is one bit( bit 0x10 ) to set or to clear the internal ECC.
* Enable chip internal ECC, set the bit to 1
* Disable chip internal ECC, clear the bit to 0
*/
static int spinand_get_otp(struct spi_device *spi_nand, u8 *otp)
{
struct spinand_cmd cmd = {0};
int retval;
cmd.cmd = CMD_READ_REG;
cmd.n_addr = 1;
cmd.addr[0] = REG_OTP;
cmd.n_rx = 1;
cmd.rx_buf = otp;
retval = spinand_cmd(spi_nand, &cmd);
if (retval != 0) {
printf( "error %d get otp\n", retval);
return retval;
}
return 0;
}
/**
* spinand_set_otp- send command 0x1f to write the SPI Nand OTP register
* Description:
* There is one bit( bit 0x10 ) to set or to clear the internal ECC.
* Enable chip internal ECC, set the bit to 1
* Disable chip internal ECC, clear the bit to 0
*/
static int spinand_set_otp(struct spi_device *spi_nand, u8 *otp)
{
int retval;
struct spinand_cmd cmd = {0};
cmd.cmd = CMD_WRITE_REG,
cmd.n_addr = 1,
cmd.addr[0] = REG_OTP,
cmd.n_tx = 1,
cmd.tx_buf = otp,
retval = spinand_cmd(spi_nand, &cmd);
if (retval != 0) {
printf( "error %d set otp\n", retval);
return retval;
}
return 0;
}
/**
* spinand_enable_ecc- send command 0x1f to write the SPI Nand OTP register
* Description:
* There is one bit( bit 0x10 ) to set or to clear the internal ECC.
* Enable chip internal ECC, set the bit to 1
* Disable chip internal ECC, clear the bit to 0
*/
static int spinand_enable_ecc(struct spi_device *spi_nand)
{
int retval;
u8 otp = 0;
retval = spinand_get_otp(spi_nand, &otp);
if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK) {
return 0;
} else {
otp |= OTP_ECC_MASK;
retval = spinand_set_otp(spi_nand, &otp);
retval = spinand_get_otp(spi_nand, &otp);
return retval;
}
}
static int spinand_disable_ecc(struct spi_device *spi_nand)
{
int retval;
u8 otp = 0;
retval = spinand_get_otp(spi_nand, &otp);
if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK) {
otp &= ~OTP_ECC_MASK;
retval = spinand_set_otp(spi_nand, &otp);
retval = spinand_get_otp(spi_nand, &otp);
return retval;
} else
return 0;
}
/**
* spinand_write_enable- send command 0x06 to enable write or erase the
* Nand cells
* Description:
* Before write and erase the Nand cells, the write enable has to be set.
* After the write or erase, the write enable bit is automatically
* cleared (status register bit 2)
* Set the bit 2 of the status register has the same effect
*/
static int spinand_write_enable(struct spi_device *spi_nand)
{
struct spinand_cmd cmd = {0};
cmd.cmd = CMD_WR_ENABLE;
return spinand_cmd(spi_nand, &cmd);
}
static int spinand_read_page_to_cache(struct spi_device *spi_nand, int page_id)
{
struct spinand_cmd cmd = {0};
int row;
row = page_id;
cmd.cmd = CMD_READ;
cmd.n_addr = 3;
cmd.addr[0] = (u8)((row & 0xff0000) >> 16);
cmd.addr[1] = (u8)((row & 0xff00) >> 8);
cmd.addr[2] = (u8)(row & 0x00ff);
return spinand_cmd(spi_nand, &cmd);
}
/*
* spinand_read_from_cache- send command 0x03 to read out the data from the
* cache register(2112 bytes max)
* Description:
* The read can specify 1 to 2112 bytes of data read at the coresponded
* locations.
* No tRd delay.
