You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

484 lines
12 KiB

% fm.m
% David Rowe Dec 2014
%
% Analog FM Octave simulation functions.
1;
graphics_toolkit ("gnuplot");
function fm_states = analog_fm_init(fm_states)
% FM modulator constants
Fs = fm_states.Fs; FsOn2 = Fs/2;
fm_max = fm_states.fm_max; % max modulation freq
fd = fm_states.fd; % (max) deviation
fm_states.m = fd/fm_max; % modulation index
fm_states.Bfm = Bfm = 2*(fd+fm_max); % Carson's rule for FM signal bandwidth
fm_states.tc = tc = 50E-6;
fm_states.prede = [1 -(1 - 1/(tc*Fs))]; % pre/de emp filter coeffs
fm_states.ph_dont_limit = 0; % Limit rx delta-phase
% Select length of filter to be an integer number of symbols to
% assist with "fine" timing offset estimation. Set Ts to 1 for
% analog modulation.
Ts = fm_states.Ts;
desired_ncoeffs = 200;
ncoeffs = floor(desired_ncoeffs/Ts+1)*Ts;
% "coarse" timing offset is half filter length, we have two filters.
% This is the delay the two filters introduce, so we need to adjust
% for this when comparing tx to trx bits for BER calcs.
fm_states.nsym_delay = ncoeffs/Ts;
% input filter gets rid of excess noise before demodulator, as too much
% noise causes atan2() to jump around, e.g. -pi to pi. However this
% filter can cause harmonic distortion at very high SNRs, as it knocks out
% some of the FM signal spectra. This filter isn't really required for high
% SNRs > 20dB.
fc = (Bfm/2)/(FsOn2);
fm_states.bin = firls(ncoeffs,[0 fc*(1-0.05) fc*(1+0.05) 1],[1 1 0.01 0.01]);
% demoduator output filter to limit us to fm_max (e.g. 3kHz)
fc = fm_max/(FsOn2);
fm_states.bout = firls(ncoeffs,[0 0.95*fc 1.05*fc 1], [1 1 0.01 0.01]);
endfunction
function fm_fir_coeff_file(fm_states, filename)
global gt_alpha5_root;
global Nfilter;
f=fopen(filename,"wt");
fprintf(f,"/* Generated by fm_fir_coeff_file() Octave function in fm.m */\n\n");
fprintf(f,"const float bin[]={\n");
for m=1:length(fm_states.bin)-1
fprintf(f," %g,\n", fm_states.bin(m));
endfor
fprintf(f," %g\n};\n\n", fm_states.bin(length(fm_states.bin)));
fprintf(f,"const float bout[]={\n");
for m=1:length(fm_states.bout)-1
fprintf(f," %g,\n", fm_states.bout(m));
endfor
fprintf(f," %g\n};\n", fm_states.bout(length(fm_states.bout)));
fclose(f);
endfunction
function tx = analog_fm_mod(fm_states, mod)
Fs = fm_states.Fs;
fc = fm_states.fc; wc = 2*pi*fc/Fs;
fd = fm_states.fd; wd = 2*pi*fd/Fs;
nsam = length(mod);
if fm_states.pre_emp
mod = filter(fm_states.prede,1,mod);
mod = mod/max(mod); % AGC to set deviation
end
tx_phase = 0;
tx = zeros(1,nsam);
for i=0:nsam-1
w = wc + wd*mod(i+1);
tx_phase = tx_phase + w;
tx_phase = tx_phase - floor(tx_phase/(2*pi))*2*pi;
tx(i+1) = exp(j*tx_phase);
end
endfunction
function [rx_out rx_bb] = analog_fm_demod(fm_states, rx)
Fs = fm_states.Fs;
fc = fm_states.fc; wc = 2*pi*fc/Fs;
fd = fm_states.fd; wd = 2*pi*fd/Fs;
nsam = length(rx);
t = 0:(nsam-1);
