You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

478 lines
14 KiB

% fsk_lib.m
% David Rowe Oct 2015 - present
%
% mFSK modem, started out life as RTTY demodulator for Project
% Horus High Altitude Ballon (HAB) telemetry, also used for:
%
% FreeDV 2400A: 4FSK UHF/UHF digital voice
% Wenet.......: 100 kbit/s HAB High Def image telemetry
%
% Handles frequency offsets, performance right on ideal, C implementation
% in codec2-dev/src
% NOTE: DR is in the process of refactoring this Octave code, pls email me
% if something is broken
1;
function states = fsk_init(Fs, Rs, M=2)
states.M = M;
states.bitspersymbol = log2(M);
states.Fs = Fs;
states.Rs = Rs;
states.nsym = 50; % need enough symbols for good timing and freq offset est
Ts = states.Ts = Fs/Rs; % number of samples per symbol
assert(Ts == floor(Ts), "Fs/Rs must be an integer");
N = states.N = Ts*states.nsym; % processing buffer size, nice big window for timing est
states.Ndft = min(1024, 2.^ceil(log2(N))); % find nearest power of 2 for efficient FFT
states.nbit = states.nsym*states.bitspersymbol; % number of bits per processing frame
Nmem = states.Nmem = N+2*Ts; % two symbol memory in down converted signals to allow for timing adj
states.Sf = zeros(states.Ndft/2,1); % current memory of dft mag samples
states.f_dc = zeros(M,Nmem);
states.P = 8; % oversample rate out of filter
assert(Ts/states.P == floor(Ts/states.P), "Ts/P must be an integer");
states.nin = N; % can be N +/- Ts/P samples to adjust for sample clock offsets
states.verbose = 0;
states.phi = zeros(1, M); % keep down converter osc phase continuous
%printf("M: %d Fs: %d Rs: %d Ts: %d nsym: %d nbit: %d\n", states.M, states.Fs, states.Rs, states.Ts, states.nsym, states.nbit);
% BER stats
states.ber_state = 0;
states.Tbits = 0;
states.Terrs = 0;
states.nerr_log = 0;
% extra simulation parameters
states.tx_real = 1;
states.dA(1:M) = 1;
states.df(1:M) = 0;
states.f(1:M) = 0;
states.norm_rx_timing = 0;
states.ppm = 0;
states.prev_pkt = [];
% Freq. estimator limits - keep these narrow to stop errors with low SNR 4FSK
% todo: make this Fs indep
states.fest_fmin = 800;
states.fest_fmax = 2500;
states.fest_min_spacing = 200;
endfunction
% Alternative init function, useful for high speed (non telemetry) modems
% Allows fine grained control of decimation P
% Small, processing window nsym rather than nsym=Fs (1 second window)
% Wider freq est limits
function states = fsk_init_hbr(Fs,P,Rs,M=2,nsym=48)
states.M = M;
states.bitspersymbol = log2(M);
states.Fs = Fs;
states.Rs = Rs;
Ts = states.Ts = Fs/Rs;
assert(Ts == floor(Ts), "Fs/Rs must be an integer");
N = states.N = Ts*nsym; % processing buffer nsym wide
states.nsym = N/Ts; % number of symbols in one processing frame
states.nbit = states.nsym*states.bitspersymbol; % number of bits per processing frame
states.Ndft = (2.^ceil(log2(N)))/2; % find nearest power of 2 for efficient FFT
Nmem = states.Nmem = N+2*Ts; % two symbol memory in down converted signals to allow for timing adj
states.Sf = zeros(states.Ndft/2,1); % currentmemory of dft mag samples
states.f_dc = zeros(M,Nmem);
states.P = P; % oversample rate out of filter
assert(Ts/states.P == floor(Ts/states.P), "Ts/P must be an integer");
states.nin = N; % can be N +/- Ts/P samples to adjust for sample clock offsets