*/
static int spinand_read_from_cache(struct spi_device *spi_nand, u16 byte_id,
u16 len, u8 *rbuf)
{
struct spinand_cmd cmd = {0};
u16 column;
column = byte_id;
cmd.cmd = CMD_READ_RDM;
cmd.n_addr = 3;
cmd.addr[0] = (u8)(0xff); //dummy
cmd.addr[1] = (u8)((column & 0xff00) >> 8);
cmd.addr[2] = (u8)(column & 0x00ff);
cmd.n_dummy = 0;
cmd.n_rx = len;
cmd.rx_buf = rbuf;
return spinand_cmd(spi_nand, &cmd);
}
/*
* spinand_read_page-to read a page with:
* @page_id: the physical page number
* @offset: the location from 0 to 2111
* @len: number of bytes to read
* @rbuf: read buffer to hold @len bytes
*
* Description:
* The read icludes two commands to the Nand: 0x13 and 0x03 commands
* Poll to read status to wait for tRD time.
*/
static int spinand_read_page(struct spi_device *spi_nand, int page_id,
u16 offset, u16 len, u8 *rbuf)
{
int ret;
u8 status = 0;
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
if (enable_read_hw_ecc) {
if (spinand_enable_ecc(spi_nand))
printf( "enable HW ECC failed!");
}
#endif
ret = spinand_read_page_to_cache(spi_nand, page_id);
if (wait_till_ready(spi_nand))
printf( "WAIT timedout!!!\n");
while (1) {
ret = spinand_read_status(spi_nand, &status);
if (ret < 0) {
printf(
"err %d read status register\n", ret);
return ret;
}
if ((status & STATUS_OIP_MASK) == STATUS_READY) {
if ((status & STATUS_ECC_MASK) == STATUS_ECC_ERROR) {
printf( "ecc error, page=%d\n",
page_id);
return 0;
}
break;
}
}
ret = spinand_read_from_cache(spi_nand, offset, len, rbuf);
if (ret != 0)
printf( "read from cache failed!!\n");
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
if (enable_read_hw_ecc) {
ret = spinand_disable_ecc(spi_nand);
enable_read_hw_ecc = 0;
}
#endif
return 0;
}
/*
* spinand_program_data_to_cache--to write a page to cache with:
* @byte_id: the location to write to the cache
* @len: number of bytes to write
* @rbuf: read buffer to hold @len bytes
*
* Description:
* The write command used here is 0x84--indicating that the cache is
* not cleared first.
* Since it is writing the data to cache, there is no tPROG time.
*/
static int spinand_program_data_to_cache(struct spi_device *spi_nand,
u16 byte_id, u16 len, u8 *wbuf)
{
struct spinand_cmd cmd = {0};
u16 column;
column = byte_id;
cmd.cmd = CMD_PROG_PAGE_CLRCACHE;
cmd.n_addr = 2;
cmd.addr[0] = (u8)((column & 0xff00) >> 8);
cmd.addr[1] = (u8)(column & 0x00ff);
cmd.n_tx = len;
cmd.tx_buf = wbuf;
return spinand_cmd(spi_nand, &cmd);
}
/**
* spinand_program_execute--to write a page from cache to the Nand array with
* @page_id: the physical page location to write the page.
*
* Description:
* The write command used here is 0x10--indicating the cache is writing to
* the Nand array.
* Need to wait for tPROG time to finish the transaction.
*/
static int spinand_program_execute(struct spi_device *spi_nand, int page_id)
{
struct spinand_cmd cmd = {0};
int row;
row = page_id;
cmd.cmd = CMD_PROG_PAGE_EXC;
cmd.n_addr = 3;
cmd.addr[0] = (u8)((row & 0xff0000) >> 16);
cmd.addr[1] = (u8)((row & 0xff00) >> 8);
cmd.addr[2] = (u8)(row & 0x00ff);
return spinand_cmd(spi_nand, &cmd);
}
/**
* spinand_program_page--to write a page with:
* @page_id: the physical page location to write the page.
* @offset: the location from the cache starting from 0 to 2111
* @len: the number of bytes to write
* @wbuf: the buffer to hold the number of bytes
*
* Description:
* The commands used here are 0x06, 0x84, and 0x10--indicating that
* the write enable is first
* sent, the write cache command, and the write execute command
* Poll to wait for the tPROG time to finish the transaction.