rx_bb = rx .* exp(-j*wc*t); % down to complex baseband
rx_bb = filter(fm_states.bin,1,rx_bb);
% differentiate first, in rect domain, then find angle, this puts
% signal on the positive side of the real axis
rx_bb_diff = [ 1 rx_bb(2:nsam) .* conj(rx_bb(1:nsam-1))];
rx_out = atan2(imag(rx_bb_diff),real(rx_bb_diff));
% limit maximum phase jumps, to remove static type noise at low SNRs
if !fm_states.ph_dont_limit
rx_out(find(rx_out > wd)) = wd;
rx_out(find(rx_out < -wd)) = -wd;
end
rx_out *= (1/wd);
if fm_states.output_filter
rx_out = filter(fm_states.bout,1,rx_out);
end
if fm_states.de_emp
rx_out = filter(1,fm_states.prede,rx_out);
end
endfunction
function sim_out = analog_fm_test(sim_in)
nsam = sim_in.nsam;
CNdB = sim_in.CNdB;
verbose = sim_in.verbose;
Fs = fm_states.Fs = 96000;
fm_max = fm_states.fm_max = 3E3;
fd = fm_states.fd = 5E3;
fm_states.fc = 24E3;
fm_states.pre_emp = pre_emp = sim_in.pre_emp;
fm_states.de_emp = de_emp = sim_in.de_emp;
fm_states.Ts = 1;
fm_states.output_filter = 1;
fm_states = analog_fm_init(fm_states);
sim_out.Bfm = fm_states.Bfm;
Bfm = fm_states.Bfm;
m = fm_states.m; tc = fm_states.tc;
t = 0:(nsam-1);
fm = 1000; wm = 2*pi*fm/fm_states.Fs;
% start simulation
for ne = 1:length(CNdB)
% work out the variance we need to obtain our C/N in the bandwidth
% of the FM demod. The gaussian generator randn() generates noise
% with a bandwidth of Fs
aCNdB = CNdB(ne);
CN = 10^(aCNdB/10);
variance = Fs/(CN*Bfm);
% FM Modulator -------------------------------
mod = sin(wm*t);
tx = analog_fm_mod(fm_states, mod);
% Channel ---------------------------------
noise = sqrt(variance/2)*(randn(1,nsam) + j*randn(1,nsam));
rx = tx + noise;
% FM Demodulator
[rx_out rx_bb] = analog_fm_demod(fm_states, rx);
% notch out test tone
w = 2*pi*fm/Fs; beta = 0.99;
rx_notch = filter([1 -2*cos(w) 1],[1 -2*beta*cos(w) beta*beta], rx_out);
% measure power with and without test tone to determine S+N and N
settle = 1000; % filter settling time, to avoid transients
nsettle = nsam - settle;
sinad = (rx_out(settle:nsam) * rx_out(settle:nsam)')/nsettle;
nad = (rx_notch(settle:nsam) * rx_notch(settle:nsam)')/nsettle;
snr = (sinad-nad)/nad;
sim_out.snrdB(ne) = 10*log10(snr);
% Theory from FMTutorial.pdf, Lawrence Der, Silicon labs paper
snr_theory_dB = aCNdB + 10*log10(3*m*m*(m+1));
fx = 1/(2*pi*tc); W = fm_max;
I = (W/fx)^3/(3*((W/fx) - atan(W/fx)));
I_dB = 10*log10(I);
sim_out.snr_theorydB(ne) = snr_theory_dB;
sim_out.snr_theory_pre_dedB(ne) = snr_theory_dB + I_dB;
if verbose > 1
printf("modn index: %2.1f Bfm: %.0f Hz\n", m, Bfm);
end
if verbose > 0
printf("C/N: %4.1f SNR: %4.1f dB THEORY: %4.1f dB or with pre/de: %4.1f dB\n",
aCNdB, 10*log10(snr), snr_theory_dB, snr_theory_dB+I_dB);
end
if verbose > 1
figure(1)
subplot(211)
plot(20*log10(abs(fft(rx))))
title('FM Modulator Output Spectrum');
axis([1 length(tx) 0 100]);
subplot(212)
Rx_bb = 20*log10(abs(fft(rx_bb)));
