You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3406 lines
86 KiB

/* do print messages for unexpected interrupts */
static int print_unex=1;
static int slow_floppy;
#define FLOPPY_MAJOR 2
//--------------------------------------------
//#define printk printf
struct request;
struct buffer_head;
struct request *current_request;
#undef QUEUE_EMPTY
#define QUEUE_EMPTY (!CURRENT)
//---------------------------------------------
#undef FLOPPY_SANITY_CHECK
#undef FLOPPY_SILENT_DCL_CLEAR
//#define DEBUGT 2
#undef DEBUGT
#undef DCL_DEBUG /* debug disk change line */
/*
* 1998/1/21 -- Richard Gooch <rgooch@atnf.csiro.au> -- devfs support
*/
/*
* PS/2 floppies have much slower step rates than regular floppies.
* It's been recommended that take about 1/4 of the default speed
* in some more extreme cases.
*/
static int slow_floppy;
static int FLOPPY_IRQ=6;
static int FLOPPY_DMA=2;
static int can_use_virtual_dma=2;
/* =======
* can use virtual DMA:
* 0 = use of virtual DMA disallowed by config
* 1 = use of virtual DMA prescribed by config
* 2 = no virtual DMA preference configured. By default try hard DMA,
* but fall back on virtual DMA when not enough memory available
*/
static int use_virtual_dma;
/* =======
* use virtual DMA
* 0 using hard DMA
* 1 using virtual DMA
* This variable is set to virtual when a DMA mem problem arises, and
* reset back in floppy_grab_irq_and_dma.
* It is not safe to reset it in other circumstances, because the floppy
* driver may have several buffers in use at once, and we do currently not
* record each buffers capabilities
*/
static unsigned short virtual_dma_port=0x3f0;
void floppy_interrupt(int irq, void *dev_id, void * regs);
static int set_dor(int fdc, char mask, char data);
#define K_64 0x10000 /* 64KB */
/* the following is the mask of allowed drives. By default units 2 and
* 3 of both floppy controllers are disabled, because switching on the
* motor of these drives causes system hangs on some PCI computers. drive
* 0 is the low bit (0x1), and drive 7 is the high bit (0x80). Bits are on if
* a drive is allowed.
*
* NOTE: This must come before we include the arch floppy header because
* some ports reference this variable from there. -DaveM
*/
static int irqdma_allocated;
#define MAJOR_NR FLOPPY_MAJOR
#ifdef PMON
#include "fd-pmon.c"
#else
#include "fd-linux.c"
#endif
static int allowed_drive_mask = 0x33;
static int end_request(int uptodate)
{
struct buffer_head * bh;
int nsect;
DEVICE_OFF(CURRENT->rq_dev);
if (!uptodate)
printk("end_request: I/O error, dev %s , sector %lu\n",
"fd0", CURRENT->sector);
if ((bh = CURRENT->bh) != NULL) {
bh->b_end_io(bh, uptodate);
}
CURRENT=0;
return 0;
}
#ifndef fd_get_dma_residue
#define fd_get_dma_residue() get_dma_residue(FLOPPY_DMA)
#endif
/* Dma Memory related stuff */
#ifndef fd_dma_mem_free
#define fd_dma_mem_free(addr, size) free_pages(addr, get_order(size))
#endif
#ifndef fd_dma_mem_alloc
#define fd_dma_mem_alloc(size) __get_dma_pages(GFP_KERNEL,get_order(size))
#endif
static inline void fallback_on_nodma_alloc(char **addr, size_t l)
{
#ifdef FLOPPY_CAN_FALLBACK_ON_NODMA
if (*addr)
return; /* we have the memory */
if (can_use_virtual_dma != 2)
return; /* no fallback allowed */
printk("DMA memory shortage. Temporarily falling back on virtual DMA\n");
*addr = (char *) nodma_mem_alloc(l);
#else
return;
#endif
}
/* End dma memory related stuff */
static unsigned long fake_change;
static int initialising=1;
static inline int TYPE(kdev_t x) {
return (MINOR(x)>>2) & 0x1f;
}
static inline int DRIVE(kdev_t x) {
return (MINOR(x)&0x03) | ((MINOR(x)&0x80) >> 5);
}
#define ITYPE(x) (((x)>>2) & 0x1f)
#define TOMINOR(x) ((x & 3) | ((x & 4) << 5))
#define UNIT(x) ((x) & 0x03) /* drive on fdc */
#define FDC(x) (((x) & 0x04) >> 2) /* fdc of drive */
#define REVDRIVE(fdc, unit) ((unit) + ((fdc) << 2))
/* reverse mapping from unit and fdc to drive */
#define DP (&drive_params[current_drive])
#define DRS (&drive_state[current_drive])
#define DRWE (&write_errors[current_drive])
#define FDCS (&fdc_state[fdc])
#define CLEARF(x) (clear_bit(x##_BIT, &DRS->flags))
#define SETF(x) (set_bit(x##_BIT, &DRS->flags))
#define TESTF(x) (test_bit(x##_BIT, &DRS->flags))
#define UDP (&drive_params[drive])
#define UDRS (&drive_state[drive])
#define UDRWE (&write_errors[drive])
#define UFDCS (&fdc_state[FDC(drive)])
#define UCLEARF(x) (clear_bit(x##_BIT, &UDRS->flags))
#define USETF(x) (set_bit(x##_BIT, &UDRS->flags))
#define UTESTF(x) (test_bit(x##_BIT, &UDRS->flags))
#define DPRINT(format, args...) printk(DEVICE_NAME "%d: " format, current_drive , ## args)
#define PH_HEAD(floppy,head) (((((floppy)->stretch & 2) >>1) ^ head) << 2)
#define STRETCH(floppy) ((floppy)->stretch & FD_STRETCH)
#define CLEARSTRUCT(x) memset((x), 0, sizeof(*(x)))
/* read/write */
#define COMMAND raw_cmd->cmd[0]
#define DR_SELECT raw_cmd->cmd[1]
#define TRACK raw_cmd->cmd[2]
#define HEAD raw_cmd->cmd[3]
#define SECTOR raw_cmd->cmd[4]
#define SIZECODE raw_cmd->cmd[5]
#define SECT_PER_TRACK raw_cmd->cmd[6]
#define GAP raw_cmd->cmd[7]
#define SIZECODE2 raw_cmd->cmd[8]
#define NR_RW 9
/* format */
#define F_SIZECODE raw_cmd->cmd[2]
#define F_SECT_PER_TRACK raw_cmd->cmd[3]
#define F_GAP raw_cmd->cmd[4]
#define F_FILL raw_cmd->cmd[5]
#define NR_F 6
/*
* Maximum disk size (in kilobytes). This default is used whenever the
* current disk size is unknown.
* [Now it is rather a minimum]
*/
#define MAX_DISK_SIZE 4 /* 3984*/
/*
* globals used by 'result()'
*/
#define MAX_REPLIES 16
static unsigned char reply_buffer[MAX_REPLIES];
static int inr; /* size of reply buffer, when called from interrupt */
#define ST0 (reply_buffer[0])
#define ST1 (reply_buffer[1])
#define ST2 (reply_buffer[2])
#define ST3 (reply_buffer[0]) /* result of GETSTATUS */
#define R_TRACK (reply_buffer[3])
#define R_HEAD (reply_buffer[4])
#define R_SECTOR (reply_buffer[5])
#define R_SIZECODE (reply_buffer[6])
#define SEL_DLY (2*HZ/100)
/*
* this struct defines the different floppy drive types.
*/
static struct {
struct floppy_drive_params params;
const char *name; /* name printed while booting */
} default_drive_params[]= {
/* NOTE: the time values in ticks should be in msec!
CMOS drive type
| Maximum data rate supported by drive type
| | Head load time, msec
| | | Head unload time, msec (not used)
| | | | Step rate interval, usec
| | | | | Time needed for spinup time (ticks)
| | | | | | Timeout for spinning down (ticks)
| | | | | | | Spindown offset (where disk stops)
| | | | | | | | Select delay
| | | | | | | | | RPS
| | | | | | | | | | Max number of tracks
| | | | | | | | | | | Interrupt timeout
| | | | | | | | | | | | Max nonintlv. sectors
| | | | | | | | | | | | | -Max Errors- flags */
{{0, 500, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 80, 3*HZ, 20, {3,1,2,0,2}, 0,
0, { 7, 4, 8, 2, 1, 5, 3,10}, 3*HZ/2, 0 }, "unknown" },
{{1, 300, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 40, 3*HZ, 17, {3,1,2,0,2}, 0,
0, { 1, 0, 0, 0, 0, 0, 0, 0}, 3*HZ/2, 1 }, "360K PC" }, /*5 1/4 360 KB PC*/
{{2, 500, 16, 16, 6000, 4*HZ/10, 3*HZ, 14, SEL_DLY, 6, 83, 3*HZ, 17, {3,1,2,0,2}, 0,
0, { 2, 5, 6,23,10,20,12, 0}, 3*HZ/2, 2 }, "1.2M" }, /*5 1/4 HD AT*/
{{3, 250, 16, 16, 3000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0,
0, { 4,22,21,30, 3, 0, 0, 0}, 3*HZ/2, 4 }, "720k" }, /*3 1/2 DD*/
{{4, 500, 16, 16, 4000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0,
0, { 7, 4,25,22,31,21,29,11}, 3*HZ/2, 7 }, "1.44M" }, /*3 1/2 HD*/
{{5, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0,
0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M AMI BIOS" }, /*3 1/2 ED*/
{{6, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0,
0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M" } /*3 1/2 ED*/
/* | --autodetected formats--- | | |
* read_track | | Name printed when booting
* | Native format
* Frequency of disk change checks */
};
static struct floppy_drive_params drive_params[N_DRIVE];
static struct floppy_drive_struct drive_state[N_DRIVE];
static struct floppy_write_errors write_errors[N_DRIVE];
static struct timer_list motor_off_timer[N_DRIVE];
static struct floppy_raw_cmd *raw_cmd, default_raw_cmd;
/*
* This struct defines the different floppy types.
*
* Bit 0 of 'stretch' tells if the tracks need to be doubled for some
* types (e.g. 360kB diskette in 1.2MB drive, etc.). Bit 1 of 'stretch'
* tells if the disk is in Commodore 1581 format, which means side 0 sectors
* are located on side 1 of the disk but with a side 0 ID, and vice-versa.
* This is the same as the Sharp MZ-80 5.25" CP/M disk format, except that the
* 1581's logical side 0 is on physical side 1, whereas the Sharp's logical
* side 0 is on physical side 0 (but with the misnamed sector IDs).
* 'stretch' should probably be renamed to something more general, like
* 'options'. Other parameters should be self-explanatory (see also
* setfdprm(8)).
*/
/*
Size
| Sectors per track
| | Head
| | | Tracks
| | | | Stretch
| | | | | Gap 1 size
| | | | | | Data rate, | 0x40 for perp
| | | | | | | Spec1 (stepping rate, head unload
| | | | | | | | /fmt gap (gap2) */
static struct floppy_struct floppy_type[32] = {
{ 0, 0,0, 0,0,0x00,0x00,0x00,0x00,NULL }, /* 0 no testing */
{ 720, 9,2,40,0,0x2A,0x02,0xDF,0x50,"d360" }, /* 1 360KB PC */
{ 2400,15,2,80,0,0x1B,0x00,0xDF,0x54,"h1200" }, /* 2 1.2MB AT */
{ 720, 9,1,80,0,0x2A,0x02,0xDF,0x50,"D360" }, /* 3 360KB SS 3.5" */
{ 1440, 9,2,80,0,0x2A,0x02,0xDF,0x50,"D720" }, /* 4 720KB 3.5" */
{ 720, 9,2,40,1,0x23,0x01,0xDF,0x50,"h360" }, /* 5 360KB AT */
{ 1440, 9,2,80,0,0x23,0x01,0xDF,0x50,"h720" }, /* 6 720KB AT */
{ 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,"H1440" }, /* 7 1.44MB 3.5" */
{ 5760,36,2,80,0,0x1B,0x43,0xAF,0x54,"E2880" }, /* 8 2.88MB 3.5" */
{ 6240,39,2,80,0,0x1B,0x43,0xAF,0x28,"E3120" }, /* 9 3.12MB 3.5" */
{ 2880,18,2,80,0,0x25,0x00,0xDF,0x02,"h1440" }, /* 10 1.44MB 5.25" */
{ 3360,21,2,80,0,0x1C,0x00,0xCF,0x0C,"H1680" }, /* 11 1.68MB 3.5" */
{ 820,10,2,41,1,0x25,0x01,0xDF,0x2E,"h410" }, /* 12 410KB 5.25" */
{ 1640,10,2,82,0,0x25,0x02,0xDF,0x2E,"H820" }, /* 13 820KB 3.5" */
{ 2952,18,2,82,0,0x25,0x00,0xDF,0x02,"h1476" }, /* 14 1.48MB 5.25" */
{ 3444,21,2,82,0,0x25,0x00,0xDF,0x0C,"H1722" }, /* 15 1.72MB 3.5" */
{ 840,10,2,42,1,0x25,0x01,0xDF,0x2E,"h420" }, /* 16 420KB 5.25" */
{ 1660,10,2,83,0,0x25,0x02,0xDF,0x2E,"H830" }, /* 17 830KB 3.5" */
{ 2988,18,2,83,0,0x25,0x00,0xDF,0x02,"h1494" }, /* 18 1.49MB 5.25" */
{ 3486,21,2,83,0,0x25,0x00,0xDF,0x0C,"H1743" }, /* 19 1.74 MB 3.5" */
{ 1760,11,2,80,0,0x1C,0x09,0xCF,0x00,"h880" }, /* 20 880KB 5.25" */
{ 2080,13,2,80,0,0x1C,0x01,0xCF,0x00,"D1040" }, /* 21 1.04MB 3.5" */
{ 2240,14,2,80,0,0x1C,0x19,0xCF,0x00,"D1120" }, /* 22 1.12MB 3.5" */
{ 3200,20,2,80,0,0x1C,0x20,0xCF,0x2C,"h1600" }, /* 23 1.6MB 5.25" */
{ 3520,22,2,80,0,0x1C,0x08,0xCF,0x2e,"H1760" }, /* 24 1.76MB 3.5" */
{ 3840,24,2,80,0,0x1C,0x20,0xCF,0x00,"H1920" }, /* 25 1.92MB 3.5" */
{ 6400,40,2,80,0,0x25,0x5B,0xCF,0x00,"E3200" }, /* 26 3.20MB 3.5" */
{ 7040,44,2,80,0,0x25,0x5B,0xCF,0x00,"E3520" }, /* 27 3.52MB 3.5" */
{ 7680,48,2,80,0,0x25,0x63,0xCF,0x00,"E3840" }, /* 28 3.84MB 3.5" */
{ 3680,23,2,80,0,0x1C,0x10,0xCF,0x00,"H1840" }, /* 29 1.84MB 3.5" */
{ 1600,10,2,80,0,0x25,0x02,0xDF,0x2E,"D800" }, /* 30 800KB 3.5" */
{ 3200,20,2,80,0,0x1C,0x00,0xCF,0x2C,"H1600" }, /* 31 1.6MB 3.5" */
};
#define NUMBER(x) (sizeof(x) / sizeof(*(x)))
#define SECTSIZE (_FD_SECTSIZE(*floppy))
/* Auto-detection: Disk type used until the next media change occurs. */
static struct floppy_struct *current_type[N_DRIVE];
/*
* User-provided type information. current_type points to
* the respective entry of this array.
