% mag_to_phase.m % % David Rowe Sep 2015 % % Slighly modified version of http://www.dsprelated.com/showcode/20.php % % Given a magnitude spectrum in dB, returns a minimum-phase phase % spectra. Both must be sampled at a Nfft. My understanding of this % is rather dim, but a working example is good place to start! function [phase s] = mag_to_phase(Gdbfk, Nfft = 512, verbose_en = 0) Ns = length(Gdbfk); if Ns~=Nfft/2+1, error("confusion"); end Sdb = [Gdbfk,Gdbfk(Ns-1:-1:2)]; % install negative-frequencies S = 10 .^ (Sdb/20); % convert to linear magnitude s = ifft(S); % desired impulse response s = real(s); % any imaginary part is quantization noise tlerr = 100*norm(s(round(0.9*Ns:1.1*Ns)))/norm(s); if verbose_en disp(sprintf([' Time-limitedness check: Outer 20%% of impulse ' ... 'response is %0.2f %% of total rms'],tlerr)); end % = 0.02 percent if verbose_en if tlerr>1.0 % arbitrarily set 1% as the upper limit allowed disp(' Increase Nfft and/or smooth Sdb\n'); end end c = ifft(Sdb); % compute real cepstrum from log magnitude spectrum % Check aliasing of cepstrum (in theory there is always some): caliaserr = 100*norm(c(round(Ns*0.9:Ns*1.1)))/norm(c); if verbose_en disp(sprintf([' Cepstral time-aliasing check: Outer 20%% of ' ... 'cepstrum holds %0.2f %% of total rms\n'],caliaserr)); end if verbose_en if caliaserr>1.0 % arbitrary limit disp(' Increase Nfft and/or smooth Sdb to shorten cepstrum\n'); end end % Fold cepstrum to reflect non-min-phase zeros inside unit circle: cf = [c(1), c(2:Ns-1)+c(Nfft:-1:Ns+1), c(Ns), zeros(1,Nfft-Ns)]; Cf = fft(cf); % = dB_magnitude + j * minimum_phase % The maths says we are meant to be using log(x), not 20*log10(x), % so we need to scale the phase to account for this: % log(x) = 20*log10(x)/scale; scale = (20/log(10)); phase = imag(Cf)/scale; endfunction