Browse Source

Consistently name target var 't' in cortexm.

pull/86/head
Gareth McMullin 10 years ago
parent
commit
64c79e1d03
  1. 279
      src/cortexm.c
  2. 64
      src/include/target.h

279
src/cortexm.c

@ -60,23 +60,23 @@ const struct command_s cortexm_cmd_list[] = {
#define SIGSEGV 11
#define SIGLOST 29
static int cortexm_regs_read(struct target_s *target, void *data);
static int cortexm_regs_write(struct target_s *target, const void *data);
static int cortexm_pc_write(struct target_s *target, const uint32_t val);
static uint32_t cortexm_pc_read(struct target_s *target);
static int cortexm_regs_read(target *t, void *data);
static int cortexm_regs_write(target *t, const void *data);
static int cortexm_pc_write(target *t, const uint32_t val);
static uint32_t cortexm_pc_read(target *t);
static void cortexm_reset(struct target_s *target);
static int cortexm_halt_wait(struct target_s *target);
static void cortexm_halt_request(struct target_s *target);
static int cortexm_fault_unwind(struct target_s *target);
static void cortexm_reset(target *t);
static int cortexm_halt_wait(target *t);
static void cortexm_halt_request(target *t);
static int cortexm_fault_unwind(target *t);
static int cortexm_set_hw_bp(struct target_s *target, uint32_t addr);
static int cortexm_clear_hw_bp(struct target_s *target, uint32_t addr);
static int cortexm_set_hw_bp(target *t, uint32_t addr);
static int cortexm_clear_hw_bp(target *t, uint32_t addr);
static int cortexm_set_hw_wp(struct target_s *target, uint8_t type, uint32_t addr, uint8_t len);
static int cortexm_clear_hw_wp(struct target_s *target, uint8_t type, uint32_t addr, uint8_t len);
static int cortexm_set_hw_wp(target *t, uint8_t type, uint32_t addr, uint8_t len);
static int cortexm_clear_hw_wp(target *t, uint8_t type, uint32_t addr, uint8_t len);
static int cortexm_check_hw_wp(struct target_s *target, uint32_t *addr);
static int cortexm_check_hw_wp(target *t, uint32_t *addr);
#define CORTEXM_MAX_WATCHPOINTS 4 /* architecture says up to 15, no implementation has > 4 */
#define CORTEXM_MAX_BREAKPOINTS 6 /* architecture says up to 127, no implementation has > 6 */
@ -207,42 +207,41 @@ static const char tdesc_cortex_mf[] =
#define REG_PSP 18
#define REG_SPECIAL 19
bool
cortexm_probe(struct target_s *target)
bool cortexm_probe(target *t)
{
target->driver = cortexm_driver_str;
t->driver = cortexm_driver_str;
target->attach = cortexm_attach;
target->detach = cortexm_detach;
t->attach = cortexm_attach;
t->detach = cortexm_detach;
/* Should probe here to make sure it's Cortex-M3 */
target->tdesc = tdesc_cortex_m;
target->regs_read = cortexm_regs_read;
target->regs_write = cortexm_regs_write;
target->pc_write = cortexm_pc_write;
target->pc_read = cortexm_pc_read;
t->tdesc = tdesc_cortex_m;
t->regs_read = cortexm_regs_read;
t->regs_write = cortexm_regs_write;
t->pc_write = cortexm_pc_write;
t->pc_read = cortexm_pc_read;
target->reset = cortexm_reset;
target->halt_request = cortexm_halt_request;
target->halt_wait = cortexm_halt_wait;
target->halt_resume = cortexm_halt_resume;
target->regs_size = sizeof(regnum_cortex_m);
t->reset = cortexm_reset;
t->halt_request = cortexm_halt_request;