*/
static int floppy_sizes[256];
static int floppy_blocksizes[256];
/*
* The driver is trying to determine the correct media format
* while probing is set. rw_interrupt() clears it after a
* successful access.
*/
static int probing;
/* Synchronization of FDC access. */
#define FD_COMMAND_NONE -1
#define FD_COMMAND_ERROR 2
#define FD_COMMAND_OKAY 3
static volatile int command_status = FD_COMMAND_NONE;
static unsigned long fdc_busy;
static DECLARE_WAIT_QUEUE_HEAD(fdc_wait);
static DECLARE_WAIT_QUEUE_HEAD(command_done);
#define NO_SIGNAL 1
#define CALL(x) if ((x) == -EINTR) return -EINTR
#define ECALL(x) if ((ret = (x))) return ret;
#define _WAIT(x,i) CALL(ret=wait_til_done((x),i))
#define WAIT(x) _WAIT((x),interruptible)
#define IWAIT(x) _WAIT((x),1)
/*
* Rate is 0 for 500kb/s, 1 for 300kbps, 2 for 250kbps
* Spec1 is 0xSH, where S is stepping rate (F=1ms, E=2ms, D=3ms etc),
* H is head unload time (1=16ms, 2=32ms, etc)
*/
/*
* Track buffer
* Because these are written to by the DMA controller, they must
* not contain a 64k byte boundary crossing, or data will be
* corrupted/lost.
*/
static char *floppy_track_buffer;
static int max_buffer_sectors;
static int *errors;
typedef void (*done_f)(int);
static struct cont_t {
void (*interrupt)(void); /* this is called after the interrupt of the
* main command */
void (*redo)(void); /* this is called to retry the operation */
void (*error)(void); /* this is called to tally an error */
done_f done; /* this is called to say if the operation has
* succeeded/failed */
} *cont;
static void floppy_ready(void);
static void floppy_start(void);
static void process_fd_request(void);
static void recalibrate_floppy(void);
static void floppy_shutdown(void);
static int floppy_grab_irq_and_dma(void);
static void floppy_release_irq_and_dma(void);
/*
* The "reset" variable should be tested whenever an interrupt is scheduled,
* after the commands have been sent. This is to ensure that the driver doesn't
* get wedged when the interrupt doesn't come because of a failed command.
* reset doesn't need to be tested before sending commands, because
* output_byte is automatically disabled when reset is set.
*/
#define CHECK_RESET { if (FDCS->reset){ reset_fdc(); return; } }
static void reset_fdc(void);
/*
* These are global variables, as that's the easiest way to give
* information to interrupts. They are the data used for the current
* request.
*/
#define NO_TRACK -1
#define NEED_1_RECAL -2
#define NEED_2_RECAL -3
static int usage_count;
/* buffer related variables */
static int buffer_track = -1;
static int buffer_drive = -1;
static int buffer_min = -1;
static int buffer_max = -1;
/* fdc related variables, should end up in a struct */
static struct floppy_fdc_state fdc_state[N_FDC];
static int fdc; /* current fdc */
static struct floppy_struct *_floppy = floppy_type;
static unsigned char current_drive;
static long current_count_sectors;
static unsigned char sector_t; /* sector in track */
static unsigned char in_sector_offset; /* offset within physical sector,
* expressed in units of 512 bytes */
#ifndef fd_eject
#define fd_eject(x) -EINVAL
#endif
#ifdef DEBUGT
static long unsigned debugtimer;
#endif
/*
* Debugging
* =========
*/
static inline void set_debugt(void)
{
#ifdef DEBUGT
debugtimer = ticks;
#endif
}
static inline void debugt(const char *message)
{
#ifdef DEBUGT
if (DP->flags & DEBUGT)
printk("%s dtime=%lu\n", message, ticks-debugtimer);
#endif
}
typedef void (*timeout_fn)(unsigned long);
static struct timer_list fd_timeout ={ function: (timeout_fn) floppy_shutdown };
static const char *timeout_message;
#if 1 //def FLOPPY_SANITY_CHECK
static void is_alive(const char *message)
{
/* this routine checks whether the floppy driver is "alive" */
if (fdc_busy && command_status < 2 && !timer_pending(&fd_timeout)){
DPRINT("timeout handler died: %s\n",message);
}
}
#define OLOGSIZE 20
static void (*lasthandler)(void);
static unsigned long interruptticks;
static unsigned long resultticks;
static int resultsize;
static unsigned long lastredo;
static struct output_log {
unsigned char data;
unsigned char status;
unsigned long ticks;
} output_log[OLOGSIZE];
static int output_log_pos;
#endif
#define CURRENTD -1
#define MAXTIMEOUT -2
static void reschedule_timeout(int drive, const char *message, int marg)
{
if (drive == CURRENTD)
drive = current_drive;
del_timer(&fd_timeout);
if (drive < 0 || drive > N_DRIVE) {
fd_timeout.expires = ticks + 20UL*HZ;
drive=0;
} else
fd_timeout.expires = ticks + UDP->timeout;
add_timer(&fd_timeout);
if (UDP->flags & FD_DEBUG){
DPRINT("reschedule timeout ");
printk(message, marg);
printk("\n");
}
timeout_message = message;
}
static int maximum(int a, int b)
{
if (a > b)
return a;
else
return b;
}
#define INFBOUND(a,b) (a)=maximum((a),(b));
static int minimum(int a, int b)
{
if (a < b)
return a;
else
return b;
}
#define SUPBOUND(a,b) (a)=minimum((a),(b));
/*
* Bottom half floppy driver.
* ==========================
*
* This part of the file contains the code talking directly to the hardware,
* and also the main service loop (seek-configure-spinup-command)
*/
/*
* disk change.
* This routine is responsible for maintaining the FD_DISK_CHANGE flag,
* and the last_checked date.
*
* last_checked is the date of the last check which showed 'no disk change'
* FD_DISK_CHANGE is set under two conditions:
* 1. The floppy has been changed after some i/o to that floppy already
* took place.
* 2. No floppy disk is in the drive. This is done in order to ensure that
* requests are quickly flushed in case there is no disk in the drive. It
* follows that FD_DISK_CHANGE can only be cleared if there is a disk in
* the drive.
*
* For 1., maxblock is observed. Maxblock is 0 if no i/o has taken place yet.
* For 2., FD_DISK_NEWCHANGE is watched. FD_DISK_NEWCHANGE is cleared on
* each seek. If a disk is present, the disk change line should also be
* cleared on each seek. Thus, if FD_DISK_NEWCHANGE is clear, but the disk
* change line is set, this means either that no disk is in the drive, or
* that it has been removed since the last seek.
*
* This means that we really have a third possibility too:
* The floppy has been changed after the last seek.
*/
static int disk_change(int drive)
{
int fdc=FDC(drive);
#ifdef FLOPPY_SANITY_CHECK
if (ticks - UDRS->select_date < UDP->select_delay)
DPRINT("WARNING disk change called early\n");
if (!(FDCS->dor & (0x10 << UNIT(drive))) ||
(FDCS->dor & 3) != UNIT(drive) ||
fdc != FDC(drive)){
DPRINT("probing disk change on unselected drive\n");
DPRINT("drive=%d fdc=%d dor=%x\n",drive, FDC(drive),
(unsigned int)FDCS->dor);
}
#endif
#ifdef DCL_DEBUG
if (UDP->flags & FD_DEBUG){
DPRINT("checking disk change line for drive %d\n",drive);
DPRINT("ticks=%lu\n", ticks);
DPRINT("disk change line=%x\n",fd_inb(FD_DIR)&0x80);
DPRINT("flags=%lx\n",UDRS->flags);
}
#endif
if (UDP->flags & FD_BROKEN_DCL)
return UTESTF(FD_DISK_CHANGED);
if ((fd_inb(FD_DIR) ^ UDP->flags) & 0x80){
USETF(FD_VERIFY); /* verify write protection */
if (UDRS->maxblock){
/* mark it changed */
USETF(FD_DISK_CHANGED);
}
/* invalidate its geometry */
if (UDRS->keep_data >= 0) {
if ((UDP->flags & FTD_MSG) &&
current_type[drive] != NULL)
DPRINT("Disk type is undefined after "
"disk change\n");
current_type[drive] = NULL;
floppy_sizes[TOMINOR(drive)] = MAX_DISK_SIZE;
}
/*USETF(FD_DISK_NEWCHANGE);*/
return 1;
} else {
UDRS->last_checked=ticks;
UCLEARF(FD_DISK_NEWCHANGE);
}
return 0;
}
static inline int is_selected(int dor, int unit)
{
return ((dor & (0x10 << unit)) && (dor &3) == unit);
}
static int set_dor(int fdc, char mask, char data)
{
register unsigned char drive, unit, newdor,olddor;
if (FDCS->address == -1)
return -1;
olddor = FDCS->dor;
newdor = (olddor & mask) | data;
if (newdor != olddor){
unit = olddor & 0x3;
if (is_selected(olddor, unit) && !is_selected(newdor,unit)){
drive = REVDRIVE(fdc,unit);
#ifdef DCL_DEBUG
if (UDP->flags & FD_DEBUG){
DPRINT("calling disk change from set_dor\n");
}
#endif
disk_change(drive);
}
FDCS->dor = newdor;
fd_outb(newdor, FD_DOR);
unit = newdor & 0x3;
if (!is_selected(olddor, unit) && is_selected(newdor,unit)){
drive = REVDRIVE(fdc,unit);
UDRS->select_date = ticks;
}
}
/*
* We should propogate failures to grab the resources back
* nicely from here. Actually we ought to rewrite the fd
* driver some day too.
*/
if (newdor & FLOPPY_MOTOR_MASK)
floppy_grab_irq_and_dma();
#if 1
if (olddor & FLOPPY_MOTOR_MASK)
floppy_release_irq_and_dma();
#endif
return olddor;
}
static void twaddle(void)
{
if (DP->select_delay)
return;
fd_outb(FDCS->dor & ~(0x10<<UNIT(current_drive)), FD_DOR);
fd_outb(FDCS->dor, FD_DOR);
DRS->select_date = ticks;
}
/* reset all driver information about the current fdc. This is needed after
* a reset, and after a raw command. */
static void reset_fdc_info(int mode)
{
int drive;
FDCS->spec1 = FDCS->spec2 = -1;
FDCS->need_configure = 1;
FDCS->perp_mode = 1;
FDCS->rawcmd = 0;
for (drive = 0; drive < N_DRIVE; drive++)
if (FDC(drive) == fdc &&
(mode || UDRS->track != NEED_1_RECAL))
UDRS->track = NEED_2_RECAL;
}
/* selects the fdc and drive, and enables the fdc's input/dma. */
static void set_fdc(int drive)
{
if (drive >= 0 && drive < N_DRIVE){
fdc = FDC(drive);
current_drive = drive;
}
if (fdc != 1 && fdc != 0) {
printk("bad fdc value\n");
return;
}
set_dor(fdc,~0,8);
#if N_FDC > 1
set_dor(1-fdc, ~8, 0);
#endif
if (FDCS->rawcmd == 2)
reset_fdc_info(1);
if (fd_inb(FD_STATUS) != STATUS_READY)
FDCS->reset = 1;
}
#define LOCK_FDC(drive,interruptible) \
if (lock_fdc(drive,interruptible)) return -EINTR;
/* switches the motor off after a given timeout */
void motor_off_callback(unsigned long nr)
{
unsigned char mask = ~(0x10 << UNIT(nr));
set_dor(FDC(nr), mask, 0);
}
/* schedules motor off */
static void floppy_off(unsigned int drive)
{
unsigned long volatile delta;
register int fdc=FDC(drive);
if (!(FDCS->dor & (0x10 << UNIT(drive))))
return;
del_timer(motor_off_timer+drive);
/* make spindle stop in a position which minimizes spinup time
* next time */
if (UDP->rps){
delta = ticks - UDRS->first_read_date + HZ -
UDP->spindown_offset;
delta = ((delta * UDP->rps) % HZ) / UDP->rps;
motor_off_timer[drive].expires = ticks + UDP->spindown - delta;
}
add_timer(motor_off_timer+drive);
}
/*
* cycle through all N_DRIVE floppy drives, for disk change testing.