states.verbose = 0;
states.phi = zeros(1, M); % keep down converter osc phase continuous
%printf("M: %d Fs: %d Rs: %d Ts: %d nsym: %d nbit: %d\n", states.M, states.Fs, states.Rs, states.Ts, states.nsym, states.nbit);
% Freq estimator limits
states.fest_fmax = (Fs/2)-Rs;
states.fest_fmin = Rs/2;
states.fest_min_spacing = 2*(Rs-(Rs/5));
% BER stats
states.ber_state = 0;
states.Tbits = 0;
states.Terrs = 0;
states.nerr_log = 0;
states.tx_real = 1;
states.dA(1:M) = 1;
states.df(1:M) = 0;
states.f(1:M) = 0;
states.norm_rx_timing = 0;
states.ppm = 0;
states.prev_pkt = [];
#{
TODO: fix me to resurect fsk_horus RTTY stuff, maybe call from
% protocol specific states
states.rtty = fsk_horus_init_rtty_uw(states);
states.binary = fsk_horus_init_binary_uw;
#}
endfunction
% modulator function
function tx = fsk_mod(states, tx_bits)
M = states.M;
Ts = states.Ts;
Fs = states.Fs;
ftx = states.ftx;
df = states.df; % tone freq change in Hz/s
dA = states.dA; % amplitude of each tone
num_bits = length(tx_bits);
num_symbols = num_bits/states.bitspersymbol;
tx = zeros(states.Ts*num_symbols,1);
tx_phase = 0;
s = 1;
for i=1:states.bitspersymbol:num_bits
% map bits to FSK symbol (tone number)
K = states.bitspersymbol;
tone = tx_bits(i:i+(K-1)) * (2.^(K-1:-1:0))' + 1;
tx_phase_vec = tx_phase + (1:Ts)*2*pi*ftx(tone)/Fs;
tx_phase = tx_phase_vec(Ts) - floor(tx_phase_vec(Ts)/(2*pi))*2*pi;
if states.tx_real
tx((s-1)*Ts+1:s*Ts) = dA(tone)*2.0*cos(tx_phase_vec);
else
tx((s-1)*Ts+1:s*Ts) = dA(tone)*exp(j*tx_phase_vec);
end
s++;
% freq drift
ftx += df*Ts/Fs;
end
states.ftx = ftx;
endfunction
% Estimate the frequency of the FSK tones. In some applications (such
% as balloon telemtry) these may not be well controlled by the
% transmitter, so we have to try to estimate them.
function states = est_freq(states, sf, ntones)
N = states.N;
Ndft = states.Ndft;
Fs = states.Fs;
% This assumption is OK for balloon telemetry but may not be true in
% general
min_tone_spacing = states.fest_min_spacing;
% set some limits to search range, which will mean some manual re-tuning
fmin = states.fest_fmin;
fmax = states.fest_fmax;
st = floor(fmin*Ndft/Fs);
en = floor(fmax*Ndft/Fs);
% scale averaging time constant based on number of samples
tc = 0.95*Ndft/Fs;
%tc = .95;
% Update mag DFT ---------------------------------------------
numffts = floor(length(sf)/Ndft);
h = hanning(Ndft);
for i=1:numffts
a = (i-1)*Ndft+1; b = i*Ndft;
Sf = abs(fft(sf(a:b) .* h, Ndft));
Sf(1:st) = 0; Sf(en:Ndft/2) = 0;
states.Sf = (1-tc)*states.Sf + tc*Sf(1:Ndft/2);
end
f = []; a = [];
Sf = states.Sf;
%figure(8)
%clf
%plot(Sf(1:Ndft/2));
% Search for each tone --------------------------------------------------------
for m=1:ntones
[tone_amp tone_index] = max(Sf(1:Ndft/2));
f = [f (tone_index-1)*Fs/Ndft];
a = [a tone_amp];
% zero out region min_tone_spacing/2 either side of max so we can find next highest peak
% closest spacing for non-coh mFSK is Rs
st = tone_index - floor((min_tone_spacing/2)*Ndft/Fs);
st = max(1,st);
en = tone_index + floor((min_tone_spacing/2)*Ndft/Fs);
en = min(Ndft/2,en);
Sf(st:en) = 0;
end
states.f = sort(f);
end
% ------------------------------------------------------------------------------------
% Given a buffer of nin input Rs baud FSK samples, returns nsym bits.