t->halt_wait = cortexm_halt_wait;
t->halt_resume = cortexm_halt_resume;
t->regs_size = sizeof(regnum_cortex_m);
target->hostio_reply = cortexm_hostio_reply;
t->hostio_reply = cortexm_hostio_reply;
target_add_commands(target, cortexm_cmd_list, cortexm_driver_str);
target_add_commands(t, cortexm_cmd_list, cortexm_driver_str);
/* Probe for FP extension */
uint32_t cpacr = target_mem_read32(target, CORTEXM_CPACR);
uint32_t cpacr = target_mem_read32(t, CORTEXM_CPACR);
cpacr |= 0x00F00000; /* CP10 = 0b11, CP11 = 0b11 */
target_mem_write32(target, CORTEXM_CPACR, cpacr);
if (target_mem_read32(target, CORTEXM_CPACR) == cpacr) {
target->target_options |= TOPT_FLAVOUR_V7MF;
target->regs_size += sizeof(regnum_cortex_mf);
target->tdesc = tdesc_cortex_mf;
target_mem_write32(t, CORTEXM_CPACR, cpacr);
if (target_mem_read32(t, CORTEXM_CPACR) == cpacr) {
t->target_options |= TOPT_FLAVOUR_V7MF;
t->regs_size += sizeof(regnum_cortex_mf);
t->tdesc = tdesc_cortex_mf;
}
ADIv5_AP_t *ap = adiv5_target_ap(target);
ADIv5_AP_t *ap = adiv5_target_ap(t);
struct cortexm_priv *priv = calloc(1, sizeof(*priv));
ap->priv = priv;
ap->priv_free = free;
@ -252,7 +251,7 @@ cortexm_probe(struct target_s *target)
CORTEXM_DEMCR_VC_CORERESET;
#define PROBE(x) \
do { if ((x)(target)) return true; else target_check_error(target); } while (0)
do { if ((x)(t)) return true; else target_check_error(t); } while (0)
PROBE(stm32f1_probe);
PROBE(stm32f4_probe);
@ -270,62 +269,62 @@ cortexm_probe(struct target_s *target)
return true;
}
bool cortexm_attach(struct target_s *target)
bool cortexm_attach(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
ADIv5_AP_t *ap = adiv5_target_ap(t);
struct cortexm_priv *priv = ap->priv;
unsigned i;
uint32_t r;
int tries;
/* Clear any pending fault condition */
target_check_error(target);
target_check_error(t);
target_halt_request(target);
target_halt_request(t);
tries = 10;
while(!connect_assert_srst && !target_halt_wait(target) && --tries)
while(!connect_assert_srst && !target_halt_wait(t) && --tries)
platform_delay(2);
if(!tries)
return false;
/* Request halt on reset */
target_mem_write32(target, CORTEXM_DEMCR, priv->demcr);
target_mem_write32(t, CORTEXM_DEMCR, priv->demcr);
/* Reset DFSR flags */
target_mem_write32(target, CORTEXM_DFSR, CORTEXM_DFSR_RESETALL);
target_mem_write32(t, CORTEXM_DFSR, CORTEXM_DFSR_RESETALL);
/* size the break/watchpoint units */
priv->hw_breakpoint_max = CORTEXM_MAX_BREAKPOINTS;
r = target_mem_read32(target, CORTEXM_FPB_CTRL);
r = target_mem_read32(t, CORTEXM_FPB_CTRL);
if (((r >> 4) & 0xf) < priv->hw_breakpoint_max) /* only look at NUM_COMP1 */
priv->hw_breakpoint_max = (r >> 4) & 0xf;
priv->hw_watchpoint_max = CORTEXM_MAX_WATCHPOINTS;
r = target_mem_read32(target, CORTEXM_DWT_CTRL);
r = target_mem_read32(t, CORTEXM_DWT_CTRL);
if ((r >> 28) > priv->hw_watchpoint_max)
priv->hw_watchpoint_max = r >> 28;
/* Clear any stale breakpoints */
for(i = 0; i < priv->hw_breakpoint_max; i++) {
target_mem_write32(target, CORTEXM_FPB_COMP(i), 0);
target_mem_write32(t, CORTEXM_FPB_COMP(i), 0);
priv->hw_breakpoint[i] = 0;
}
/* Clear any stale watchpoints */
for(i = 0; i < priv->hw_watchpoint_max; i++) {