* stopping at current drive. This is done before any long operation, to
* be sure to have up to date disk change information.
*/
static void scandrives(void)
{
int i, drive, saved_drive;
if (DP->select_delay)
return;
saved_drive = current_drive;
for (i=0; i < N_DRIVE; i++){
drive = (saved_drive + i + 1) % N_DRIVE;
if (UDRS->fd_ref == 0 || UDP->select_delay != 0)
continue; /* skip closed drives */
set_fdc(drive);
if (!(set_dor(fdc, ~3, UNIT(drive) | (0x10 << UNIT(drive))) &
(0x10 << UNIT(drive))))
/* switch the motor off again, if it was off to
* begin with */
set_dor(fdc, ~(0x10 << UNIT(drive)), 0);
}
set_fdc(saved_drive);
}
static void empty(void)
{
}
#if 1
static struct tq_struct floppy_tq;
static void schedule_bh( void (*handler)(void*) )
{
floppy_tq.routine = (void *)(void *) handler;
queue_task(&floppy_tq, &tq_immediate);
mark_bh(IMMEDIATE_BH);
}
#endif
static struct timer_list fd_timer;
static void cancel_activity(void)
{
CLEAR_INTR;
floppy_tq.routine = (void *)(void *) empty;
del_timer(&fd_timer);
}
/* this function makes sure that the disk stays in the drive during the
* transfer */
static void fd_watchdog(void)
{
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("calling disk change from watchdog\n");
}
#endif
if (disk_change(current_drive)){
DPRINT("disk removed during i/o\n");
cancel_activity();
cont->done(0);
reset_fdc();
} else {
del_timer(&fd_timer);
fd_timer.function = (timeout_fn) fd_watchdog;
fd_timer.expires = ticks + HZ / 10;
add_timer(&fd_timer);
}
}
static void main_command_interrupt(void)
{
del_timer(&fd_timer);
cont->interrupt();
}
/* waits for a delay (spinup or select) to pass */
static int fd_wait_for_completion(unsigned long delay, timeout_fn function)
{
if (FDCS->reset){
reset_fdc(); /* do the reset during sleep to win time
* if we don't need to sleep, it's a good
* occasion anyways */
return 1;
}
if ((signed) (ticks - delay) < 0){
del_timer(&fd_timer);
fd_timer.function = function;
fd_timer.expires = delay;
add_timer(&fd_timer);
return 1;
}
return 0;
}
static spinlock_t floppy_hlt_lock = SPIN_LOCK_UNLOCKED;
static int hlt_disabled;
static void floppy_disable_hlt(void)
{
unsigned long flags;
spin_lock_irqsave(&floppy_hlt_lock, flags);
if (!hlt_disabled) {
hlt_disabled=1;
#ifdef HAVE_DISABLE_HLT
disable_hlt();
#endif
}
spin_unlock_irqrestore(&floppy_hlt_lock, flags);
}
static void floppy_enable_hlt(void)
{
unsigned long flags;
spin_lock_irqsave(&floppy_hlt_lock, flags);
if (hlt_disabled){
hlt_disabled=0;
#ifdef HAVE_DISABLE_HLT
enable_hlt();
#endif
}
spin_unlock_irqrestore(&floppy_hlt_lock, flags);
}
static void setup_DMA(void)
{
unsigned long f, i;
#ifdef FLOPPY_SANITY_CHECK
if (raw_cmd->length == 0){
int i;
printk("zero dma transfer size:");
for (i=0; i < raw_cmd->cmd_count; i++)
printk("%x,", raw_cmd->cmd[i]);
printk("\n");
cont->done(0);
FDCS->reset = 1;
return;
}
if (((unsigned long) raw_cmd->kernel_data) % 512){
printk("non aligned address: %p\n", raw_cmd->kernel_data);
cont->done(0);
FDCS->reset=1;
return;
}
#endif
f=claim_dma_lock();
fd_disable_dma();
#ifdef fd_dma_setup
if (fd_dma_setup(raw_cmd->kernel_data, raw_cmd->length,
(raw_cmd->flags & FD_RAW_READ)?
DMA_MODE_READ : DMA_MODE_WRITE,
FDCS->address) < 0) {
release_dma_lock(f);
cont->done(0);
FDCS->reset=1;
return;
}
release_dma_lock(f);
#else
fd_clear_dma_ff();
fd_cacheflush(raw_cmd->kernel_data, raw_cmd->length);
#undef DEBUG_QIAO
#ifdef DEBUG_QIAO
if(raw_cmd->flags & FD_RAW_READ)
{
memset(raw_cmd->kernel_data,0,raw_cmd->length);
fd_cacheflush(raw_cmd->kernel_data, raw_cmd->length);
}
#endif
fd_set_dma_mode((raw_cmd->flags & FD_RAW_READ)?
DMA_MODE_READ : DMA_MODE_WRITE);
fd_set_dma_addr(raw_cmd->kernel_data);
fd_set_dma_count(raw_cmd->length);
virtual_dma_port = FDCS->address;
fd_enable_dma();
release_dma_lock(f);
#endif
floppy_disable_hlt();
}
static void show_floppy(void);
/* waits until the fdc becomes ready */
static int wait_til_ready(void)
{
int counter, status;
if (FDCS->reset)
return -1;
for (counter = 0; counter < 10000; counter++) {
status = fd_inb(FD_STATUS);
if (status & STATUS_READY)
return status;
}
if (!initialising) {
DPRINT("Getstatus times out (%x) on fdc %d\n",
status, fdc);
show_floppy();
}
FDCS->reset = 1;
return -1;
}
/* sends a command byte to the fdc */
static int output_byte(char byte)
{
int status;
if ((status = wait_til_ready()) < 0)
return -1;
if ((status & (STATUS_READY|STATUS_DIR|STATUS_DMA)) == STATUS_READY){
fd_outb(byte,FD_DATA);
#ifdef FLOPPY_SANITY_CHECK
output_log[output_log_pos].data = byte;
output_log[output_log_pos].status = status;
output_log[output_log_pos].ticks = ticks;
output_log_pos = (output_log_pos + 1) % OLOGSIZE;
#endif
return 0;
}
FDCS->reset = 1;
if (!initialising) {
DPRINT("Unable to send byte %x to FDC. Fdc=%x Status=%x\n",
byte, fdc, status);
show_floppy();
}
return -1;
}
#define LAST_OUT(x) if (output_byte(x)<0){ reset_fdc();return;}
/* gets the response from the fdc */
static int result(void)
{
int i, status=0;
for(i=0; i < MAX_REPLIES; i++) {
if ((status = wait_til_ready()) < 0)
break;
status &= STATUS_DIR|STATUS_READY|STATUS_BUSY|STATUS_DMA;
if ((status & ~STATUS_BUSY) == STATUS_READY){
#ifdef FLOPPY_SANITY_CHECK
resultticks = ticks;
resultsize = i;
#endif
return i;
}
if (status == (STATUS_DIR|STATUS_READY|STATUS_BUSY))
reply_buffer[i] = fd_inb(FD_DATA);
else
break;
}
if (!initialising) {
DPRINT("get result error. Fdc=%d Last status=%x Read bytes=%d\n",
fdc, status, i);
show_floppy();
}
FDCS->reset = 1;
return -1;
}
#define MORE_OUTPUT -2
/* does the fdc need more output? */
static int need_more_output(void)
{
int status;
if ((status = wait_til_ready()) < 0)
return -1;
if ((status & (STATUS_READY|STATUS_DIR|STATUS_DMA)) == STATUS_READY)
return MORE_OUTPUT;
return result();
}
/* Set perpendicular mode as required, based on data rate, if supported.
* 82077 Now tested. 1Mbps data rate only possible with 82077-1.
*/
static inline void perpendicular_mode(void)
{
unsigned char perp_mode;
if (raw_cmd->rate & 0x40){
switch(raw_cmd->rate & 3){
case 0:
perp_mode=2;
break;
case 3:
perp_mode=3;
break;
default:
DPRINT("Invalid data rate for perpendicular mode!\n");
cont->done(0);
FDCS->reset = 1; /* convenient way to return to
* redo without to much hassle (deep
* stack et al. */
return;
}
} else
perp_mode = 0;
if (FDCS->perp_mode == perp_mode)
return;
if (FDCS->version >= FDC_82077_ORIG) {
output_byte(FD_PERPENDICULAR);
output_byte(perp_mode);
FDCS->perp_mode = perp_mode;
} else if (perp_mode) {
DPRINT("perpendicular mode not supported by this FDC.\n");
}
} /* perpendicular_mode */
static int fifo_depth = 0xa;
static int no_fifo;
static int fdc_configure(void)
{
/* Turn on FIFO */
output_byte(FD_CONFIGURE);
if (need_more_output() != MORE_OUTPUT)
return 0;
output_byte(0);
output_byte(0x10 | (no_fifo & 0x20) | (fifo_depth & 0xf));
output_byte(0); /* pre-compensation from track
0 upwards */
return 1;
}
#define NOMINAL_DTR 500
/* Issue a "SPECIFY" command to set the step rate time, head unload time,
* head load time, and DMA disable flag to values needed by floppy.
*
* The value "dtr" is the data transfer rate in Kbps. It is needed
* to account for the data rate-based scaling done by the 82072 and 82077
* FDC types. This parameter is ignored for other types of FDCs (i.e.
* 8272a).
*
* Note that changing the data transfer rate has a (probably deleterious)
* effect on the parameters subject to scaling for 82072/82077 FDCs, so
* fdc_specify is called again after each data transfer rate
* change.
*
* srt: 1000 to 16000 in microseconds
* hut: 16 to 240 milliseconds
* hlt: 2 to 254 milliseconds
*
* These values are rounded up to the next highest available delay time.
*/
static void fdc_specify(void)
{
unsigned char spec1, spec2;
unsigned long srt, hlt, hut;
unsigned long dtr = NOMINAL_DTR;
unsigned long scale_dtr = NOMINAL_DTR;
int hlt_max_code = 0x7f;
int hut_max_code = 0xf;
if (FDCS->need_configure && FDCS->version >= FDC_82072A) {
fdc_configure();
FDCS->need_configure = 0;
/*DPRINT("FIFO enabled\n");*/
}
switch (raw_cmd->rate & 0x03) {
case 3:
dtr = 1000;
break;
case 1:
dtr = 300;
if (FDCS->version >= FDC_82078) {
/* chose the default rate table, not the one
* where 1 = 2 Mbps */
output_byte(FD_DRIVESPEC);
if (need_more_output() == MORE_OUTPUT) {
output_byte(UNIT(current_drive));
output_byte(0xc0);
}
}
break;
case 2:
dtr = 250;
break;
}
if (FDCS->version >= FDC_82072) {
scale_dtr = dtr;
hlt_max_code = 0x00; /* 0==256msec*dtr0/dtr (not linear!) */
hut_max_code = 0x0; /* 0==256msec*dtr0/dtr (not linear!) */
}
/* Convert step rate from microseconds to milliseconds and 4 bits */
srt = 16 - (DP->srt*scale_dtr/1000 + NOMINAL_DTR - 1)/NOMINAL_DTR;
if( slow_floppy ) {
srt = srt / 4;
}
SUPBOUND(srt, 0xf);
INFBOUND(srt, 0);
hlt = (DP->hlt*scale_dtr/2 + NOMINAL_DTR - 1)/NOMINAL_DTR;
if (hlt < 0x01)
hlt = 0x01;
else if (hlt > 0x7f)
hlt = hlt_max_code;
hut = (DP->hut*scale_dtr/16 + NOMINAL_DTR - 1)/NOMINAL_DTR;
if (hut < 0x1)
hut = 0x1;
else if (hut > 0xf)
hut = hut_max_code;
spec1 = (srt << 4) | hut;
spec2 = (hlt << 1) | (use_virtual_dma & 1);
/* If these parameters did not change, just return with success */
if (FDCS->spec1 != spec1 || FDCS->spec2 != spec2) {
/* Go ahead and set spec1 and spec2 */
output_byte(FD_SPECIFY);
output_byte(FDCS->spec1 = spec1);
output_byte(FDCS->spec2 = spec2);
}
} /* fdc_specify */
/* Set the FDC's data transfer rate on behalf of the specified drive.
