You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

630 lines
18 KiB

% tfsk.m
% Author: Brady O'Brien 8 January 2016
% Copyright 2016 David Rowe
%
% All rights reserved.
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License version 2.1, as
% published by the Free Software Foundation. This program is
% distributed in the hope that it will be useful, but WITHOUT ANY
% WARRANTY; without even the implied warranty of MERCHANTABILITY or
% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
% License for more details.
%
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, see <http://www.gnu.org/licenses/>.
% Octave script to check c port of fsk_horus against the fsk_horus.m
%
% [X] - Functions to wrap around fsk_mod and fsk_demod executables
% [X] - fsk_mod
% [X] - fsk_demod
% [X] - Functions to wrap around octave and c implementations, pass
% same dataset, compare outputs, and give clear go/no-go
% [X] - fsk_mod_test
% [X] - fsk_demod_test
% [X] - Port of run_sim and EbNodB curve test battery
% [X] - Extract and compare more parameters from demod
% [X] - Run some tests in parallel
#{
FSK Modem automated test instructions:
1. Use cmake to build in debug mode to ensure unittest/tfsk is built:
$ cd ~/codec2
$ rm -Rf build_linux && mkdir build_linux
$ cd build_linux
$ cmake -DCMAKE_BUILD_TYPE=Debug ..
$ make
2 - Change tfsk_location below if required
3 - Ensure Octave packages signal and parallel are installed
4 - Start Octave and run tfsk.m. It will perform all tests automatically
#}
%tfsk executable path/file
global tfsk_location = '../build_linux/unittest/tfsk';
%Set to 1 for verbose printouts
global print_verbose = 0;
fsk_horus_as_a_lib = 1; % make sure calls to test functions at bottom are disabled
%fsk_horus_2fsk;
fsk_horus
pkg load signal;
pkg load parallel;
graphics_toolkit('gnuplot');
global mod_pass_fail_maxdiff = 1e-3/5000;
function mod = fsk_mod_c(Fs,Rs,f1,fsp,bits,M)
global tfsk_location;
%command to be run by system to launch the modulator
command = sprintf('%s M %d %d %d %d %d fsk_mod_ut_bitvec fsk_mod_ut_modvec fsk_mod_ut_log.txt',tfsk_location,M,f1,fsp,Fs,Rs);
%save input bits into a file
bitvecfile = fopen('fsk_mod_ut_bitvec','wb+');
fwrite(bitvecfile,bits,'uint8');
fclose(bitvecfile);
%run the modulator
system(command);
modvecfile = fopen('fsk_mod_ut_modvec','rb');
mod = fread(modvecfile,'single');
fclose(modvecfile);
endfunction
%Compare 2 vectors, fail if they are not close enough
function pass = vcompare(vc,voct,vname,tname,tol,pnum)
global print_verbose;
%Get delta of vectors
dvec = abs(abs(vc)-abs(voct));
%Normalize difference
dvec = dvec ./ abs(max(abs(voct))+1e-8);
maxdvec = abs(max(dvec));
pass = maxdvec<tol;
if print_verbose == 1
printf(' Comparing vectors %s in test %s. Diff is %f\n',vname,tname,maxdvec);
end
if pass == 0
printf('\n*** vcompare failed %s in test %s. Diff: %f Tol: %f\n\n',vname,tname,maxdvec,tol);
titlestr = sprintf('Diff between C and Octave of %s for %s',vname,tname)
figure(10+pnum*2)
plot(abs(dvec))
title(titlestr)
figure(11+pnum*2)
plot((1:length(vc)),abs(vc),(1:length(voct)),abs(voct))
end
endfunction