*/
static int spinand_program_page(struct spi_device *spi_nand,
int page_id, u16 offset, u16 len, u8 *buf)
{
int retval;
u8 status = 0;
uint8_t *wbuf;
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
unsigned int i, j;
enable_read_hw_ecc = 0;
wbuf = devm_kzalloc(&spi_nand->dev, 2112, GFP_KERNEL);
spinand_read_page(spi_nand, page_id, 0, 2112, wbuf);
for (i = offset, j = 0; i < len; i++, j++)
wbuf[i] &= buf[j];
if (enable_hw_ecc)
retval = spinand_enable_ecc(spi_nand);
#else
wbuf = buf;
#endif
retval = spinand_write_enable(spi_nand);
if (wait_till_ready(spi_nand))
printf( "wait timedout!!!\n");
retval = spinand_program_data_to_cache(spi_nand, offset, len, wbuf);
retval = spinand_program_execute(spi_nand, page_id);
while (1) {
retval = spinand_read_status(spi_nand, &status);
if (retval < 0) {
printf(
"error %d reading status register\n",
retval);
return retval;
}
if ((status & STATUS_OIP_MASK) == STATUS_READY) {
if ((status & STATUS_P_FAIL_MASK) == STATUS_P_FAIL) {
printf(
"program error, page %d\n", page_id);
return -1;
} else
break;
}
}
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
if (enable_hw_ecc) {
retval = spinand_disable_ecc(spi_nand);
enable_hw_ecc = 0;
}
#endif
return 0;
}
/**
* spinand_erase_block_erase--to erase a page with:
* @block_id: the physical block location to erase.
*
* Description:
* The command used here is 0xd8--indicating an erase command to erase
* one block--64 pages
* Need to wait for tERS.
*/
static int spinand_erase_block_erase(struct spi_device *spi_nand, int block_id)
{
struct spinand_cmd cmd = {0};
int row;
row = block_id;
cmd.cmd = CMD_ERASE_BLK;
cmd.n_addr = 3;
cmd.addr[0] = (u8)((row & 0xff0000) >> 16);
cmd.addr[1] = (u8)((row & 0xff00) >> 8);
cmd.addr[2] = (u8)(row & 0x00ff);
return spinand_cmd(spi_nand, &cmd);
}
/**
* spinand_erase_block--to erase a page with:
* @block_id: the physical block location to erase.
*
* Description:
* The commands used here are 0x06 and 0xd8--indicating an erase
* command to erase one block--64 pages
* It will first to enable the write enable bit (0x06 command),
* and then send the 0xd8 erase command
* Poll to wait for the tERS time to complete the tranaction.