plot(Rx_bb)
axis([1 length(tx) 0 100]);
title('FM Demodulator (baseband) Input Spectrum');
figure(2)
subplot(211)
plot(rx_out(settle:nsam))
axis([1 4000 -1 1])
subplot(212)
Rx = 20*log10(abs(fft(rx_out(settle:nsam))));
plot(Rx(1:10000))
axis([1 10000 0 100]);
end
end
endfunction
function run_fm_curves
sim_in.nsam = 96000;
sim_in.verbose = 1;
sim_in.pre_emp = 0;
sim_in.de_emp = 0;
sim_in.CNdB = -4:2:20;
sim_out = analog_fm_test(sim_in);
figure(1)
clf
plot(sim_in.CNdB, sim_out.snrdB,"r;FM Simulated;");
hold on;
plot(sim_in.CNdB, sim_out.snr_theorydB,"g;FM Theory;");
plot(sim_in.CNdB, sim_in.CNdB,"b; SSB Theory;");
hold off;
grid("minor");
xlabel("FM demod input C/N (dB)");
ylabel("FM demod output S/N (dB)");
legend("boxoff");
% C/No curves
Bfm_dB = 10*log10(sim_out.Bfm);
Bssb_dB = 10*log10(3000);
figure(2)
clf
plot(sim_in.CNdB + Bfm_dB, sim_out.snrdB,"r;FM Simulated;");
hold on;
plot(sim_in.CNdB + Bfm_dB, sim_out.snr_theorydB,"g;FM Theory;");
plot(sim_in.CNdB + Bssb_dB, sim_in.CNdB,"b; SSB Theory;");
hold off;
grid("minor");
xlabel("FM demod input C/No (dB)");
ylabel("FM demod output S/N (dB)");
legend("boxoff");
endfunction
function run_fm_single
sim_in.nsam = 96000;
sim_in.verbose = 2;
sim_in.pre_emp = 0;
sim_in.de_emp = 0;
sim_in.CNdB = 20;
sim_out = analog_fm_test(sim_in);
end
function fm_mod_file(file_name_out, file_name_in, CNdB)
fm_states.Fs = 48000;
fm_states.fm_max = 3E3;
fm_states.fd = 5E3;
fm_states.fc = fm_states.Fs/4;
fm_states.pre_emp = 0;
fm_states.de_emp = 0;
fm_states.Ts = 1;
fm_states.output_filter = 1;
fm_states = analog_fm_init(fm_states);
if nargin == 1
nsam = fm_states.Fs * 10;
t = 0:(nsam-1);
fm = 1000; wm = 2*pi*fm/fm_states.Fs;
mod = sin(wm*t);
else
fin = fopen(file_name_in,"rb");
mod = fread(fin,"short")';
mod /= 32767;
fclose(fin);
end
tx = analog_fm_mod(fm_states, mod);
if (nargin == 3)
% Optionally add some noise
CN = 10^(CNdB/10);
variance = fm_states.Fs/(CN*fm_states.Bfm);
tx += sqrt(variance)*randn(1,length(tx));
end
tx_out = tx*16384;
fout = fopen(file_name_out,"wb");
fwrite(fout, tx_out, "short");
fclose(fout);
endfunction
function fm_demod_file(file_name_out, file_name_in)
fin = fopen(file_name_in,"rb");
rx = fread(fin,"short")';
rx = rx(100000:length(rx)); % strip of wave header
fclose(fin);
Fs = fm_states.Fs = 48000;
fm_max = fm_states.fm_max = 3E3;
fd = fm_states.fd = 5E3;
fm_states.fc = 12E3;
fm_states.pre_emp = 0;
fm_states.de_emp = 1;
fm_states.Ts = 1;
fm_states.output_filter = 1;
fm_states = analog_fm_init(fm_states);
[rx_out rx_bb] = analog_fm_demod(fm_states, rx);
rx_out *= 20000;
fout = fopen(file_name_out,"wb");
fwrite(fout, rx_out, "short");
fclose(fout);
figure(1)
subplot(211)
plot(rx)
subplot(212)
plot(20*log10(abs(fft(rx))))
title('FM Dmodulator Intput Spectrum');
figure(2)
subplot(211)
Rx_bb = 20*log10(abs(fft(rx_bb)));
plot(Rx_bb)
title('FM Demodulator (baseband) Input Spectrum');