target_mem_write32(target, CORTEXM_DWT_FUNC(i), 0);
target_mem_write32(t, CORTEXM_DWT_FUNC(i), 0);
priv->hw_watchpoint[i].type = 0;
}
/* Flash Patch Control Register: set ENABLE */
target_mem_write32(target, CORTEXM_FPB_CTRL,
target_mem_write32(t, CORTEXM_FPB_CTRL,
CORTEXM_FPB_CTRL_KEY | CORTEXM_FPB_CTRL_ENABLE);
target->set_hw_bp = cortexm_set_hw_bp;
target->clear_hw_bp = cortexm_clear_hw_bp;
t->set_hw_bp = cortexm_set_hw_bp;
t->clear_hw_bp = cortexm_clear_hw_bp;
/* Data Watchpoint and Trace */
target->set_hw_wp = cortexm_set_hw_wp;
target->clear_hw_wp = cortexm_clear_hw_wp;
target->check_hw_wp = cortexm_check_hw_wp;
t->set_hw_wp = cortexm_set_hw_wp;
t->clear_hw_wp = cortexm_clear_hw_wp;
t->check_hw_wp = cortexm_check_hw_wp;
if(connect_assert_srst)
jtagtap_srst(false);
@ -333,28 +332,27 @@ bool cortexm_attach(struct target_s *target)
return true;
}
void cortexm_detach(struct target_s *target)
void cortexm_detach(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
ADIv5_AP_t *ap = adiv5_target_ap(t);
struct cortexm_priv *priv = ap->priv;
unsigned i;
/* Clear any stale breakpoints */
for(i = 0; i < priv->hw_breakpoint_max; i++)
target_mem_write32(target, CORTEXM_FPB_COMP(i), 0);
target_mem_write32(t, CORTEXM_FPB_COMP(i), 0);
/* Clear any stale watchpoints */
for(i = 0; i < priv->hw_watchpoint_max; i++)
target_mem_write32(target, CORTEXM_DWT_FUNC(i), 0);
target_mem_write32(t, CORTEXM_DWT_FUNC(i), 0);
/* Disable debug */
target_mem_write32(target, CORTEXM_DHCSR, CORTEXM_DHCSR_DBGKEY);
target_mem_write32(t, CORTEXM_DHCSR, CORTEXM_DHCSR_DBGKEY);
}
static int
cortexm_regs_read(struct target_s *target, void *data)
static int cortexm_regs_read(target *t, void *data)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
ADIv5_AP_t *ap = adiv5_target_ap(t);
uint32_t *regs = data;
unsigned i;
@ -375,7 +373,7 @@ cortexm_regs_read(struct target_s *target, void *data)
regnum_cortex_m[i]);
*regs++ = adiv5_dp_read(ap->dp, ADIV5_AP_DB(2));
}
if (target->target_options & TOPT_FLAVOUR_V7MF)
if (t->target_options & TOPT_FLAVOUR_V7MF)
for(i = 0; i < sizeof(regnum_cortex_mf) / 4; i++) {
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE,
ADIV5_AP_DB(1),
@ -386,10 +384,9 @@ cortexm_regs_read(struct target_s *target, void *data)
return 0;
}
static int
cortexm_regs_write(struct target_s *target, const void *data)
static int cortexm_regs_write(target *t, const void *data)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
ADIv5_AP_t *ap = adiv5_target_ap(t);
const uint32_t *regs = data;
unsigned i;
@ -412,7 +409,7 @@ cortexm_regs_write(struct target_s *target, const void *data)
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DB(1),
0x10000 | regnum_cortex_m[i]);
}
if (target->target_options & TOPT_FLAVOUR_V7MF)
if (t->target_options & TOPT_FLAVOUR_V7MF)
for(i = 0; i < sizeof(regnum_cortex_mf) / 4; i++) {
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE,
ADIV5_AP_DB(2), *regs++);
@ -424,55 +421,51 @@ cortexm_regs_write(struct target_s *target, const void *data)
return 0;
}
static uint32_t
cortexm_pc_read(struct target_s *target)
static uint32_t cortexm_pc_read(target *t)
{
target_mem_write32(target, CORTEXM_DCRSR, 0x0F);