*/
static int spinand_erase_block(struct spi_device *spi_nand, int block_id)
{
int retval;
u8 status = 0;
retval = spinand_write_enable(spi_nand);
if (wait_till_ready(spi_nand))
printf( "wait timedout!!!\n");
retval = spinand_erase_block_erase(spi_nand, block_id);
while (1) {
retval = spinand_read_status(spi_nand, &status);
if (retval < 0) {
printf(
"error %d reading status register\n",
(int) retval);
return retval;
}
if ((status & STATUS_OIP_MASK) == STATUS_READY) {
if ((status & STATUS_E_FAIL_MASK) == STATUS_E_FAIL) {
printf(
"erase error, block %d\n", block_id);
return -1;
} else
break;
}
}
return 0;
}
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
static int spinand_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf)
{
const uint8_t *p = buf;
int eccsize = chip->ecc.size;
int eccsteps = chip->ecc.steps;
enable_hw_ecc = 1;
chip->write_buf(mtd, p, eccsize * eccsteps);
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
static int spinand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
u8 retval, status;
uint8_t *p = buf;
int eccsize = chip->ecc.size;
int eccsteps = chip->ecc.steps;
struct spinand_info *info = (struct spinand_info *)chip->priv;
enable_read_hw_ecc = 1;
chip->read_buf(mtd, p, eccsize * eccsteps);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
while (1) {
retval = spinand_read_status(info->spi, &status);
if ((status & STATUS_OIP_MASK) == STATUS_READY) {
if ((status & STATUS_ECC_MASK) == STATUS_ECC_ERROR) {
pr_info("spinand: ECC error\n");
mtd->ecc_stats.failed++;
} else if ((status & STATUS_ECC_MASK) ==
STATUS_ECC_1BIT_CORRECTED)
mtd->ecc_stats.corrected++;
break;
}
}
return 0;
}
#endif
static void spinand_select_chip(struct mtd_info *mtd, int dev)
{
}
static uint8_t spinand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
struct spinand_info *info = (struct spinand_info *)chip->priv;
struct nand_state *state = (struct nand_state *)info->priv;
u8 data;
data = state->buf[state->buf_ptr];
state->buf_ptr++;
return data;
}
static int spinand_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
struct spinand_info *info = (struct spinand_info *)chip->priv;
unsigned long timeo = ticks;
int retval, state = chip->state;
u8 status;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;
else
timeo += (HZ * 20) / 1000;
while (time_before(jiffies, timeo)) {
retval = spinand_read_status(info->spi, &status);
if ((status & STATUS_OIP_MASK) == STATUS_READY)
return 0;
//idle();
tgt_clkpoll();
}
return 0;
}
static void spinand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
struct spinand_info *info = (struct spinand_info *)chip->priv;
struct nand_state *state = (struct nand_state *)info->priv;
memcpy(state->buf+state->buf_ptr, buf, len);
state->buf_ptr += len;
}
static void spinand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
struct spinand_info *info = (struct spinand_info *)chip->priv;
struct nand_state *state = (struct nand_state *)info->priv;
memcpy(buf, state->buf+state->buf_ptr, len);
state->buf_ptr += len;
}
static void spinand_cmdfunc(struct mtd_info *mtd, unsigned int command,
int column, int page)
{
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
struct spinand_info *info = (struct spinand_info *)chip->priv;
struct nand_state *state = (struct nand_state *)info->priv;
switch (command) {
/*
* READ0 - read in first 0x800 bytes
*/
case NAND_CMD_READ1:
case NAND_CMD_READ0:
state->buf_ptr = 0;
spinand_read_page(info->spi, page, 0x0, mtd->oobsize + mtd->writesize, state->buf);
break;
/* READOOB reads only the OOB because no ECC is performed. */
case NAND_CMD_READOOB:
state->buf_ptr = 0;
spinand_read_page(info->spi, page, mtd->writesize, mtd->oobsize, state->buf);
break;
case NAND_CMD_RNDOUT:
state->buf_ptr = column;
break;
case NAND_CMD_READID:
state->buf_ptr = 0;
spinand_read_id(info->spi, (u8 *)state->buf);
break;
case NAND_CMD_PARAM:
state->buf_ptr = 0;
break;
/* ERASE1 stores the block and page address */
case NAND_CMD_ERASE1:
spinand_erase_block(info->spi, page);
break;
/* ERASE2 uses the block and page address from ERASE1 */
case NAND_CMD_ERASE2:
break;
/* SEQIN sets up the addr buffer and all registers except the length */
case NAND_CMD_SEQIN:
state->col = column;
state->row = page;
state->buf_ptr = 0;
break;
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
case NAND_CMD_PAGEPROG:
spinand_program_page(info->spi, state->row, state->col,
state->buf_ptr, state->buf);
break;
case NAND_CMD_STATUS:
spinand_get_otp(info->spi, state->buf);
if (!(state->buf[0] & 0x80))
state->buf[0] = 0x80;
state->buf_ptr = 0;
break;
/* RESET command */
case NAND_CMD_RESET:
break;
default:
printf("Unknown CMD: 0x%x\n", command);
}
}
/**
* spinand_lock_block- send write register 0x1f command to the Nand device
*
* Description:
* After power up, all the Nand blocks are locked. This function allows
* one to unlock the blocks, and so it can be wriiten or erased.
