/* * This file is part of the libopencm3 project. * * Copyright (C) 2009 Uwe Hermann * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #if defined(STM32F1) # include #elif defined(STM32F2) # include #elif defined(STM32F4) # include #else # error "stm32 family not defined." #endif /* * SPI and I2S code. * * Examples: * spi_init_master(SPI1, 1000000, SPI_CR1_CPOL_CLK_TO_0_WHEN_IDLE, * SPI_CR1_CPHA_CLK_TRANSITION_1, SPI_CR1_DFF_8BIT, * SPI_CR1_LSBFIRST); * spi_write(SPI1, 0x55); // 8-bit write * spi_write(SPI1, 0xaa88); // 16-bit write * reg8 = spi_read(SPI1); // 8-bit read * reg16 = spi_read(SPI1); // 16-bit read */ void spi_reset(u32 spi_peripheral) { switch (spi_peripheral) { case SPI1: rcc_peripheral_reset(&RCC_APB2RSTR, RCC_APB2RSTR_SPI1RST); rcc_peripheral_clear_reset(&RCC_APB2RSTR, RCC_APB2RSTR_SPI1RST); break; case SPI2: rcc_peripheral_reset(&RCC_APB1RSTR, RCC_APB1RSTR_SPI2RST); rcc_peripheral_clear_reset(&RCC_APB1RSTR, RCC_APB1RSTR_SPI2RST); break; case SPI3: rcc_peripheral_reset(&RCC_APB1RSTR, RCC_APB1RSTR_SPI3RST); rcc_peripheral_clear_reset(&RCC_APB1RSTR, RCC_APB1RSTR_SPI3RST); break; } } int spi_init_master(u32 spi, u32 br, u32 cpol, u32 cpha, u32 dff, u32 lsbfirst) { u32 reg32 = 0; reg32 |= SPI_CR1_MSTR; /* Configure SPI as master. */ reg32 |= br; /* Set baud rate bits. */ reg32 |= cpol; /* Set CPOL value. */ reg32 |= cpha; /* Set CPHA value. */ reg32 |= dff; /* Set data format (8 or 16 bits). */ reg32 |= lsbfirst; /* Set frame format (LSB- or MSB-first). */ /* TODO: NSS pin handling. */ SPI_CR1(spi) = reg32; return 0; /* TODO */ } /* TODO: Error handling? */ void spi_enable(u32 spi) { SPI_CR1(spi) |= SPI_CR1_SPE; /* Enable SPI. */ } /* TODO: Error handling? */ void spi_disable(u32 spi) { u32 reg32; /* TODO: Follow procedure from section 23.3.8 in the TRM. */ reg32 = SPI_CR1(spi); reg32 &= ~(SPI_CR1_SPE); /* Disable SPI. */ SPI_CR1(spi) = reg32; } void spi_write(u32 spi, u16 data) { /* Write data (8 or 16 bits, depending on DFF) into DR. */ SPI_DR(spi) = data; } void spi_send(u32 spi, u16 data) { /* Wait for transfer finished. */ while (!(SPI_SR(spi) & SPI_SR_TXE)) ; /* Write data (8 or 16 bits, depending on DFF) into DR. */ SPI_DR(spi) = data; } u16 spi_read(u32 spi) { /* Wait for transfer finished. */ while (!(SPI_SR(spi) & SPI_SR_RXNE)) ; /* Read the data (8 or 16 bits, depending on DFF bit) from DR. */ return SPI_DR(spi); } u16 spi_xfer(u32 spi, u16 data) { spi_write(spi, data); /* Wait for transfer finished. */ while (!