return target_mem_read32(target, CORTEXM_DCRDR);
target_mem_write32(t, CORTEXM_DCRSR, 0x0F);
return target_mem_read32(t, CORTEXM_DCRDR);
return 0;
}
static int
cortexm_pc_write(struct target_s *target, const uint32_t val)
static int cortexm_pc_write(target *t, const uint32_t val)
{
target_mem_write32(target, CORTEXM_DCRDR, val);
target_mem_write32(target, CORTEXM_DCRSR, CORTEXM_DCRSR_REGWnR | 0x0F);
target_mem_write32(t, CORTEXM_DCRDR, val);
target_mem_write32(t, CORTEXM_DCRSR, CORTEXM_DCRSR_REGWnR | 0x0F);
return 0;
}
/* The following three routines implement target halt/resume
* using the core debug registers in the NVIC. */
static void
cortexm_reset(struct target_s *target)
static void cortexm_reset(target *t)
{
jtagtap_srst(true);
jtagtap_srst(false);
/* Read DHCSR here to clear S_RESET_ST bit before reset */
target_mem_read32(target, CORTEXM_DHCSR);
target_mem_read32(t, CORTEXM_DHCSR);
/* Request system reset from NVIC: SRST doesn't work correctly */
/* This could be VECTRESET: 0x05FA0001 (reset only core)
* or SYSRESETREQ: 0x05FA0004 (system reset)
*/
target_mem_write32(target, CORTEXM_AIRCR,
target_mem_write32(t, CORTEXM_AIRCR,
CORTEXM_AIRCR_VECTKEY | CORTEXM_AIRCR_SYSRESETREQ);
/* Poll for release from reset */
while (target_mem_read32(target, CORTEXM_DHCSR) & CORTEXM_DHCSR_S_RESET_ST);
while (target_mem_read32(t, CORTEXM_DHCSR) & CORTEXM_DHCSR_S_RESET_ST);
/* Reset DFSR flags */
target_mem_write32(target, CORTEXM_DFSR, CORTEXM_DFSR_RESETALL);
target_mem_write32(t, CORTEXM_DFSR, CORTEXM_DFSR_RESETALL);
}
static void
cortexm_halt_request(struct target_s *target)
static void cortexm_halt_request(target *t)
{
volatile struct exception e;
TRY_CATCH (e, EXCEPTION_TIMEOUT) {
target_mem_write32(target, CORTEXM_DHCSR, CORTEXM_DHCSR_DBGKEY |
target_mem_write32(t, CORTEXM_DHCSR, CORTEXM_DHCSR_DBGKEY |
CORTEXM_DHCSR_C_HALT |
CORTEXM_DHCSR_C_DEBUGEN);
}
@ -481,10 +474,9 @@ cortexm_halt_request(struct target_s *target)
}
}
static int
cortexm_halt_wait(struct target_s *target)
static int cortexm_halt_wait(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
ADIv5_AP_t *ap = adiv5_target_ap(t);
struct cortexm_priv *priv = ap->priv;
uint32_t dhcsr = 0;
@ -492,7 +484,7 @@ cortexm_halt_wait(struct target_s *target)
TRY_CATCH (e, EXCEPTION_ALL) {
/* If this times out because the target is in WFI then
* the target is still running. */
dhcsr = target_mem_read32(target, CORTEXM_DHCSR);
dhcsr = target_mem_read32(t, CORTEXM_DHCSR);
}
switch (e.type) {
case EXCEPTION_ERROR:
@ -509,10 +501,10 @@ cortexm_halt_wait(struct target_s *target)
return 0;
/* We've halted. Let's find out why. */
uint32_t dfsr = target_mem_read32(target, CORTEXM_DFSR);
target_mem_write32(target, CORTEXM_DFSR, dfsr); /* write back to reset */
uint32_t dfsr = target_mem_read32(t, CORTEXM_DFSR);
target_mem_write32(t, CORTEXM_DFSR, dfsr); /* write back to reset */
if ((dfsr & CORTEXM_DFSR_VCATCH) && cortexm_fault_unwind(target))
if ((dfsr & CORTEXM_DFSR_VCATCH) && cortexm_fault_unwind(t))
return SIGSEGV;
/* Remember if we stopped on a breakpoint */
@ -520,13 +512,13 @@ cortexm_halt_wait(struct target_s *target)
if (priv->on_bkpt) {
/* If we've hit a programmed breakpoint, check for semihosting