* NOTE: with 82072/82077 FDCs, changing the data rate requires a reissue
* of the specify command (i.e. using the fdc_specify function).
*/
static int fdc_dtr(void)
{
/* If data rate not already set to desired value, set it. */
if ((raw_cmd->rate & 3) == FDCS->dtr)
return 0;
/* Set dtr */
fd_outb(raw_cmd->rate & 3, FD_DCR);
/* TODO: some FDC/drive combinations (C&T 82C711 with TEAC 1.2MB)
* need a stabilization period of several milliseconds to be
* enforced after data rate changes before R/W operations.
* Pause 5 msec to avoid trouble. (Needs to be 2 ticks)
*/
FDCS->dtr = raw_cmd->rate & 3;
return(fd_wait_for_completion(ticks+2UL*HZ/100,
(timeout_fn) floppy_ready));
} /* fdc_dtr */
static void tell_sector(void)
{
printk(": track %d, head %d, sector %d, size %d",
R_TRACK, R_HEAD, R_SECTOR, R_SIZECODE);
} /* tell_sector */
/*
* OK, this error interpreting routine is called after a
* DMA read/write has succeeded
* or failed, so we check the results, and copy any buffers.
* hhb: Added better error reporting.
* ak: Made this into a separate routine.
*/
static int interpret_errors(void)
{
char bad;
if (inr!=7) {
DPRINT("-- FDC reply error");
FDCS->reset = 1;
return 1;
}
/* check IC to find cause of interrupt */
switch (ST0 & ST0_INTR) {
case 0x40: /* error occurred during command execution */
if (ST1 & ST1_EOC)
return 0; /* occurs with pseudo-DMA */
bad = 1;
if (ST1 & ST1_WP) {
DPRINT("Drive is write protected\n");
CLEARF(FD_DISK_WRITABLE);
cont->done(0);
bad = 2;
} else if (ST1 & ST1_ND) {
SETF(FD_NEED_TWADDLE);
} else if (ST1 & ST1_OR) {
if (DP->flags & FTD_MSG)
DPRINT("Over/Underrun - retrying\n");
bad = 0;
}else if (*errors >= DP->max_errors.reporting){
DPRINT("");
if (ST0 & ST0_ECE) {
printk("Recalibrate failed!");
} else if (ST2 & ST2_CRC) {
printk("data CRC error");
tell_sector();
} else if (ST1 & ST1_CRC) {
printk("CRC error");
tell_sector();
} else if ((ST1 & (ST1_MAM|ST1_ND)) || (ST2 & ST2_MAM)) {
if (!probing) {
printk("sector not found");
tell_sector();
} else
printk("probe failed...");
} else if (ST2 & ST2_WC) { /* seek error */
printk("wrong cylinder");
} else if (ST2 & ST2_BC) { /* cylinder marked as bad */
printk("bad cylinder");
} else {
printk("unknown error. ST[0..2] are: 0x%x 0x%x 0x%x", ST0, ST1, ST2);
tell_sector();
}
printk("\n");
}
if (ST2 & ST2_WC || ST2 & ST2_BC)
/* wrong cylinder => recal */
DRS->track = NEED_2_RECAL;
return bad;
case 0x80: /* invalid command given */
DPRINT("Invalid FDC command given!\n");
cont->done(0);
return 2;
case 0xc0:
DPRINT("Abnormal termination caused by polling\n");
cont->error();
return 2;
default: /* (0) Normal command termination */
return 0;
}
}
/*
* This routine is called when everything should be correctly set up
* for the transfer (i.e. floppy motor is on, the correct floppy is
* selected, and the head is sitting on the right track).
*/
static void setup_rw_floppy(void)
{
int i,r, flags,dflags;
unsigned long ready_date;
timeout_fn function;
flags = raw_cmd->flags;
if (flags & (FD_RAW_READ | FD_RAW_WRITE))
flags |= FD_RAW_INTR;
if ((flags & FD_RAW_SPIN) && !(flags & FD_RAW_NO_MOTOR)){
ready_date = DRS->spinup_date + DP->spinup;
/* If spinup will take a long time, rerun scandrives
* again just before spinup completion. Beware that
* after scandrives, we must again wait for selection.
*/
if ((signed) (ready_date - ticks) > DP->select_delay){
ready_date -= DP->select_delay;
function = (timeout_fn) floppy_start;
} else
function = (timeout_fn) setup_rw_floppy;
/* wait until the floppy is spinning fast enough */
if (fd_wait_for_completion(ready_date,function))
return;
}
dflags = DRS->flags;
if ((flags & FD_RAW_READ) || (flags & FD_RAW_WRITE))
setup_DMA();
if (flags & FD_RAW_INTR)
SET_INTR(main_command_interrupt);
r=0;
for (i=0; i< raw_cmd->cmd_count; i++)
r|=output_byte(raw_cmd->cmd[i]);
#ifdef DEBUGT
debugt("rw_command: ");
#endif
if (r){
cont->error();
reset_fdc();
return;
}
if (!(flags & FD_RAW_INTR)){
inr = result();
cont->interrupt();
} else if (flags & FD_RAW_NEED_DISK)
fd_watchdog();
}
static int blind_seek;
/*
* This is the routine called after every seek (or recalibrate) interrupt
* from the floppy controller.
*/
static void seek_interrupt(void)
{
#ifdef DEBUGT
debugt("seek interrupt:");
#endif
if (inr != 2 || (ST0 & 0xF8) != 0x20) {
DPRINT("seek failed\n");
DRS->track = NEED_2_RECAL;
cont->error();
cont->redo();
return;
}
if (DRS->track >= 0 && DRS->track != ST1 && !blind_seek){
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("clearing NEWCHANGE flag because of effective seek\n");
DPRINT("ticks=%lu\n", ticks);
}
#endif
CLEARF(FD_DISK_NEWCHANGE); /* effective seek */
DRS->select_date = ticks;
}
DRS->track = ST1;
floppy_ready();
}
static void check_wp(void)
{
if (TESTF(FD_VERIFY)) {
/* check write protection */
output_byte(FD_GETSTATUS);
output_byte(UNIT(current_drive));
if (result() != 1){
FDCS->reset = 1;
return;
}
CLEARF(FD_VERIFY);
CLEARF(FD_NEED_TWADDLE);
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("checking whether disk is write protected\n");
DPRINT("wp=%x\n",ST3 & 0x40);
}
#endif
if (!(ST3 & 0x40))
SETF(FD_DISK_WRITABLE);
else
CLEARF(FD_DISK_WRITABLE);
}
}
static void seek_floppy(void)
{
int track;
blind_seek=0;
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("calling disk change from seek\n");
}
#endif
if (!TESTF(FD_DISK_NEWCHANGE) &&
disk_change(current_drive) &&
(raw_cmd->flags & FD_RAW_NEED_DISK)){
/* the media changed flag should be cleared after the seek.
* If it isn't, this means that there is really no disk in
* the drive.
*/
SETF(FD_DISK_CHANGED);
cont->done(0);
cont->redo();
return;
}
if (DRS->track <= NEED_1_RECAL){
recalibrate_floppy();
return;
} else if (TESTF(FD_DISK_NEWCHANGE) &&
(raw_cmd->flags & FD_RAW_NEED_DISK) &&
(DRS->track <= NO_TRACK || DRS->track == raw_cmd->track)) {
/* we seek to clear the media-changed condition. Does anybody
* know a more elegant way, which works on all drives? */
if (raw_cmd->track)
track = raw_cmd->track - 1;
else {
if (DP->flags & FD_SILENT_DCL_CLEAR){
set_dor(fdc, ~(0x10 << UNIT(current_drive)), 0);
blind_seek = 1;
raw_cmd->flags |= FD_RAW_NEED_SEEK;
}
track = 1;
}
} else {
check_wp();
if (raw_cmd->track != DRS->track &&
(raw_cmd->flags & FD_RAW_NEED_SEEK))
track = raw_cmd->track;
else {
setup_rw_floppy();
return;
}
}
SET_INTR(seek_interrupt);
output_byte(FD_SEEK);
output_byte(UNIT(current_drive));
LAST_OUT(track);
#ifdef DEBUGT
debugt("seek command:");
#endif
}
static void recal_interrupt(void)
{
#ifdef DEBUGT
debugt("recal interrupt:");
#endif
if (inr !=2)
FDCS->reset = 1;
else if (ST0 & ST0_ECE) {
switch(DRS->track){
case NEED_1_RECAL:
#ifdef DEBUGT
debugt("recal interrupt need 1 recal:");
#endif
/* after a second recalibrate, we still haven't
* reached track 0. Probably no drive. Raise an
* error, as failing immediately might upset
* computers possessed by the Devil :-) */
cont->error();
cont->redo();
return;
case NEED_2_RECAL:
#ifdef DEBUGT
debugt("recal interrupt need 2 recal:");
#endif
/* If we already did a recalibrate,
* and we are not at track 0, this
* means we have moved. (The only way
* not to move at recalibration is to
* be already at track 0.) Clear the
* new change flag */
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("clearing NEWCHANGE flag because of second recalibrate\n");
}
#endif
CLEARF(FD_DISK_NEWCHANGE);
DRS->select_date = ticks;
/* fall through */
default:
#ifdef DEBUGT
debugt("recal interrupt default:");
#endif
/* Recalibrate moves the head by at
* most 80 steps. If after one
* recalibrate we don't have reached
* track 0, this might mean that we
* started beyond track 80. Try
* again. */
DRS->track = NEED_1_RECAL;
break;
}
} else
DRS->track = ST1;
floppy_ready();
}
static void print_result(char *message, int inr)
{
int i;
DPRINT("%s ", message);
if (inr >= 0)
for (i=0; i<inr; i++)
printk("repl[%d]=%x ", i, reply_buffer[i]);
printk("\n");
}
/* interrupt handler. Note that this can be called externally on the Sparc */
void floppy_interrupt(int irq, void *dev_id, void * regs)
{
void (*handler)(void) = DEVICE_INTR;
int do_print;
unsigned long f;
lasthandler = handler;
interruptticks = ticks;
f=claim_dma_lock();
fd_disable_dma();
release_dma_lock(f);
floppy_enable_hlt();
CLEAR_INTR;
if (fdc >= N_FDC || FDCS->address == -1){
/* we don't even know which FDC is the culprit */
printk("DOR0=%x\n", fdc_state[0].dor);
printk("floppy interrupt on bizarre fdc %d\n",fdc);
printk("handler=%p\n", handler);
is_alive("bizarre fdc");
return;
}
FDCS->reset = 0;
/* We have to clear the reset flag here, because apparently on boxes
* with level triggered interrupts (PS/2, Sparc, ...), it is needed to
* emit SENSEI's to clear the interrupt line. And FDCS->reset blocks the
* emission of the SENSEI's.
* It is OK to emit floppy commands because we are in an interrupt
* handler here, and thus we have to fear no interference of other
* activity.
*/
do_print = !handler && print_unex && !initialising;
inr = result();
if (do_print)
print_result("unexpected interrupt", inr);
if (inr == 0){
int max_sensei = 4;
do {
output_byte(FD_SENSEI);
inr = result();
if (do_print)
print_result("sensei", inr);
max_sensei--;
} while ((ST0 & 0x83) != UNIT(current_drive) && inr == 2 && max_sensei);
}
//print_result("test", inr);
if (handler) {
schedule_bh( (void *)(void *) handler);
} else
FDCS->reset = 1;
is_alive("normal interrupt end");
}
static void recalibrate_floppy(void)
{
#ifdef DEBUGT
debugt("recalibrate floppy:");
#endif
SET_INTR(recal_interrupt);
output_byte(FD_RECALIBRATE);
LAST_OUT(UNIT(current_drive));
}
/*
* Must do 4 FD_SENSEIs after reset because of ``drive polling''.