%
% nin is the number of input samples required by demodulator. This is
% time varying. It will nominally be N (8000), and occasionally N +/-
% Ts/2 (e.g. 8080 or 7920). This is how we compensate for differences between the
% remote tx sample clock and our sample clock. This function always returns
% N/Ts (e.g. 50) demodulated bits. Variable number of input samples, constant number
% of output bits.
function [rx_bits states] = fsk_demod(states, sf)
M = states.M;
N = states.N;
Ndft = states.Ndft;
Fs = states.Fs;
Rs = states.Rs;
Ts = states.Ts;
nsym = states.nsym;
P = states.P;
nin = states.nin;
verbose = states.verbose;
Nmem = states.Nmem;
f = states.f;
assert(length(sf) == nin);
% down convert and filter at rate P ------------------------------
% update filter (integrator) memory by shifting in nin samples
nold = Nmem-nin; % number of old samples we retain
f_dc = states.f_dc;
f_dc(:,1:nold) = f_dc(:,Nmem-nold+1:Nmem);
% freq shift down to around DC, ensuring continuous phase from last frame
for m=1:M
phi_vec = states.phi(m) + (1:nin)*2*pi*f(m)/Fs;
f_dc(m,nold+1:Nmem) = sf .* exp(j*phi_vec)';
states.phi(m) = phi_vec(nin);
states.phi(m) -= 2*pi*floor(states.phi(m)/(2*pi));
end
% save filter (integrator) memory for next time
states.f_dc = f_dc;
% integrate over symbol period, which is effectively a LPF, removing
% the -2Fc frequency image. Can also be interpreted as an ideal
% integrate and dump, non-coherent demod. We run the integrator at
% rate P*Rs (1/P symbol offsets) to get outputs at a range of
% different fine timing offsets. We calculate integrator output
% over nsym+1 symbols so we have extra samples for the fine timing
% re-sampler at either end of the array.
for i=1:(nsym+1)*P
st = 1 + (i-1)*Ts/P;
en = st+Ts-1;
for m=1:M
f_int(m,i) = sum(f_dc(m,st:en));
end
end
states.f_int = f_int;
% fine timing estimation -----------------------------------------------
% Non linearity has a spectral line at Rs, with a phase
% related to the fine timing offset. See:
% http://www.rowetel.com/blog/?p=3573
% We have sampled the integrator output at Fs=P samples/symbol, so
% lets do a single point DFT at w = 2*pi*f/Fs = 2*pi*Rs/(P*Rs)
%
% Note timing non-lineariry derived by experiment. Not quite sure what I'm doing here.....
% but it gives 0dB impl loss for 2FSK Eb/No=9dB, testmode 1:
% Fs: 8000 Rs: 50 Ts: 160 nsym: 50
% frames: 200 Tbits: 9700 Terrs: 93 BER 0.010
Np = length(f_int(1,:));
w = 2*pi*(Rs)/(P*Rs);
timing_nl = sum(abs(f_int(:,:)).^2);
x = timing_nl * exp(-j*w*(0:Np-1))';
norm_rx_timing = angle(x)/(2*pi);
rx_timing = norm_rx_timing*P;
states.x = x;
states.timing_nl = timing_nl;
states.rx_timing = rx_timing;
prev_norm_rx_timing = states.norm_rx_timing;
states.norm_rx_timing = norm_rx_timing;
% estimate sample clock offset in ppm
% d_norm_timing is fraction of symbol period shift over nsym symbols
d_norm_rx_timing = norm_rx_timing - prev_norm_rx_timing;
% filter out big jumps due to nin changes
if abs(d_norm_rx_timing) < 0.2
appm = 1E6*d_norm_rx_timing/nsym;
states.ppm = 0.9*states.ppm + 0.1*appm;
end
% work out how many input samples we need on the next call. The aim
% is to keep angle(x) away from the -pi/pi (+/- 0.5 fine timing
% offset) discontinuity. The side effect is to track sample clock
% offsets
next_nin = N;
if norm_rx_timing > 0.25
next_nin += Ts/2;
end
if norm_rx_timing < -0.25;
next_nin -= Ts/2;
end
states.nin = next_nin;
% Now we know the correct fine timing offset, Re-sample integrator
% outputs using fine timing estimate and linear interpolation, then
% extract the demodulated bits
low_sample = floor(rx_timing);
fract = rx_timing - low_sample;
high_sample = ceil(rx_timing);
if bitand(verbose,0x2)
printf("rx_timing: %3.2f low_sample: %d high_sample: %d fract: %3.3f nin_next: %d\n", rx_timing, low_sample, high_sample, fract, next_nin);
end
f_int_resample = zeros(M,nsym);
rx_bits = zeros(1,nsym*states.bitspersymbol);
tone_max = rx_bits_sd = zeros(1,nsym);
for i=1:nsym
st = i*P+1;
f_int_resample(:,i) = f_int(:,st+low_sample)*(1-fract) + f_int(:,st+high_sample)*fract;
% Largest amplitude tone is the winner. Map this FSK "symbol" back to a bunch-o-bits,
% depending on M.