* call. */
uint32_t pc = cortexm_pc_read(target);
uint32_t pc = cortexm_pc_read(t);
uint16_t bkpt_instr;
bkpt_instr = target_mem_read16(target, pc);
bkpt_instr = target_mem_read16(t, pc);
if (bkpt_instr == 0xBEAB) {
int n = cortexm_hostio_request(target);
int n = cortexm_hostio_request(t);
if (n > 0) {
target_halt_resume(target, priv->stepping);
target_halt_resume(t, priv->stepping);
return 0;
} else if (n < 0) {
return -1;
@ -544,9 +536,9 @@ cortexm_halt_wait(struct target_s *target)
}
void cortexm_halt_resume(struct target_s *target, bool step)
void cortexm_halt_resume(target *t, bool step)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
ADIv5_AP_t *ap = adiv5_target_ap(t);
struct cortexm_priv *priv = ap->priv;
uint32_t dhcsr = CORTEXM_DHCSR_DBGKEY | CORTEXM_DHCSR_C_DEBUGEN;
@ -555,42 +547,42 @@ void cortexm_halt_resume(struct target_s *target, bool step)
/* Disable interrupts while single stepping... */
if(step != priv->stepping) {
target_mem_write32(target, CORTEXM_DHCSR, dhcsr | CORTEXM_DHCSR_C_HALT);
target_mem_write32(t, CORTEXM_DHCSR, dhcsr | CORTEXM_DHCSR_C_HALT);
priv->stepping = step;
}
if (priv->on_bkpt) {
uint32_t pc = cortexm_pc_read(target);
if ((target_mem_read16(target, pc) & 0xFF00) == 0xBE00)
cortexm_pc_write(target, pc + 2);
uint32_t pc = cortexm_pc_read(t);
if ((target_mem_read16(t, pc) & 0xFF00) == 0xBE00)
cortexm_pc_write(t, pc + 2);
}
target_mem_write32(target, CORTEXM_DHCSR, dhcsr);
target_mem_write32(t, CORTEXM_DHCSR, dhcsr);
}
static int cortexm_fault_unwind(struct target_s *target)
static int cortexm_fault_unwind(target *t)
{
uint32_t hfsr = target_mem_read32(target, CORTEXM_HFSR);
uint32_t cfsr = target_mem_read32(target, CORTEXM_CFSR);
target_mem_write32(target, CORTEXM_HFSR, hfsr);/* write back to reset */
target_mem_write32(target, CORTEXM_CFSR, cfsr);/* write back to reset */
uint32_t hfsr = target_mem_read32(t, CORTEXM_HFSR);
uint32_t cfsr = target_mem_read32(t, CORTEXM_CFSR);
target_mem_write32(t, CORTEXM_HFSR, hfsr);/* write back to reset */
target_mem_write32(t, CORTEXM_CFSR, cfsr);/* write back to reset */
/* We check for FORCED in the HardFault Status Register or
* for a configurable fault to avoid catching core resets */
if((hfsr & CORTEXM_HFSR_FORCED) || cfsr) {
/* Unwind exception */
uint32_t regs[target->regs_size / 4];
uint32_t regs[t->regs_size / 4];
uint32_t stack[8];
uint32_t retcode, framesize;
/* Read registers for post-exception stack pointer */
target_regs_read(target, regs);
target_regs_read(t, regs);
/* save retcode currently in lr */
retcode = regs[REG_LR];
bool spsel = retcode & (1<<2);
bool fpca = !(retcode & (1<<4));
/* Read stack for pre-exception registers */
uint32_t sp = spsel ? regs[REG_PSP] : regs[REG_MSP];
target_mem_read(target, stack, sp, sizeof(stack));
if (target_check_error(target))
target_mem_read(t, stack, sp, sizeof(stack));
if (target_check_error(t))
return 0;
regs[REG_LR] = stack[5]; /* restore LR to pre-exception state */
regs[REG_PC] = stack[6]; /* restore PC to pre-exception state */
@ -616,22 +608,22 @@ static int cortexm_fault_unwind(struct target_s *target)
/* Reset exception state to allow resuming from restored
* state.