*/
static void reset_interrupt(void)
{
#ifdef DEBUGT
debugt("reset interrupt:");
#endif
result(); /* get the status ready for set_fdc */
if (FDCS->reset) {
printk("reset set in interrupt, calling %p\n", cont->error);
cont->error(); /* a reset just after a reset. BAD! */
}
cont->redo();
}
/*
* reset is done by pulling bit 2 of DOR low for a while (old FDCs),
* or by setting the self clearing bit 7 of STATUS (newer FDCs)
*/
static void reset_fdc(void)
{
unsigned long flags;
SET_INTR(reset_interrupt);
FDCS->reset = 0;
reset_fdc_info(0);
/* Pseudo-DMA may intercept 'reset finished' interrupt. */
/* Irrelevant for systems with true DMA (i386). */
flags=claim_dma_lock();
fd_disable_dma();
release_dma_lock(flags);
if (FDCS->version >= FDC_82072A)
fd_outb(0x80 | (FDCS->dtr &3), FD_STATUS);
else {
fd_outb(FDCS->dor & ~0x04, FD_DOR);
udelay(FD_RESET_DELAY);
fd_outb(FDCS->dor, FD_DOR);
}
}
static void show_floppy(void)
{
int i;
printk("\n");
printk("floppy driver state\n");
printk("-------------------\n");
printk("now=%lu last interrupt=%lu diff=%lu last called handler=%p\n",
ticks, interruptticks, ticks-interruptticks, lasthandler);
#ifdef FLOPPY_SANITY_CHECK
printk("timeout_message=%s\n", timeout_message);
printk("last output bytes:\n");
for (i=0; i < OLOGSIZE; i++)
printk("%2x %2x %lu\n",
output_log[(i+output_log_pos) % OLOGSIZE].data,
output_log[(i+output_log_pos) % OLOGSIZE].status,
output_log[(i+output_log_pos) % OLOGSIZE].ticks);
printk("last result at %lu\n", resultticks);
printk("last redo_fd_request at %lu\n", lastredo);
for (i=0; i<resultsize; i++){
printk("%2x ", reply_buffer[i]);
}
printk("\n");
#endif
printk("status=%x\n", fd_inb(FD_STATUS));
printk("fdc_busy=%lu\n", fdc_busy);
if (DEVICE_INTR)
printk("DEVICE_INTR=%p\n", DEVICE_INTR);
if (floppy_tq.sync)
printk("floppy_tq.routine=%p\n", floppy_tq.routine);
if (timer_pending(&fd_timer))
printk("fd_timer.function=%p\n", fd_timer.function);
if (timer_pending(&fd_timeout)){
printk("timer_function=%p\n",fd_timeout.function);
printk("expires=%lu\n",fd_timeout.expires-ticks);
printk("now=%lu\n",ticks);
}
printk("cont=%p\n", cont);
printk("CURRENT=%p\n", CURRENT);
printk("command_status=%d\n", command_status);
printk("\n");
}
static void floppy_shutdown(void)
{
unsigned long flags;
if (!initialising)
show_floppy();
cancel_activity();
floppy_enable_hlt();
flags=claim_dma_lock();
fd_disable_dma();
release_dma_lock(flags);
/* avoid dma going to a random drive after shutdown */
if (!initialising)
DPRINT("floppy timeout called\n");
FDCS->reset = 1;
if (cont){
cont->done(0);
cont->redo(); /* this will recall reset when needed */
} else {
printk("no cont in shutdown!\n");
process_fd_request();
}
is_alive("floppy shutdown");
}
/*typedef void (*timeout_fn)(unsigned long);*/
/* start motor, check media-changed condition and write protection */
static int start_motor(void (*function)(void) )
{
int mask, data;
mask = 0xfc;
data = UNIT(current_drive);
if (!(raw_cmd->flags & FD_RAW_NO_MOTOR)){
if (!(FDCS->dor & (0x10 << UNIT(current_drive)))){
set_debugt();
/* no read since this drive is running */
DRS->first_read_date = 0;
/* note motor start time if motor is not yet running */
DRS->spinup_date = ticks;
data |= (0x10 << UNIT(current_drive));
}
} else
if (FDCS->dor & (0x10 << UNIT(current_drive)))
mask &= ~(0x10 << UNIT(current_drive));
/* starts motor and selects floppy */
del_timer(motor_off_timer + current_drive);
set_dor(fdc, mask, data);
/* wait_for_completion also schedules reset if needed. */
return(fd_wait_for_completion(DRS->select_date+DP->select_delay,
(timeout_fn) function));
}
static void floppy_ready(void)
{
CHECK_RESET;
if (start_motor(floppy_ready)) return;
if (fdc_dtr()) return;
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("calling disk change from floppy_ready\n");
}
#endif
if (!(raw_cmd->flags & FD_RAW_NO_MOTOR) &&
disk_change(current_drive) &&
!DP->select_delay)
twaddle(); /* this clears the dcl on certain drive/controller
* combinations */
#ifdef fd_chose_dma_mode
if ((raw_cmd->flags & FD_RAW_READ) ||
(raw_cmd->flags & FD_RAW_WRITE))
{
unsigned long flags = claim_dma_lock();
fd_chose_dma_mode(raw_cmd->kernel_data,
raw_cmd->length);
release_dma_lock(flags);
}
#endif
if (raw_cmd->flags & (FD_RAW_NEED_SEEK | FD_RAW_NEED_DISK)){
perpendicular_mode();
fdc_specify(); /* must be done here because of hut, hlt ... */
seek_floppy();
} else {
if ((raw_cmd->flags & FD_RAW_READ) ||
(raw_cmd->flags & FD_RAW_WRITE))
fdc_specify();
setup_rw_floppy();
}
}
static void floppy_start(void)
{
reschedule_timeout(CURRENTD, "floppy start", 0);
scandrives();
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("setting NEWCHANGE in floppy_start\n");
}
#endif
SETF(FD_DISK_NEWCHANGE);
floppy_ready();
}
/*
* ========================================================================
* here ends the bottom half. Exported routines are:
* floppy_start, floppy_off, floppy_ready, lock_fdc, unlock_fdc, set_fdc,
* start_motor, reset_fdc, reset_fdc_info, interpret_errors.
* Initialization also uses output_byte, result, set_dor, floppy_interrupt
* and set_dor.
* ========================================================================
*/
/*
* General purpose continuations.
* ==============================
*/
static void do_wakeup(void)
{
reschedule_timeout(MAXTIMEOUT, "do wakeup", 0);
cont = 0;
command_status += 2;
wake_up(&command_done);
}
static struct cont_t wakeup_cont={
empty,
do_wakeup,
empty,
(done_f)empty
};
static struct cont_t intr_cont={
empty,
process_fd_request,
empty,
(done_f) empty
};
static int wait_til_done(void (*handler)(void), int interruptible)
{
int ret;
schedule_bh((void *)(void *)handler);
if (command_status < 2 && NO_SIGNAL) {
for (;;) {
if (command_status >= 2 || !NO_SIGNAL)
break;
is_alive("wait_til_done");
sleep_on(&command_done);
}
}
if (command_status < 2){
cancel_activity();
cont = &intr_cont;
reset_fdc();
return -EINTR;
}
if (FDCS->reset)
command_status = FD_COMMAND_ERROR;
if (command_status == FD_COMMAND_OKAY)
ret=0;
else
ret=-EIO;
command_status = FD_COMMAND_NONE;
return ret;
}
static void generic_done(int result)
{
command_status = result;
cont = &wakeup_cont;
}
static void generic_success(void)
{
cont->done(1);
}
static void generic_failure(void)
{
cont->done(0);
}
static void success_and_wakeup(void)
{
generic_success();
cont->redo();
}
/*
* formatting and rw support.
* ==========================
*/
static int next_valid_format(void)
{
int probed_format;
probed_format = DRS->probed_format;
while(1){
if (probed_format >= 8 ||
!DP->autodetect[probed_format]){
DRS->probed_format = 0;
return 1;
}
if (floppy_type[DP->autodetect[probed_format]].sect){
DRS->probed_format = probed_format;
return 0;
}
probed_format++;
}
}
static void bad_flp_intr(void)
{
if (probing){
DRS->probed_format++;
if (!next_valid_format())
return;
}
(*errors)++;
INFBOUND(DRWE->badness, *errors);
if (*errors > DP->max_errors.abort)
cont->done(0);
if (*errors > DP->max_errors.reset)
FDCS->reset = 1;
else if (*errors > DP->max_errors.recal)
DRS->track = NEED_2_RECAL;
}
static void set_floppy(kdev_t device)
{
if (TYPE(device))
_floppy = TYPE(device) + floppy_type;
else
_floppy = current_type[ DRIVE(device) ];
}
#define CODE2SIZE (ssize = ((1 << SIZECODE) + 3) >> 2)
#define FM_MODE(x,y) ((y) & ~(((x)->rate & 0x80) >>1))
#define CT(x) ((x) | 0xc0)
/*
* Buffer read/write and support
* =============================
*/
/* new request_done. Can handle physical sectors which are smaller than a
* logical buffer */
static void add_request(int rw,struct buffer_head *bh)
{
static struct request lrequest;
struct request *req=&lrequest;
unsigned int sector, count, sync;
count = bh->b_size >> 9;
sector = bh->b_rsector;
sync = test_and_clear_bit(BH_Sync, &bh->b_state);
req->cmd = rw;
req->errors = 0;
req->hard_sector = req->sector = sector;
req->hard_nr_sectors = req->nr_sectors = count;
req->current_nr_sectors = req->hard_cur_sectors = count;
req->nr_segments = 1; /* Always 1 for a new request. */
req->nr_hw_segments = 1; /* Always 1 for a new request. */
req->buffer = bh->b_data;
req->waiting = NULL;
req->bh = bh;
req->bhtail = bh;
req->rq_dev = bh->b_rdev;
req->start_time = ticks;
current_request=req;
do_fd_request(req);
}
static void request_done(int uptodate)
{
int block;
unsigned long flags;
probing = 0;
//reschedule_timeout(MAXTIMEOUT, "request done %d", uptodate);
del_timer(&fd_timeout);
if (QUEUE_EMPTY){
DPRINT("request list destroyed in floppy request done\n");
return;
}
if (uptodate){
/* maintain values for invalidation on geometry
* change */
block = current_count_sectors + CURRENT->sector;
INFBOUND(DRS->maxblock, block);
if (block > _floppy->sect)
DRS->maxtrack = 1;
/* unlock chained buffers */
spin_lock_irqsave(&io_request_lock, flags);
while (current_count_sectors && !QUEUE_EMPTY &&
current_count_sectors >= CURRENT->current_nr_sectors){
current_count_sectors -= CURRENT->current_nr_sectors;
CURRENT->nr_sectors -= CURRENT->current_nr_sectors;
CURRENT->sector += CURRENT->current_nr_sectors;
end_request(1);
}
spin_unlock_irqrestore(&io_request_lock, flags);
if (current_count_sectors && !QUEUE_EMPTY){
/* "unlock" last subsector */
CURRENT->buffer += current_count_sectors <<9;
CURRENT->current_nr_sectors -= current_count_sectors;
CURRENT->nr_sectors -= current_count_sectors;
CURRENT->sector += current_count_sectors;
return;
}
if (current_count_sectors && QUEUE_EMPTY)
DPRINT("request list destroyed in floppy request done\n");
} else {
if (CURRENT->cmd == WRITE) {
/* record write error information */
DRWE->write_errors++;
if (DRWE->write_errors == 1) {
DRWE->first_error_sector = CURRENT->sector;
DRWE->first_error_generation = DRS->generation;
}
DRWE->last_error_sector = CURRENT->sector;
DRWE->last_error_generation = DRS->generation;
}
spin_lock_irqsave(&io_request_lock, flags);
end_request(0);
spin_unlock_irqrestore(&io_request_lock, flags);
}
}
/* Interrupt handler evaluating the result of the r/w operation */
static void rw_interrupt(void)
{
int nr_sectors, ssize, eoc, heads;
int errors_result;
if (R_HEAD >= 2) {
/* some Toshiba floppy controllers occasionnally seem to
* return bogus interrupts after read/write operations, which
* can be recognized by a bad head number (>= 2) */
return;
}
if (!DRS->first_read_date)
DRS->first_read_date = ticks;
nr_sectors = 0;
CODE2SIZE;
if (ST1 & ST1_EOC)
eoc = 1;
else
eoc = 0;
if (COMMAND & 0x80)
heads = 2;
else
heads = 1;
nr_sectors = (((R_TRACK-TRACK) * heads +
R_HEAD-HEAD) * SECT_PER_TRACK +
R_SECTOR-SECTOR + eoc) << SIZECODE >> 2;
#ifdef FLOPPY_SANITY_CHECK
if (nr_sectors / ssize >
(in_sector_offset + current_count_sectors + ssize - 1) / ssize) {
DPRINT("long rw: %x instead of %lx\n",
nr_sectors, current_count_sectors);
printk("rs=%d s=%d\n", R_SECTOR, SECTOR);
printk("rh=%d h=%d\n", R_HEAD, HEAD);
printk("rt=%d t=%d\n", R_TRACK, TRACK);
printk("heads=%d eoc=%d\n", heads, eoc);
printk("spt=%d st=%d ss=%d\n", SECT_PER_TRACK,
sector_t, ssize);
printk("in_sector_offset=%d\n", in_sector_offset);
}
#endif
nr_sectors -= in_sector_offset;
INFBOUND(nr_sectors,0);
SUPBOUND(current_count_sectors, nr_sectors);
errors_result=interpret_errors();
switch (errors_result){
case 2:
cont->redo();
return;
case 1:
if (!current_count_sectors){
cont->error();
cont->redo();
return;
}
break;
case 0:
if (!current_count_sectors){
cont->redo(); //error from here,maybe floppy_init have fault
return;
}
current_type[current_drive] = _floppy;
floppy_sizes[TOMINOR(current_drive) ]=
(_floppy->size+1)>>1;
break;
}
if (probing) {
if (DP->flags & FTD_MSG)
DPRINT("Auto-detected floppy type %s in fd%d\n",
_floppy->name,current_drive);
current_type[current_drive] = _floppy;
floppy_sizes[TOMINOR(current_drive)] = (_floppy->size+1) >> 1;
probing = 0;
}
if (CT(COMMAND) != FD_READ ||
raw_cmd->kernel_data == CURRENT->buffer){
/* transfer directly from buffer */
cont->done(1);
} else if (CT(COMMAND) == FD_READ){
#if 0 //zhb
if (raw_cmd->cmd[1] == 0) {
for (i = 0; i < 512; i+=4) {
if (i % 32 == 0)
prom_printf("\n");
prom_printf("%8x ", (unsigned long)raw_cmd->kernel_data[i]);
}
}
#endif
buffer_track = raw_cmd->track;
buffer_drive = current_drive;
INFBOUND(buffer_max, nr_sectors + sector_t);
}
cont->redo();
}
/* Compute maximal contiguous buffer size. */
static int buffer_chain_size(void)
{
struct buffer_head *bh;
int size;
char *base;
base = CURRENT->buffer;
size = CURRENT->current_nr_sectors << 9;
#if 0
bh = CURRENT->bh;
if (bh){
bh = bh->b_reqnext;
while (bh && bh->b_data == base + size){
size += bh->b_size;
bh = bh->b_reqnext;
}
}
#endif
return size >> 9;
}
/* Compute the maximal transfer size */
static int transfer_size(int ssize, int max_sector, int max_size)
{
SUPBOUND(max_sector, sector_t + max_size);
/* alignment */
max_sector -= (max_sector % _floppy->sect) % ssize;
/* transfer size, beginning not aligned */
current_count_sectors = max_sector - sector_t ;
return max_sector;
}
/*
* Move data from/to the track buffer to/from the buffer cache.