subplot(212)
plot(20*log10(abs(fft(rx_out))))
title('FM Dmodulator Output Spectrum');
figure(3)
plot(rx_out)
title('FM Dmodulator Output');
% estimate SNR, C/No etc
npower_window = 1024;
rx_power = conv(rx.^2,ones(1,npower_window))/(npower_window);
rx_power_dB = 10*log10(rx_power);
figure;
subplot(211)
plot(rx);
subplot(212)
plot(rx_power_dB);
axis([1 length(rx_power) max(rx_power_dB)-9 max(rx_power_dB)+1])
grid("minor")
% estimate FM demod output SNR if a 1000 Hz tone is present
w = 2*pi*1000/Fs; beta = 0.99;
rx_notch = filter([1 -2*cos(w) 1],[1 -2*beta*cos(w) beta*beta], rx_out);
rx_out_power = conv(rx_out.^2,ones(1,npower_window))/(npower_window);
rx_out_power_dB = 10*log10(rx_out_power);
rx_notch_power = conv(rx_notch.^2,ones(1,npower_window))/(npower_window);
rx_notch_power_dB = 10*log10(rx_notch_power);
figure;
plot(rx_out_power_dB,'r;FM demod output power;');
hold on;
plot(rx_notch_power_dB,'b;1000 Hz notch filter output power;');
plot(rx_out_power_dB-rx_notch_power_dB,'g;1000 Hz tone SNR;');
hold off;
legend("boxoff");
ylabel('dB');
xlabel('Time (samples)');
grid("minor")
endfunction
% generate filter coeffs for C implementation of FM demod
function make_coeff_file
fm_states.Fs = 44400;
fm_states.fm_max = 3E3;
fm_states.fd = 5E3;
fm_states.fc = fm_states.Fs/4;
fm_states.pre_emp = 0;
fm_states.de_emp = 0;
fm_states.Ts = 1;
fm_states.output_filter = 1;
fm_states = analog_fm_init(fm_states);
fm_fir_coeff_file(fm_states, "fm_fir_coeff.h")
endfunction
function test_fm_modulator
fm_states.Fs = 48000;
fm_states.fm_max = 3E3;
fm_states.fd = 5E3;
%fm_states.fc = fm_states.Fs/4;
fm_states.fc = 0;
fm_states.pre_emp = 0;
fm_states.de_emp = 0;
fm_states.Ts = 1;
fm_states.output_filter = 1;
fm_states = analog_fm_init(fm_states);
test_t = [1:(fm_states.Fs*10)];
test_freq1 = 2*pi*3000/fm_states.Fs;
test_freq2 = 2*pi*1000/fm_states.Fs;
test_sig = .5*sin(test_t*test_freq1) + .5*sin(test_t*test_freq2);
%test_sig = zeros(1,length(test_t));
%test_sig = ones(1,length(test_t));
ftsig = fopen("fm_test_sig.raw","wb");
fwrite(ftsig,test_sig*16384,"short");
fclose(ftsig);
system("../fm_test fm_test_sig.raw fm_test_out.raw");
ftmod = fopen("fm_test_out.raw","r");
test_mod_p = rot90(fread(ftmod,"short"))/16384;
test_mod_r = test_mod_p(1:2:length(test_mod_p));
test_mod_i = test_mod_p(2:2:length(test_mod_p));
test_mod = test_mod_r .+ i*test_mod_i;
fclose(ftmod);
comp_mod = analog_fm_mod(fm_states,test_sig);
figure(1)
comp_mod_real = real(comp_mod);
size(comp_mod_real)
size(test_mod)
mod_diff = zeros(1,length(test_mod));
mod_diff = test_mod .- comp_mod;
plot(test_t,real(test_mod .- comp_mod),test_t,imag(test_mod .- comp_mod));
endfunction
more off;
%run_fm_curves
%fm_demod_file("ssb_fm_out.raw","~/Desktop/ssb_fm.wav")
%fm_demod_file("ssb25_fm_de.raw", "~/Desktop/ssb25db.wav")
%run_fm_single
%make_coeff_file
%fm_mod_file("fm_1000.raw");
%test_fm_modulator