*/
target_mem_write32(target, CORTEXM_AIRCR,
target_mem_write32(t, CORTEXM_AIRCR,
CORTEXM_AIRCR_VECTKEY | CORTEXM_AIRCR_VECTCLRACTIVE);
/* Write pre-exception registers back to core */
target_regs_write(target, regs);
target_regs_write(t, regs);
return 1;
}
return 0;
}
int cortexm_run_stub(struct target_s *target, uint32_t loadaddr,
int cortexm_run_stub(target *t, uint32_t loadaddr,
const uint16_t *stub, uint32_t stublen,
uint32_t r0, uint32_t r1, uint32_t r2, uint32_t r3)
{
uint32_t regs[target->regs_size / 4];
uint32_t regs[t->regs_size / 4];
memset(regs, 0, sizeof(regs));
regs[0] = r0;
@ -642,19 +634,19 @@ int cortexm_run_stub(struct target_s *target, uint32_t loadaddr,
regs[16] = 0x1000000;
regs[19] = 0;
target_mem_write(target, loadaddr, stub, stublen);
cortexm_regs_write(target, regs);
target_mem_write(t, loadaddr, stub, stublen);
cortexm_regs_write(t, regs);
if (target_check_error(target))
if (target_check_error(t))
return -1;
/* Execute the stub */
cortexm_halt_resume(target, 0);
while (!cortexm_halt_wait(target))
cortexm_halt_resume(t, 0);
while (!cortexm_halt_wait(t))
;
uint32_t pc = cortexm_pc_read(target);
uint16_t bkpt_instr = target_mem_read16(target, pc);
uint32_t pc = cortexm_pc_read(t);
uint16_t bkpt_instr = target_mem_read16(t, pc);
if (bkpt_instr >> 8 != 0xbe)
return -2;
@ -664,10 +656,9 @@ int cortexm_run_stub(struct target_s *target, uint32_t loadaddr,
/* The following routines implement hardware breakpoints.