*/
static void copy_buffer(int ssize, int max_sector, int max_sector_2)
{
int remaining; /* number of transferred 512-byte sectors */
struct buffer_head *bh;
char *buffer, *dma_buffer;
int size;
max_sector = transfer_size(ssize,
minimum(max_sector, max_sector_2),
CURRENT->nr_sectors);
if (current_count_sectors <= 0 && CT(COMMAND) == FD_WRITE &&
buffer_max > sector_t + CURRENT->nr_sectors)
current_count_sectors = minimum(buffer_max - sector_t,
CURRENT->nr_sectors);
remaining = current_count_sectors << 9;
#ifdef FLOPPY_SANITY_CHECK
if ((remaining >> 9) > CURRENT->nr_sectors &&
CT(COMMAND) == FD_WRITE){
DPRINT("in copy buffer\n");
printk("current_count_sectors=%ld\n", current_count_sectors);
printk("remaining=%d\n", remaining >> 9);
printk("CURRENT->nr_sectors=%ld\n",CURRENT->nr_sectors);
printk("CURRENT->current_nr_sectors=%ld\n",
CURRENT->current_nr_sectors);
printk("max_sector=%d\n", max_sector);
printk("ssize=%d\n", ssize);
}
#endif
buffer_max = maximum(max_sector, buffer_max);
dma_buffer = floppy_track_buffer + ((sector_t - buffer_min) << 9);
bh = CURRENT->bh;
size = CURRENT->current_nr_sectors << 9;
buffer = CURRENT->buffer;
while (remaining > 0){
SUPBOUND(size, remaining);
#ifdef FLOPPY_SANITY_CHECK
if (dma_buffer + size >
floppy_track_buffer + (max_buffer_sectors << 10) ||
dma_buffer < floppy_track_buffer){
DPRINT("buffer overrun in copy buffer %d\n",
(int) ((floppy_track_buffer - dma_buffer) >>9));
printk("sector_t=%d buffer_min=%d\n",
sector_t, buffer_min);
printk("current_count_sectors=%ld\n",
current_count_sectors);
if (CT(COMMAND) == FD_READ)
printk("read\n");
if (CT(COMMAND) == FD_READ)
printk("write\n");
break;
}
if (((unsigned long)buffer) % 512)
DPRINT("%p buffer not aligned\n", buffer);
#endif
if (CT(COMMAND) == FD_READ)
memcpy(buffer, dma_buffer, size);
else
memcpy(dma_buffer, buffer, size);
remaining -= size;
if (!remaining)
break;
dma_buffer += size;
//bh = bh->b_reqnext;
#ifdef FLOPPY_SANITY_CHECK
if (!bh){
DPRINT("bh=null in copy buffer after copy\n");
break;
}
#endif
size = bh->b_size;
buffer = bh->b_data;
}
#ifdef FLOPPY_SANITY_CHECK
if (remaining){
if (remaining > 0)
max_sector -= remaining >> 9;
DPRINT("weirdness: remaining %d\n", remaining>>9);
}
#endif
}
#if 0
static inline int check_dma_crossing(char *start,
unsigned long length, char *message)
{
if (CROSS_64KB(start, length)) {
printk("DMA xfer crosses 64KB boundary in %s %p-%p\n",
message, start, start+length);
return 1;
} else
return 0;
}
#endif
/* work around a bug in pseudo DMA
* (on some FDCs) pseudo DMA does not stop when the CPU stops
* sending data. Hence we need a different way to signal the
* transfer length: We use SECT_PER_TRACK. Unfortunately, this
* does not work with MT, hence we can only transfer one head at
* a time
*/
static void virtualdmabug_workaround(void)
{
int hard_sectors, end_sector;
if(CT(COMMAND) == FD_WRITE) {
COMMAND &= ~0x80; /* switch off multiple track mode */
hard_sectors = raw_cmd->length >> (7 + SIZECODE);
end_sector = SECTOR + hard_sectors - 1;
#ifdef FLOPPY_SANITY_CHECK
if(end_sector > SECT_PER_TRACK) {
printk("too many sectors %d > %d\n",
end_sector, SECT_PER_TRACK);
return;
}
#endif
SECT_PER_TRACK = end_sector; /* make sure SECT_PER_TRACK points
* to end of transfer */
}
}
/*
* Formulate a read/write request.
* this routine decides where to load the data (directly to buffer, or to
* tmp floppy area), how much data to load (the size of the buffer, the whole
* track, or a single sector)
* All floppy_track_buffer handling goes in here. If we ever add track buffer
* allocation on the fly, it should be done here. No other part should need
* modification.
*/
static int make_raw_rw_request(void)
{
int aligned_sector_t;
int max_sector, max_size, tracksize, ssize;
if(max_buffer_sectors == 0) {
printk("VFS: Block I/O scheduled on unopened device\n");
return 0;
}
set_fdc(DRIVE(CURRENT->rq_dev));
raw_cmd = &default_raw_cmd;
raw_cmd->flags = FD_RAW_SPIN | FD_RAW_NEED_DISK | FD_RAW_NEED_DISK |
FD_RAW_NEED_SEEK;
raw_cmd->cmd_count = NR_RW;
if (CURRENT->cmd == READ){
raw_cmd->flags |= FD_RAW_READ;
COMMAND = FM_MODE(_floppy,FD_READ);
} else if (CURRENT->cmd == WRITE){
raw_cmd->flags |= FD_RAW_WRITE;
COMMAND = FM_MODE(_floppy,FD_WRITE);
} else {
DPRINT("make_raw_rw_request: unknown command\n");
return 0;
}
max_sector = _floppy->sect * _floppy->head;
TRACK = CURRENT->sector / max_sector;
sector_t = CURRENT->sector % max_sector;
if (_floppy->track && TRACK >= _floppy->track) {
if (CURRENT->current_nr_sectors & 1) {
current_count_sectors = 1;
return 1;
} else
return 0;
}
HEAD = sector_t / _floppy->sect;
if (((_floppy->stretch & FD_SWAPSIDES) || TESTF(FD_NEED_TWADDLE)) &&
sector_t < _floppy->sect)
max_sector = _floppy->sect;
/* 2M disks have phantom sectors on the first track */
if ((_floppy->rate & FD_2M) && (!TRACK) && (!HEAD)){
max_sector = 2 * _floppy->sect / 3;
if (sector_t >= max_sector){
current_count_sectors = minimum(_floppy->sect - sector_t,
CURRENT->nr_sectors);
return 1;
}
SIZECODE = 2;
} else
SIZECODE = FD_SIZECODE(_floppy);
raw_cmd->rate = _floppy->rate & 0x43;
if ((_floppy->rate & FD_2M) &&
(TRACK || HEAD) &&
raw_cmd->rate == 2)
raw_cmd->rate = 1;
if (SIZECODE)
SIZECODE2 = 0xff;
else
SIZECODE2 = 0x80;
raw_cmd->track = TRACK << STRETCH(_floppy);
DR_SELECT = UNIT(current_drive) + PH_HEAD(_floppy,HEAD);
GAP = _floppy->gap;
CODE2SIZE;
SECT_PER_TRACK = _floppy->sect << 2 >> SIZECODE;
SECTOR = ((sector_t % _floppy->sect) << 2 >> SIZECODE) + 1;
/* tracksize describes the size which can be filled up with sectors
* of size ssize.
*/
tracksize = _floppy->sect - _floppy->sect % ssize;
if (tracksize < _floppy->sect){
SECT_PER_TRACK ++;
if (tracksize <= sector_t % _floppy->sect)
SECTOR--;
/* if we are beyond tracksize, fill up using smaller sectors */
while (tracksize <= sector_t % _floppy->sect){
while(tracksize + ssize > _floppy->sect){
SIZECODE--;
ssize >>= 1;
}
SECTOR++; SECT_PER_TRACK ++;
tracksize += ssize;
}
max_sector = HEAD * _floppy->sect + tracksize;
} else if (!TRACK && !HEAD && !(_floppy->rate & FD_2M) && probing) {
max_sector = _floppy->sect;
} else if (!HEAD && CT(COMMAND) == FD_WRITE) {
/* for virtual DMA bug workaround */
max_sector = _floppy->sect;
}
in_sector_offset = (sector_t % _floppy->sect) % ssize;
aligned_sector_t = sector_t - in_sector_offset;
max_size = CURRENT->nr_sectors;
if ((raw_cmd->track == buffer_track) &&
(current_drive == buffer_drive) &&
(sector_t >= buffer_min) && (sector_t < buffer_max)) {
/* data already in track buffer */
if (CT(COMMAND) == FD_READ) {
copy_buffer(1, max_sector, buffer_max);
return 1;
}
} else if (in_sector_offset || CURRENT->nr_sectors < ssize){
if (CT(COMMAND) == FD_WRITE){
if (sector_t + CURRENT->nr_sectors > ssize &&
sector_t + CURRENT->nr_sectors < ssize + ssize)
max_size = ssize + ssize;
else
max_size = ssize;
}
raw_cmd->flags &= ~FD_RAW_WRITE;
raw_cmd->flags |= FD_RAW_READ;
COMMAND = FM_MODE(_floppy,FD_READ);
} else if ((unsigned long)CURRENT->buffer < MAX_DMA_ADDRESS) {
unsigned long dma_limit;
int direct, indirect;
indirect= transfer_size(ssize,max_sector,max_buffer_sectors*2) -
sector_t;
/*
* Do NOT use minimum() here---MAX_DMA_ADDRESS is 64 bits wide
* on a 64 bit machine!
*/
max_size = buffer_chain_size();
dma_limit = (MAX_DMA_ADDRESS - ((unsigned long) CURRENT->buffer)) >> 9;
if ((unsigned long) max_size > dma_limit) {
max_size = dma_limit;
}
/* 64 kb boundaries */
if (CROSS_64KB(CURRENT->buffer, max_size << 9))
max_size = (K_64 -
((unsigned long)CURRENT->buffer) % K_64)>>9;
#ifndef PMON
direct = transfer_size(ssize,max_sector,max_size) - sector_t;
#else
direct=0;
#endif
/*
* We try to read tracks, but if we get too many errors, we
* go back to reading just one sector at a time.
*
* This means we should be able to read a sector even if there
* are other bad sectors on this track.
*/
if (!direct ||
(indirect * 2 > direct * 3 &&
*errors < DP->max_errors.read_track &&
/*!TESTF(FD_NEED_TWADDLE) &&*/
((!probing || (DP->read_track&(1<<DRS->probed_format)))))){
max_size = CURRENT->nr_sectors;
} else {
raw_cmd->kernel_data = CURRENT->buffer;
raw_cmd->length = current_count_sectors << 9;
if (raw_cmd->length == 0){
DPRINT("zero dma transfer attempted from make_raw_request\n");
DPRINT("indirect=%d direct=%d sector_t=%d",
indirect, direct, sector_t);
return 0;
}
/* check_dma_crossing(raw_cmd->kernel_data,
raw_cmd->length,
"end of make_raw_request [1]");*/
virtualdmabug_workaround();
return 2;
}
}
if (CT(COMMAND) == FD_READ)
max_size = max_sector; /* unbounded */
/* claim buffer track if needed */
if (buffer_track != raw_cmd->track || /* bad track */
buffer_drive !=current_drive || /* bad drive */
sector_t > buffer_max ||
sector_t < buffer_min ||
((CT(COMMAND) == FD_READ ||
(!in_sector_offset && CURRENT->nr_sectors >= ssize))&&
max_sector > 2 * max_buffer_sectors + buffer_min &&
max_size + sector_t > 2 * max_buffer_sectors + buffer_min)
/* not enough space */){
buffer_track = -1;
buffer_drive = current_drive;
buffer_max = buffer_min = aligned_sector_t;
}
raw_cmd->kernel_data = floppy_track_buffer +
((aligned_sector_t-buffer_min)<<9);
if (CT(COMMAND) == FD_WRITE){
/* copy write buffer to track buffer.