*/
static int spinand_lock_block(struct spi_device *spi_nand, u8 lock)
{
struct spinand_cmd cmd = {0};
int ret;
u8 otp = 0;
ret = spinand_get_otp(spi_nand, &otp);
cmd.cmd = CMD_WRITE_REG;
cmd.n_addr = 1;
cmd.addr[0] = REG_BLOCK_LOCK;
cmd.n_tx = 1;
cmd.tx_buf = &lock;
ret = spinand_cmd(spi_nand, &cmd);
if (ret != 0) {
printf( "error %d lock block\n", ret);
return ret;
}
return 0;
}
/*
* spinand_probe - [spinand Interface]
* @spi_nand: registered device driver.
*
* Description:
* To set up the device driver parameters to make the device available.
*/
int spinand_probe(struct spi_device *spi_nand)
{
struct mtd_info *mtd;
struct nand_chip *chip;
struct spinand_info *info;
struct nand_state *state;
int ret;
info = malloc(sizeof(struct spinand_info),M_DEVBUF, M_DONTWAIT );
if (!info)
return -ENOMEM;
memset(info, 0, sizeof(*info));
info->spi = spi_nand;
spinand_lock_block(spi_nand, BL_ALL_UNLOCKED);
state = malloc(sizeof(struct nand_state),M_DEVBUF, M_DONTWAIT );
if (!state)
return -ENOMEM;
memset(state, 0, sizeof(*state));
info->priv = state;
printk("info->priv=0x%x\n", info->priv);
state->buf_ptr = 0;
state->buf = malloc(BUFSIZE,M_DEVBUF, M_DONTWAIT );
printk("state->buf=0x%x\n", state->buf);
if (!state->buf)
return -ENOMEM;
chip = malloc(sizeof(struct nand_chip) ,M_DEVBUF, M_DONTWAIT );
if (!chip)
return -ENOMEM;
memset(chip, 0, sizeof(*chip));
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
chip->ecc.mode = NAND_ECC_NONE;
chip->ecc.bytes = 48;
chip->ecc.steps = 0x8;
chip->ecc.size = 512;
#if 0
chip->ecc.strength = 1;
#endif
// chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
//chip->ecc.layout = &spinand_oob_64;
chip->ecc.read_page = spinand_read_page_hwecc;
chip->ecc.write_page = spinand_write_page_hwecc;
spinand_enable_ecc(spi_nand);
#else
//chip->ecc.layout = &spinand_oob_64;
//chip->ecc.mode = NAND_ECC_NONE;//NAND_ECC_SOFT;
#if 0
chip->ecc.mode = NAND_ECC_SOFT;
ret = spinand_disable_ecc(spi_nand);
#else
chip->ecc.mode = NAND_ECC_NONE;
ret = spinand_enable_ecc(spi_nand);
#endif
#endif
driver_strength(spi_nand);
chip->priv = info;
chip->read_buf = spinand_read_buf;
chip->write_buf = spinand_write_buf;
chip->read_byte = spinand_read_byte;
chip->cmdfunc = spinand_cmdfunc;
chip->waitfunc = spinand_wait;
chip->options |= NAND_CACHEPRG;
chip->select_chip = spinand_select_chip;
mtd = malloc(sizeof(struct mtd_info) ,M_DEVBUF, M_DONTWAIT );
memset(mtd, 0, sizeof(struct mtd_info));
if (!mtd)
return -ENOMEM;
mtd->priv = chip;
mtd->oobsize = 64;
if (nand_scan(mtd, 1))
return -1;
mtd->name="mt29f";
if(!nand_flash_add_parts(mtd,0)){
add_mtd_device(mtd,0,0,"total");
add_mtd_device(mtd,0,0x01400000,"kernel");
add_mtd_device(mtd,0x01400000,0x0,"os");
}
return 0;
}