* The Flash Patch and Breakpoint (FPB) system is used. */
static int
cortexm_set_hw_bp(struct target_s *target, uint32_t addr)
static int cortexm_set_hw_bp(target *t, uint32_t addr)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
ADIv5_AP_t *ap = adiv5_target_ap(t);
struct cortexm_priv *priv = ap->priv;
uint32_t val = addr & 0x1FFFFFFC;
unsigned i;
@ -682,15 +673,14 @@ cortexm_set_hw_bp(struct target_s *target, uint32_t addr)
priv->hw_breakpoint[i] = addr | 1;
target_mem_write32(target, CORTEXM_FPB_COMP(i), val);
target_mem_write32(t, CORTEXM_FPB_COMP(i), val);
return 0;
}
static int
cortexm_clear_hw_bp(struct target_s *target, uint32_t addr)
static int cortexm_clear_hw_bp(target *t, uint32_t addr)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
ADIv5_AP_t *ap = adiv5_target_ap(t);
struct cortexm_priv *priv = ap->priv;
unsigned i;
@ -701,7 +691,7 @@ cortexm_clear_hw_bp(struct target_s *target, uint32_t addr)
priv->hw_breakpoint[i] = 0;
target_mem_write32(target, CORTEXM_FPB_COMP(i), 0);
target_mem_write32(t, CORTEXM_FPB_COMP(i), 0);
return 0;
}
@ -710,9 +700,9 @@ cortexm_clear_hw_bp(struct target_s *target, uint32_t addr)
* The Data Watch and Trace (DWT) system is used. */
static int
cortexm_set_hw_wp(struct target_s *target, uint8_t type, uint32_t addr, uint8_t len)
cortexm_set_hw_wp(target *t, uint8_t type, uint32_t addr, uint8_t len)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
ADIv5_AP_t *ap = adiv5_target_ap(t);
struct cortexm_priv *priv = ap->priv;
unsigned i;
@ -734,7 +724,7 @@ cortexm_set_hw_wp(struct target_s *target, uint8_t type, uint32_t addr, uint8_t
for(i = 0; i < priv->hw_watchpoint_max; i++)
if((priv->hw_watchpoint[i].type == 0) &&
((target_mem_read32(target, CORTEXM_DWT_FUNC(i)) & 0xF) == 0))
((target_mem_read32(t, CORTEXM_DWT_FUNC(i)) & 0xF) == 0))
break;
if(i == priv->hw_watchpoint_max) return -2;
@ -743,18 +733,18 @@ cortexm_set_hw_wp(struct target_s *target, uint8_t type, uint32_t addr, uint8_t
priv->hw_watchpoint[i].addr = addr;
priv->hw_watchpoint[i].size = len;
target_mem_write32(target, CORTEXM_DWT_COMP(i), addr);
target_mem_write32(target, CORTEXM_DWT_MASK(i), len);
target_mem_write32(target, CORTEXM_DWT_FUNC(i), type |
((target->target_options & TOPT_FLAVOUR_V6M) ? 0: CORTEXM_DWT_FUNC_DATAVSIZE_WORD));
target_mem_write32(t, CORTEXM_DWT_COMP(i), addr);
target_mem_write32(t, CORTEXM_DWT_MASK(i), len);
target_mem_write32(t, CORTEXM_DWT_FUNC(i), type |
((t->target_options & TOPT_FLAVOUR_V6M) ? 0: CORTEXM_DWT_FUNC_DATAVSIZE_WORD));
return 0;
}
static int
cortexm_clear_hw_wp(struct target_s *target, uint8_t type, uint32_t addr, uint8_t len)
cortexm_clear_hw_wp(target *t, uint8_t type, uint32_t addr, uint8_t len)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
ADIv5_AP_t *ap = adiv5_target_ap(t);
struct cortexm_priv *priv = ap->priv;
unsigned i;
@ -783,22 +773,21 @@ cortexm_clear_hw_wp(struct target_s *target, uint8_t type, uint32_t addr, uint8_
priv->hw_watchpoint[i].type = 0;
target_mem_write32(target, CORTEXM_DWT_FUNC(i), 0);
target_mem_write32(t, CORTEXM_DWT_FUNC(i), 0);
return 0;
}
static int
cortexm_check_hw_wp(struct target_s *target, uint32_t *addr)
static int cortexm_check_hw_wp(target *t, uint32_t *addr)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
ADIv5_AP_t *ap = adiv5_target_ap(t);
struct cortexm_priv *priv = ap->priv;
unsigned i;
for(i = 0; i < priv->hw_watchpoint_max; i++)
/* if SET and MATCHED then break */
if(priv->hw_watchpoint[i].type &&
(target_mem_read32(target, CORTEXM_DWT_FUNC(i)) &
(target_mem_read32(t, CORTEXM_DWT_FUNC(i)) &
CORTEXM_DWT_FUNC_MATCHED))
break;

64
src/include/target.h