* if we get here, we know that the write
* is either aligned or the data already in the buffer
* (buffer will be overwritten) */
#ifdef FLOPPY_SANITY_CHECK
if (in_sector_offset && buffer_track == -1)
DPRINT("internal error offset !=0 on write\n");
#endif
buffer_track = raw_cmd->track;
buffer_drive = current_drive;
copy_buffer(ssize, max_sector, 2*max_buffer_sectors+buffer_min);
} else
transfer_size(ssize, max_sector,
2*max_buffer_sectors+buffer_min-aligned_sector_t);
/* round up current_count_sectors to get dma xfer size */
raw_cmd->length = in_sector_offset+current_count_sectors;
raw_cmd->length = ((raw_cmd->length -1)|(ssize-1))+1;
raw_cmd->length <<= 9;
#ifdef FLOPPY_SANITY_CHECK
/*check_dma_crossing(raw_cmd->kernel_data, raw_cmd->length,
"end of make_raw_request");*/
if ((raw_cmd->length < current_count_sectors << 9) ||
(raw_cmd->kernel_data != CURRENT->buffer &&
CT(COMMAND) == FD_WRITE &&
(aligned_sector_t + (raw_cmd->length >> 9) > buffer_max ||
aligned_sector_t < buffer_min)) ||
raw_cmd->length % (128 << SIZECODE) ||
raw_cmd->length <= 0 || current_count_sectors <= 0){
DPRINT("fractionary current count b=%lx s=%lx\n",
raw_cmd->length, current_count_sectors);
if (raw_cmd->kernel_data != CURRENT->buffer)
printk("addr=%d, length=%ld\n",
(int) ((raw_cmd->kernel_data -
floppy_track_buffer) >> 9),
current_count_sectors);
printk("st=%d ast=%d mse=%d msi=%d\n",
sector_t, aligned_sector_t, max_sector, max_size);
printk("ssize=%x SIZECODE=%d\n", ssize, SIZECODE);
printk("command=%x SECTOR=%d HEAD=%d, TRACK=%d\n",
COMMAND, SECTOR, HEAD, TRACK);
printk("buffer drive=%d\n", buffer_drive);
printk("buffer track=%d\n", buffer_track);
printk("buffer_min=%d\n", buffer_min);
printk("buffer_max=%d\n", buffer_max);
return 0;
}
if (raw_cmd->kernel_data != CURRENT->buffer){
if (raw_cmd->kernel_data < floppy_track_buffer ||
current_count_sectors < 0 ||
raw_cmd->length < 0 ||
raw_cmd->kernel_data + raw_cmd->length >
floppy_track_buffer + (max_buffer_sectors << 10)){
DPRINT("buffer overrun in schedule dma\n");
printk("sector_t=%d buffer_min=%d current_count=%ld\n",
sector_t, buffer_min,
raw_cmd->length >> 9);
printk("current_count_sectors=%ld\n",
current_count_sectors);
if (CT(COMMAND) == FD_READ)
printk("read\n");
if (CT(COMMAND) == FD_READ)
printk("write\n");
return 0;
}
} else if (raw_cmd->length > CURRENT->nr_sectors << 9 ||
current_count_sectors > CURRENT->nr_sectors){
DPRINT("buffer overrun in direct transfer\n");
return 0;
} else if (raw_cmd->length < current_count_sectors << 9){
DPRINT("more sectors than bytes\n");
printk("bytes=%ld\n", raw_cmd->length >> 9);
printk("sectors=%ld\n", current_count_sectors);
}
if (raw_cmd->length == 0){
DPRINT("zero dma transfer attempted from make_raw_request\n");
return 0;
}
#endif
virtualdmabug_workaround();
return 2;
}
static void redo_fd_request(void)
{
#define REPEAT {request_done(0); continue; }
kdev_t device;
int tmp;
lastredo = ticks;
if (current_drive < N_DRIVE)
floppy_off(current_drive);
while(1){
if (QUEUE_EMPTY) {
CLEAR_INTR;
unlock_fdc();
return;
}
#if 0
if (MAJOR(CURRENT->rq_dev) != MAJOR_NR)
panic(DEVICE_NAME ": request list destroyed");
if (CURRENT->bh && !buffer_locked(CURRENT->bh))
panic(DEVICE_NAME ": block not locked");
#endif
device = CURRENT->rq_dev;
set_fdc(DRIVE(device));
reschedule_timeout(CURRENTD, "redo fd request", 0);
set_floppy(device);
raw_cmd = & default_raw_cmd;
raw_cmd->flags = 0;
if (start_motor(redo_fd_request)) return;
disk_change(current_drive);
if (test_bit(current_drive, &fake_change) ||
TESTF(FD_DISK_CHANGED)){
DPRINT("disk absent or changed during operation\n");
REPEAT;
}
if (!_floppy) { /* Autodetection */
if (!probing){
DRS->probed_format = 0;
if (next_valid_format()){
DPRINT("no autodetectable formats\n");
_floppy = NULL;
REPEAT;
}
}
probing = 1;
_floppy = floppy_type+DP->autodetect[DRS->probed_format];
} else
probing = 0;
errors = & (CURRENT->errors);
tmp = make_raw_rw_request();
if (tmp < 2){
request_done(tmp);
continue;
}
if (TESTF(FD_NEED_TWADDLE))
twaddle();
schedule_bh( (void *)(void *) floppy_start);
#ifdef DEBUGT
debugt("queue fd request");
#endif
return;
}
#undef REPEAT
}
static struct cont_t rw_cont={
rw_interrupt,
redo_fd_request,
bad_flp_intr,
request_done };
static void process_fd_request(void)
{
cont = &rw_cont;
schedule_bh( (void *)(void *) redo_fd_request);
}
static void do_fd_request(request_queue_t * q)
{
if(max_buffer_sectors == 0) {
printk("VFS: do_fd_request called on non-open device\n");
return;
}
if (usage_count == 0) {
printk("warning: usage count=0, CURRENT=%p exiting\n", CURRENT);
printk("sect=%ld cmd=%d\n", CURRENT->sector, CURRENT->cmd);
return;
}
if (fdc_busy){
/* fdc busy, this new request will be treated when the
current one is done */
is_alive("do fd request, old request running");
return;
}
lock_fdc(MAXTIMEOUT,0);
process_fd_request();
is_alive("do fd request");
}
/*
* User triggered reset
* ====================
*/
static void reset_intr(void)
{
printk("weird, reset interrupt called\n");
}
static struct cont_t reset_cont={
reset_intr,
success_and_wakeup,
generic_failure,
generic_done };
static int user_reset_fdc(int drive, int arg, int interruptible)
{
int ret;
ret=0;
LOCK_FDC(drive,interruptible);
if (arg == FD_RESET_ALWAYS)
FDCS->reset=1;
if (FDCS->reset){
cont = &reset_cont;
WAIT(reset_fdc);
}
process_fd_request();
return ret;
}
static void __init config_types(void)
{
int first=1;
int drive;
/* read drive info out of physical CMOS */
drive=0;
if (!UDP->cmos)
UDP->cmos = FLOPPY0_TYPE;
drive=1;
if (!UDP->cmos && FLOPPY1_TYPE)
UDP->cmos = FLOPPY1_TYPE;
/* XXX */
/* additional physical CMOS drive detection should go here */
for (drive=0; drive < N_DRIVE; drive++){
unsigned int type = UDP->cmos;
struct floppy_drive_params *params;
const char *name = NULL;
static char temparea[32];
if (type < NUMBER(default_drive_params)) {
params = &default_drive_params[type].params;
if (type) {
name = default_drive_params[type].name;
allowed_drive_mask |= 1 << drive;
}
} else {
params = &default_drive_params[0].params;
sprintf(temparea, "unknown type %d (usb?)", type);
name = temparea;
}
if (name) {
const char * prepend = ",";
if (first) {
prepend = KERN_INFO "Floppy drive(s):";
first = 0;
}
printk("%s fd%d is %s", prepend, drive, name);
}
*UDP = *params;
#ifdef DEBUGT
UDP->flags |= FD_DEBUG;
#endif
}
if (!first)
printk("\n");
}
/*
* Floppy Driver initialization
* =============================
*/
/* Determine the floppy disk controller type */
/* This routine was written by David C. Niemi */
static char __init get_fdc_version(void)
{
int r;
output_byte(FD_DUMPREGS); /* 82072 and better know DUMPREGS */
if (FDCS->reset)
return FDC_NONE;
if ((r = result()) <= 0x00)
return FDC_NONE; /* No FDC present ??? */
if ((r==1) && (reply_buffer[0] == 0x80)){
printk(KERN_INFO "FDC %d is an 8272A\n",fdc);
return FDC_8272A; /* 8272a/765 don't know DUMPREGS */
}
if (r != 10) {
printk("FDC %d init: DUMPREGS: unexpected return of %d bytes.\n",
fdc, r);
return FDC_UNKNOWN;
}
if (!fdc_configure()) {
printk(KERN_INFO "FDC %d is an 82072\n",fdc);
return FDC_82072; /* 82072 doesn't know CONFIGURE */
}
output_byte(FD_PERPENDICULAR);
if (need_more_output() == MORE_OUTPUT) {
output_byte(0);
} else {
printk(KERN_INFO "FDC %d is an 82072A\n", fdc);
return FDC_82072A; /* 82072A as found on Sparcs. */
}
output_byte(FD_UNLOCK);
r = result();
if ((r == 1) && (reply_buffer[0] == 0x80)){
printk(KERN_INFO "FDC %d is a pre-1991 82077\n", fdc);
return FDC_82077_ORIG; /* Pre-1991 82077, doesn't know
* LOCK/UNLOCK */
}
if ((r != 1) || (reply_buffer[0] != 0x00)) {
printk("FDC %d init: UNLOCK: unexpected return of %d bytes.\n",
fdc, r);
return FDC_UNKNOWN;
}
output_byte(FD_PARTID);
r = result();
if (r != 1) {
printk("FDC %d init: PARTID: unexpected return of %d bytes.\n",
fdc, r);
return FDC_UNKNOWN;
}
if (reply_buffer[0] == 0x80) {
printk(KERN_INFO "FDC %d is a post-1991 82077\n",fdc);
return FDC_82077; /* Revised 82077AA passes all the tests */
}
switch (reply_buffer[0] >> 5) {
case 0x0:
/* Either a 82078-1 or a 82078SL running at 5Volt */
printk(KERN_INFO "FDC %d is an 82078.\n",fdc);
return FDC_82078;
case 0x1:
printk(KERN_INFO "FDC %d is a 44pin 82078\n",fdc);
return FDC_82078;
case 0x2:
printk(KERN_INFO "FDC %d is a S82078B\n", fdc);
return FDC_S82078B;
case 0x3:
printk(KERN_INFO "FDC %d is a National Semiconductor PC87306\n", fdc);
return FDC_87306;
default:
printk(KERN_INFO "FDC %d init: 82078 variant with unknown PARTID=%d.\n",
fdc, reply_buffer[0] >> 5);
return FDC_82078_UNKN;
}
} /* get_fdc_version */
static int have_no_fdc= -ENODEV;
int __init floppy_init(void)
{
int i,unit,drive;
raw_cmd = NULL;
for (i=0; i<256; i++)
{
if (ITYPE(i))
floppy_sizes[i] = (floppy_type[ITYPE(i)].size+1) >> 1;
else
floppy_sizes[i] = MAX_DISK_SIZE;
//floppy_blocksizes[i] = 512;
//floppy_maxsectors[i] = 64;
}
#if 0
blk_size[MAJOR_NR] = floppy_sizes;
blksize_size[MAJOR_NR] = floppy_blocksizes;
blk_init_queue(BLK_DEFAULT_QUEUE(MAJOR_NR), DEVICE_REQUEST);
#endif
reschedule_timeout(MAXTIMEOUT, "floppy init", MAXTIMEOUT);
config_types();
for (i = 0; i < N_FDC; i++) {
fdc = i;
CLEARSTRUCT(FDCS);
FDCS->dtr = -1;
FDCS->dor = 0x4;
#if defined(__sparc__) || defined(__mc68000__)
/*sparcs/sun3x don't have a DOR reset which we can fall back on to*/
#ifdef __mc68000__
if(MACH_IS_SUN3X)
#endif
FDCS->version = FDC_82072A;
#endif
}
use_virtual_dma = can_use_virtual_dma & 1;
fdc_state[0].address = FDC1;
if (fdc_state[0].address == -1) {
del_timer(&fd_timeout);
//blk_cleanup_queue(BLK_DEFAULT_QUEUE(MAJOR_NR));
return -ENODEV;
}
#if N_FDC > 1
fdc_state[1].address = FDC2;
#endif
fdc = 0; /* reset fdc in case of unexpected interrupt */
if (floppy_grab_irq_and_dma()){
del_timer(&fd_timeout);
blk_cleanup_queue(BLK_DEFAULT_QUEUE(MAJOR_NR));
return -EBUSY;
}
/* initialise drive state */
for (drive = 0; drive < N_DRIVE; drive++) {
CLEARSTRUCT(UDRS);
CLEARSTRUCT(UDRWE);
USETF(FD_DISK_NEWCHANGE);
USETF(FD_DISK_CHANGED);
USETF(FD_VERIFY);
UDRS->fd_device = -1;
floppy_track_buffer = NULL;
max_buffer_sectors = 0;
}
for (i = 0; i < N_FDC; i++) {
fdc = i;
FDCS->driver_version = FD_DRIVER_VERSION;
for (unit=0; unit<4; unit++)
FDCS->track[unit] = 0;
if (FDCS->address == -1)
continue;
FDCS->rawcmd = 2;
if (user_reset_fdc(-1,FD_RESET_ALWAYS,0)){
/* free ioports reserved by floppy_grab_irq_and_dma() */
release_region(FDCS->address+2, 4);
release_region(FDCS->address+7, 1);
FDCS->address = -1;
FDCS->version = FDC_NONE;
continue;
}
/* Try to determine the floppy controller type */
FDCS->version = get_fdc_version();
if (FDCS->version == FDC_NONE){
/* free ioports reserved by floppy_grab_irq_and_dma() */
release_region(FDCS->address+2, 4);
release_region(FDCS->address+7, 1);
FDCS->address = -1;
continue;
}
if (can_use_virtual_dma == 2 && FDCS->version < FDC_82072A)
can_use_virtual_dma = 0;
have_no_fdc = 0;
/* Not all FDCs seem to be able to handle the version command
* properly, so force a reset for the standard FDC clones,
* to avoid interrupt garbage.