[tone_max(i) tone_index] = max(f_int_resample(:,i));
st = (i-1)*states.bitspersymbol + 1;
en = st + states.bitspersymbol-1;
arx_bits = dec2bin(tone_index - 1, states.bitspersymbol) - '0';
rx_bits(st:en) = arx_bits;
end
states.f_int_resample = f_int_resample;
states.rx_bits_sd = rx_bits_sd;
% Eb/No estimation (todo: this needs some work, like calibration, low Eb/No perf)
tone_max = abs(tone_max);
states.EbNodB = -6 + 20*log10(1E-6+mean(tone_max)/(1E-6+std(tone_max)));
endfunction
% BER counter and test frame sync logic -------------------------------------------
function states = ber_counter(states, test_frame, rx_bits_buf)
nbit = states.nbit;
state = states.ber_state;
next_state = state;
if state == 0
% try to sync up with test frame
nerrs_min = nbit;
for i=1:nbit
size(rx_bits_buf(i:nbit+i-1))
size(test_frame)
error_positions = xor(rx_bits_buf(i:nbit+i-1), test_frame);
nerrs = sum(error_positions);
if nerrs < nerrs_min
nerrs_min = nerrs;
states.coarse_offset = i;
end
end
if nerrs_min/nbit < 0.05
next_state = 1;
end
if bitand(states.verbose,0x4)
printf("coarse offset: %d nerrs_min: %d next_state: %d\n", states.coarse_offset, nerrs_min, next_state);
end
end
if state == 1
% we're synced up, lets measure bit errors
error_positions = xor(rx_bits_buf(states.coarse_offset:states.coarse_offset+nbit-1), test_frame);
nerrs = sum(error_positions);
if nerrs/nbit > 0.1
next_state = 0;
else
states.Terrs += nerrs;
states.Tbits += nbit;
states.nerr_log = [states.nerr_log nerrs];
end
end
states.ber_state = next_state;
endfunction
% Alternative stateless BER counter that works on packets that may have gaps between them
function states = ber_counter_packet(states, test_frame, rx_bits_buf)
ntestframebits = states.ntestframebits;
nbit = states.nbit;
% look for offset with min errors
nerrs_min = ntestframebits; coarse_offset = 1;
for i=1:nbit
error_positions = xor(rx_bits_buf(i:ntestframebits+i-1), test_frame);
nerrs = sum(error_positions);
%printf("i: %d nerrs: %d\n", i, nerrs);
if nerrs < nerrs_min
nerrs_min = nerrs;
coarse_offset = i;
end
end
% if less than threshold count errors
if nerrs_min/ntestframebits < 0.05
states.Terrs += nerrs_min;
states.Tbits += ntestframebits;
states.nerr_log = [states.nerr_log nerrs_min];
if bitand(states.verbose, 0x4)
printf("coarse_offset: %d nerrs_min: %d\n", coarse_offset, nerrs_min);
end
end
endfunction