(SPI_SR(spi) & SPI_SR_RXNE)) ; /* Read the data (8 or 16 bits, depending on DFF bit) from DR. */ return SPI_DR(spi); } void spi_set_bidirectional_mode(u32 spi) { SPI_CR1(spi) |= SPI_CR1_BIDIMODE; } void spi_set_unidirectional_mode(u32 spi) { SPI_CR1(spi) &= ~SPI_CR1_BIDIMODE; } void spi_set_bidirectional_receive_only_mode(u32 spi) { SPI_CR1(spi) |= SPI_CR1_BIDIMODE; SPI_CR1(spi) &= ~SPI_CR1_BIDIOE; } void spi_set_bidirectional_transmit_only_mode(u32 spi) { SPI_CR1(spi) |= SPI_CR1_BIDIMODE; SPI_CR1(spi) |= SPI_CR1_BIDIOE; } void spi_enable_crc(u32 spi) { SPI_CR1(spi) |= SPI_CR1_CRCEN; } void spi_disable_crc(u32 spi) { SPI_CR1(spi) &= ~SPI_CR1_CRCEN; } void spi_set_next_tx_from_buffer(u32 spi) { SPI_CR1(spi) &= ~SPI_CR1_CRCNEXT; } void spi_set_next_tx_from_crc(u32 spi) { SPI_CR1(spi) |= SPI_CR1_CRCNEXT; } void spi_set_dff_8bit(u32 spi) { SPI_CR1(spi) &= ~SPI_CR1_DFF; } void spi_set_dff_16bit(u32 spi) { SPI_CR1(spi) |= SPI_CR1_DFF; } void spi_set_full_duplex_mode(u32 spi) { SPI_CR1(spi) &= ~SPI_CR1_RXONLY; } void spi_set_receive_only_mode(u32 spi) { SPI_CR1(spi) |= SPI_CR1_RXONLY; } void spi_disable_software_slave_management(u32 spi) { SPI_CR1(spi) &= ~SPI_CR1_SSM; } void spi_enable_software_slave_management(u32 spi) { SPI_CR1(spi) |= SPI_CR1_SSM; } void spi_set_nss_high(u32 spi) { SPI_CR1(spi) |= SPI_CR1_SSI; } void spi_set_nss_low(u32 spi) { SPI_CR1(spi) &= ~SPI_CR1_SSI; } void spi_send_lsb_first(u32 spi) { SPI_CR1(spi) |= SPI_CR1_LSBFIRST; } void spi_send_msb_first(u32 spi) { SPI_CR1(spi) &= ~SPI_CR1_LSBFIRST; } void spi_set_baudrate_prescaler(u32 spi, u8 baudrate) { u32 reg32; if (baudrate > 7) return; reg32 = (SPI_CR1(spi) & 0xffc7); /* Clear bits [5:3]. */ reg32 |= (baudrate << 3); SPI_CR1(spi) = reg32; } void spi_set_master_mode(u32 spi) { SPI_CR1(spi) |= SPI_CR1_MSTR; } void spi_set_slave_mode(u32 spi) { SPI_CR1(spi) &= ~SPI_CR1_MSTR; } void spi_set_clock_polarity_1(u32 spi) { SPI_CR1(spi) |= SPI_CR1_CPOL; } void spi_set_clock_polarity_0(u32 spi) { SPI_CR1(spi) &= ~SPI_CR1_CPOL; } void spi_set_clock_phase_1(u32 spi) { SPI_CR1(spi) |= SPI_CR1_CPHA; } void spi_set_clock_phase_0(u32 spi) { SPI_CR1(spi) &= ~SPI_CR1_CPHA; } void spi_enable_tx_buffer_empty_interrupt(u32 spi) { SPI_CR2(spi) |= SPI_CR2_TXEIE; } void spi_disable_tx_buffer_empty_interrupt(u32 spi) { SPI_CR2(spi) &= ~SPI_CR2_TXEIE; } void spi_enable_rx_buffer_not_empty_interrupt(u32 spi) { SPI_CR2(spi) |= SPI_CR2_RXNEIE; } void spi_disable_rx_buffer_not_empty_interrupt(u32 spi) { SPI_CR2(spi) &= ~SPI_CR2_RXNEIE; } void spi_enable_error_interrupt(u32 spi) { SPI_CR2(spi) |= SPI_CR2_ERRIE; } void spi_disable_error_interrupt(u32 spi) { SPI_CR2(spi) &= ~SPI_CR2_ERRIE; } void spi_enable_ss_output(u32 spi) { SPI_CR2(spi) |= SPI_CR2_SSOE; } void spi_disable_ss_output(u32 spi) { SPI_CR2(spi) &= ~SPI_CR2_SSOE; } void spi_enable_tx_dma(u32 spi) { SPI_CR2(spi) |= SPI_CR2_TXDMAEN; } void spi_disable_tx_dma(u32 spi) { SPI_CR2(spi) &= ~SPI_CR2_TXDMAEN; } void spi_enable_rx_dma(u32 spi) { SPI_CR2(spi) |= SPI_CR2_RXDMAEN; } void spi_disable_rx_dma(u32 spi) { SPI_CR2(spi) &= ~SPI_CR2_RXDMAEN; }