*/
user_reset_fdc(-1,FD_RESET_ALWAYS,0);
}
fdc=0;
del_timer(&fd_timeout);
current_drive = 0;
floppy_release_irq_and_dma();
initialising=0;
if (have_no_fdc)
{
DPRINT("no floppy controllers found\n");
run_task_queue(&tq_immediate);
if (usage_count)
floppy_release_irq_and_dma();
blk_cleanup_queue(BLK_DEFAULT_QUEUE(MAJOR_NR));
}
for (drive = 0; drive < N_DRIVE; drive++) {
motor_off_timer[drive].data = drive;
motor_off_timer[drive].function = motor_off_callback;
if (!(allowed_drive_mask & (1 << drive)))
continue;
if (fdc_state[FDC(drive)].version == FDC_NONE)
continue;
#if 0
for (i = 0; i<NUMBER(floppy_type); i++)
register_disk(NULL, MKDEV(MAJOR_NR,TOMINOR(drive)+i*4),
1, &floppy_fops, 0);
#endif
}
return have_no_fdc;
}
static spinlock_t floppy_usage_lock = SPIN_LOCK_UNLOCKED;
static int floppy_grab_irq_and_dma(void)
{
unsigned long flags;
spin_lock_irqsave(&floppy_usage_lock, flags);
if (usage_count++){
spin_unlock_irqrestore(&floppy_usage_lock, flags);
return 0;
}
spin_unlock_irqrestore(&floppy_usage_lock, flags);
MOD_INC_USE_COUNT;
if (fd_request_irq()) {
DPRINT("Unable to grab IRQ%d for the floppy driver\n",
FLOPPY_IRQ);
MOD_DEC_USE_COUNT;
spin_lock_irqsave(&floppy_usage_lock, flags);
usage_count--;
spin_unlock_irqrestore(&floppy_usage_lock, flags);
return -1;
}
if (fd_request_dma()) {
DPRINT("Unable to grab DMA%d for the floppy driver\n",
FLOPPY_DMA);
fd_free_irq();
MOD_DEC_USE_COUNT;
spin_lock_irqsave(&floppy_usage_lock, flags);
usage_count--;
spin_unlock_irqrestore(&floppy_usage_lock, flags);
return -1;
}
for (fdc=0; fdc< N_FDC; fdc++){
if (FDCS->address != -1){
if (!request_region(FDCS->address+2, 4, "floppy")) {
DPRINT("Floppy io-port 0x%04lx in use\n", FDCS->address + 2);
goto cleanup1;
}
if (!request_region(FDCS->address+7, 1, "floppy DIR")) {
DPRINT("Floppy io-port 0x%04lx in use\n", FDCS->address + 7);
goto cleanup2;
}
/* address + 6 is reserved, and may be taken by IDE.
* Unfortunately, Adaptec doesn't know this :-(, */
}
}
for (fdc=0; fdc< N_FDC; fdc++){
if (FDCS->address != -1){
reset_fdc_info(1);
fd_outb(FDCS->dor, FD_DOR);
}
}
fdc = 0;
set_dor(0, ~0, 8); /* avoid immediate interrupt */
for (fdc = 0; fdc < N_FDC; fdc++)
if (FDCS->address != -1)
fd_outb(FDCS->dor, FD_DOR);
/*
* The driver will try and free resources and relies on us
* to know if they were allocated or not.
*/
fdc = 0;
irqdma_allocated = 1;
return 0;
cleanup2:
release_region(FDCS->address + 2, 4);
cleanup1:
fd_free_irq();
fd_free_dma();
while(--fdc >= 0) {
release_region(FDCS->address + 2, 4);
release_region(FDCS->address + 7, 1);
}
MOD_DEC_USE_COUNT;
spin_lock_irqsave(&floppy_usage_lock, flags);
usage_count--;
spin_unlock_irqrestore(&floppy_usage_lock, flags);
return -1;
}
static void floppy_release_irq_and_dma(void)
{
int old_fdc;
#ifdef FLOPPY_SANITY_CHECK
#ifndef __sparc__
int drive;
#endif
#endif
long tmpsize;
unsigned long tmpaddr;
unsigned long flags;
spin_lock_irqsave(&floppy_usage_lock, flags);
if (--usage_count){
spin_unlock_irqrestore(&floppy_usage_lock, flags);
return;
}
spin_unlock_irqrestore(&floppy_usage_lock, flags);
if(irqdma_allocated)
{
fd_disable_dma();
fd_free_dma();
fd_free_irq();
irqdma_allocated=0;
}
set_dor(0, ~0, 8);
#if N_FDC > 1
set_dor(1, ~8, 0);
#endif
floppy_enable_hlt();
if (floppy_track_buffer && max_buffer_sectors) {
tmpsize = max_buffer_sectors*1024;
tmpaddr = (unsigned long)floppy_track_buffer;
floppy_track_buffer = NULL;
max_buffer_sectors = 0;
buffer_min = buffer_max = -1;
fd_dma_mem_free(tmpaddr, tmpsize);
}
#ifdef FLOPPY_SANITY_CHECK
#ifndef __sparc__
for (drive=0; drive < N_FDC * 4; drive++)
if (timer_pending(motor_off_timer + drive))
printk("motor off timer %d still active\n", drive);
#endif
if (timer_pending(&fd_timeout))
printk("floppy timer still active:%s\n", timeout_message);
if (timer_pending(&fd_timer))
printk("auxiliary floppy timer still active\n");
if (floppy_tq.sync)
printk("task queue still active\n");
#endif
old_fdc = fdc;
for (fdc = 0; fdc < N_FDC; fdc++)
if (FDCS->address != -1) {
release_region(FDCS->address+2, 4);
release_region(FDCS->address+7, 1);
}
fdc = old_fdc;
}
//---------------------------------------------------------------------------------------------
static int check_disk_change(kdev_t dev)
{
if(!check_floppy_change(dev))return 0;
floppy_revalidate(dev);
return 1;
}
#define RETERR(x) do{floppy_release(inode); return -(x);}while(0)
static int floppy_open(struct inode * inode)
{
int drive;
int old_dev;
int try;
char *tmp;
drive = DRIVE(inode->i_rdev);
if (drive >= N_DRIVE ||
!(allowed_drive_mask & (1 << drive)) ||
fdc_state[FDC(drive)].version == FDC_NONE)
return -ENXIO;
if (TYPE(inode->i_rdev) >= NUMBER(floppy_type))
return -ENXIO;
old_dev = UDRS->fd_device;
if (UDRS->fd_ref && old_dev != MINOR(inode->i_rdev))
return -EBUSY;
if (!UDRS->fd_ref && (UDP->flags & FD_BROKEN_DCL)){
USETF(FD_DISK_CHANGED);
USETF(FD_VERIFY);
}
if (UDRS->fd_ref == -1 )
return -EBUSY;
if (floppy_grab_irq_and_dma())
return -EBUSY;
UDRS->fd_ref++;
if (!floppy_track_buffer){
/* if opening an ED drive, reserve a big buffer,
* else reserve a small one */
if ((UDP->cmos == 6) || (UDP->cmos == 5))
try = 64; /* Only 48 actually useful */
else
try = 32; /* Only 24 actually useful */
tmp=(char *)fd_dma_mem_alloc(1024 * try);
if (!tmp && !floppy_track_buffer) {
try >>= 1; /* buffer only one side */
INFBOUND(try, 16);
tmp= (char *)fd_dma_mem_alloc(1024*try);
}
if (!tmp && !floppy_track_buffer) {
fallback_on_nodma_alloc(&tmp, 2048 * try);
}
if (!tmp && !floppy_track_buffer) {
DPRINT("Unable to allocate DMA memory\n");
RETERR(ENXIO);
}
if (floppy_track_buffer) {
if (tmp)
fd_dma_mem_free((unsigned long)tmp,try*1024);
} else {
buffer_min = buffer_max = -1;
floppy_track_buffer = tmp;
max_buffer_sectors = try;
}
}
UDRS->fd_device = MINOR(inode->i_rdev);
if (old_dev != -1 && old_dev != MINOR(inode->i_rdev)) {
if (buffer_drive == drive)
buffer_track = -1;
// invalidate_buffers(MKDEV(FLOPPY_MAJOR,old_dev));
}
if (UFDCS->rawcmd == 1)
UFDCS->rawcmd = 2;
if (1) {
UDRS->last_checked = 0;
check_disk_change(inode->i_rdev);
if (UTESTF(FD_DISK_CHANGED))
RETERR(ENXIO);
}
return 0;
#undef RETERR
}
static int floppy_release(struct inode * inode)
{
int drive = DRIVE(inode->i_rdev);
if (UDRS->fd_ref < 0)
UDRS->fd_ref=0;
else if (!UDRS->fd_ref--) {
DPRINT("floppy_release with fd_ref == 0");
UDRS->fd_ref = 0;
}
floppy_release_irq_and_dma();
return 0;
}
static struct cont_t poll_cont={
success_and_wakeup,
floppy_ready,
generic_failure,
generic_done };
static int poll_drive(int interruptible, int flag)
{
int ret;
/* no auto-sense, just clear dcl */
raw_cmd = &default_raw_cmd;
raw_cmd->flags= flag;
raw_cmd->track=0;
raw_cmd->cmd_count=0;
cont = &poll_cont;
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("setting NEWCHANGE in poll_drive\n");
}
#endif
SETF(FD_DISK_NEWCHANGE);
WAIT(floppy_ready);
return ret;
}
static int floppy_revalidate(kdev_t dev)
{
#define NO_GEOM (!current_type[drive] && !TYPE(dev))
// struct buffer_head * bh;
int drive=DRIVE(dev);
int cf;
if (UTESTF(FD_DISK_CHANGED) ||
UTESTF(FD_VERIFY) ||
test_bit(drive, &fake_change) ||
NO_GEOM){
if(usage_count == 0) {
printk("VFS: revalidate called on non-open device.\n");
return -EFAULT;
}
lock_fdc(drive,0);
cf = UTESTF(FD_DISK_CHANGED) || UTESTF(FD_VERIFY);
if (!(cf || test_bit(drive, &fake_change) || NO_GEOM)){
process_fd_request(); /*already done by another thread*/
return 0;
}
UDRS->maxblock = 0;
UDRS->maxtrack = 0;
if (buffer_drive == drive)
buffer_track = -1;
clear_bit(drive, &fake_change);
UCLEARF(FD_DISK_CHANGED);
if (cf)
UDRS->generation++;
if (NO_GEOM){
/* auto-sensing */
#if 0
int size = floppy_blocksizes[MINOR(dev)];
if (!size)
size = 512;
if (!(bh = getblk(dev,0,size))){
process_fd_request();
return -ENXIO;
}
if (bh && !buffer_uptodate(bh))
ll_rw_block(READ, 1, &bh);
process_fd_request();
wait_on_buffer(bh);
brelse(bh);
#endif
return 0;
}
if (cf)
poll_drive(0, FD_RAW_NEED_DISK);
process_fd_request();
}
return 0;
}
/*
* Check if the disk has been changed or if a change has been faked.
*/
static int check_floppy_change(kdev_t dev)
{
int drive = DRIVE(dev);
if (UTESTF(FD_DISK_CHANGED) || UTESTF(FD_VERIFY))
return 1;
if (UDP->checkfreq < (int)(ticks - UDRS->last_checked)) {
if(floppy_grab_irq_and_dma()) {
return 1;
}
lock_fdc(drive,0);
poll_drive(0,0);
process_fd_request();
floppy_release_irq_and_dma();
}
if (UTESTF(FD_DISK_CHANGED) ||
UTESTF(FD_VERIFY) ||
test_bit(drive, &fake_change) ||
(!TYPE(dev) && !current_type[drive]))
return 1;
return 0;
}
void floppy_info()
{
config_types();
get_fdc_version();
}