@ -116,39 +116,39 @@ struct target_s {
target_destroy_callback destroy_callback;
/* Attach/Detach funcitons */
bool (*attach)(struct target_s *target);
void (*detach)(struct target_s *target);
int (*check_error)(struct target_s *target);
bool (*attach)(target *t);
void (*detach)(target *t);
int (*check_error)(target *t);
/* Memory access functions */
void (*mem_read)(struct target_s *target, void *dest, uint32_t src,
void (*mem_read)(target *t, void *dest, uint32_t src,
size_t len);
void (*mem_write)(struct target_s *target, uint32_t dest,
void (*mem_write)(target *t, uint32_t dest,
const void *src, size_t len);
/* Register access functions */
int regs_size;
const char *tdesc;
int (*regs_read)(struct target_s *target, void *data);
int (*regs_write)(struct target_s *target, const void *data);
int (*regs_read)(target *t, void *data);
int (*regs_write)(target *t, const void *data);
uint32_t (*pc_read)(struct target_s *target);
int (*pc_write)(struct target_s *target, const uint32_t val);
uint32_t (*pc_read)(target *t);
int (*pc_write)(target *t, const uint32_t val);
/* Halt/resume functions */
void (*reset)(struct target_s *target);
void (*halt_request)(struct target_s *target);
int (*halt_wait)(struct target_s *target);
void (*halt_resume)(struct target_s *target, bool step);
void (*reset)(target *t);
void (*halt_request)(target *t);
int (*halt_wait)(target *t);
void (*halt_resume)(target *t, bool step);
/* Break-/watchpoint functions */
int (*set_hw_bp)(struct target_s *target, uint32_t addr);
int (*clear_hw_bp)(struct target_s *target, uint32_t addr);
int (*set_hw_bp)(target *t, uint32_t addr);
int (*clear_hw_bp)(target *t, uint32_t addr);
int (*set_hw_wp)(struct target_s *target, uint8_t type, uint32_t addr, uint8_t len);
int (*clear_hw_wp)(struct target_s *target, uint8_t type, uint32_t addr, uint8_t len);
int (*set_hw_wp)(target *t, uint8_t type, uint32_t addr, uint8_t len);
int (*clear_hw_wp)(target *t, uint8_t type, uint32_t addr, uint8_t len);
int (*check_hw_wp)(struct target_s *target, uint32_t *addr);
int (*check_hw_wp)(target *t, uint32_t *addr);
/* target-defined options */
unsigned target_options;
@ -156,8 +156,8 @@ struct target_s {
/* Flash memory access functions */
const char *xml_mem_map;
int (*flash_erase)(struct target_s *target, uint32_t addr, size_t len);
int (*flash_write)(struct target_s *target, uint32_t dest,
int (*flash_erase)(target *t, uint32_t addr, size_t len);
int (*flash_write)(target *t, uint32_t dest,
const uint8_t *src, size_t len);
/* Host I/O support */
@ -226,18 +226,18 @@ static inline void target_mem_write8(target *t, uint32_t addr, uint8_t value)
/* Probe for various targets.
* Actual functions implemented in their respective drivers.
*/
bool cortexm_probe(struct target_s *target);
bool stm32f1_probe(struct target_s *target);
bool stm32f4_probe(struct target_s *target);
bool stm32l0_probe(struct target_s *target);
bool stm32l1_probe(struct target_s *target);
bool lmi_probe(struct target_s *target);
bool lpc11xx_probe(struct target_s *target);
bool lpc43xx_probe(struct target_s *target);
bool sam3x_probe(struct target_s *target);
bool nrf51_probe(struct target_s *target);
bool samd_probe(struct target_s *target);
bool kinetis_probe(struct target_s *target);
bool cortexm_probe(target *t);
bool stm32f1_probe(target *t);
bool stm32f4_probe(target *t);
bool stm32l0_probe(target *t);
bool stm32l1_probe(target *t);
bool lmi_probe(target *t);
bool lpc11xx_probe(target *t);
bool lpc43xx_probe(target *t);
bool sam3x_probe(target *t);
bool nrf51_probe(target *t);
bool samd_probe(target *t);
bool kinetis_probe(target *t);
#endif

Loading…
Cancel
Save