function test_stats = fsk_demod_xt(Fs,Rs,f1,fsp,mod,tname,M=2)
global print_verbose;
global tfsk_location;
%Name of executable containing the modulator
fsk_demod_ex_file = '../build/unittest/tfsk';
modvecfilename = sprintf('fsk_demod_ut_modvec_%d',getpid());
bitvecfilename = sprintf('fsk_demod_ut_bitvec_%d',getpid());
tvecfilename = sprintf('fsk_demod_ut_tracevec_%d.txt',getpid());
%command to be run by system to launch the demod
command = sprintf('%s D %d %d %d %d %d %s %s %s',tfsk_location,M,f1,fsp,Fs,Rs,modvecfilename,bitvecfilename,tvecfilename);
%save modulated input into a file
modvecfile = fopen(modvecfilename,'wb+');
fwrite(modvecfile,mod,'single');
fclose(modvecfile);
%run the modulator
system(command);
bitvecfile = fopen(bitvecfilename,'rb');
bits = fread(bitvecfile,'uint8');
fclose(bitvecfile);
bits = bits!=0;
%Load test vec dump
load(tvecfilename);
%Clean up files
delete(bitvecfilename);
delete(modvecfilename);
delete(tvecfilename);
o_f1_dc = [];
o_f2_dc = [];
o_f3_dc = [];
o_f4_dc = [];
o_f1_int = [];
o_f2_int = [];
o_f3_int = [];
o_f4_int = [];
o_f1 = [];
o_f2 = [];
o_f3 = [];
o_f4 = [];
o_EbNodB = [];
o_ppm = [];
o_Sf = [];
o_fest = [];
o_rx_timing = [];
o_norm_rx_timing = [];
o_nin = [];
%Run octave demod, dump some test vectors
states = fsk_horus_init(Fs,Rs,M);
Ts = states.Ts;
P = states.P;
states.ftx(1) = f1;
states.ftx(2) = f1+fsp;
states.ftx(3) = f1+fsp*2;
states.ftx(4) = f1+fsp*3;
states.dA = 1;
states.dF = 0;
modin = mod;
obits = [];
while length(modin)>=states.nin
ninold = states.nin;
states = est_freq(states, modin(1:states.nin), states.M);
[bitbuf,states] = fsk_horus_demod(states, modin(1:states.nin));
modin=modin(ninold+1:length(modin));
obits = [obits bitbuf];
%Save other parameters
o_f1_dc = [o_f1_dc states.f_dc(1,1:states.Nmem-Ts/P)];
o_f2_dc = [o_f2_dc states.f_dc(2,1:states.Nmem-Ts/P)];
o_f1_int = [o_f1_int states.f_int(1,:)];
o_f2_int = [o_f2_int states.f_int(2,:)];
o_EbNodB = [o_EbNodB states.EbNodB];
o_ppm = [o_ppm states.ppm];
o_rx_timing = [o_rx_timing states.rx_timing];
o_norm_rx_timing = [o_norm_rx_timing states.norm_rx_timing];
o_Sf = [o_Sf states.Sf'];
o_f1 = [o_f1 states.f(1)];
o_f2 = [o_f1 states.f(2)];
o_fest = [o_fest states.f];
o_nin = [o_nin states.nin];
if M==4
o_f3_dc = [o_f3_dc states.f_dc(3,1:states.Nmem-Ts/P)];
o_f4_dc = [o_f4_dc states.f_dc(4,1:states.Nmem-Ts/P)];
o_f3_int = [o_f3_int states.f_int(3,:)];
o_f4_int = [o_f4_int states.f_int(4,:)];
o_f3 = [o_f1 states.f(3)];
o_f4 = [o_f1 states.f(4)];
end
end
%close all
% One part-per-thousand allowed on important parameters
pass = 1;
pass = vcompare(o_Sf, t_fft_est,'fft est',tname,.001,1) && pass;
pass = vcompare(o_fest, t_f_est,'f est',tname,.001,2) && pass;
pass = vcompare(o_rx_timing, t_rx_timing,'rx timing',tname,.02,3) && pass;
if M==4
pass = vcompare(o_f3_dc, t_f3_dc, 'f3 dc', tname,.005,4) && pass;
pass = vcompare(o_f4_dc, t_f4_dc, 'f4 dc', tname,.005,5) && pass;
pass = vcompare(o_f3_int, t_f3_int, 'f3 int', tname,.005,6) && pass;
pass = vcompare(o_f4_int, t_f4_int, 'f4 int', tname,.005,7) && pass;
end
pass = vcompare(o_f1_dc, t_f1_dc, 'f1 dc', tname,.005,8) && pass;
pass = vcompare(o_f2_dc, t_f2_dc, 'f2 dc', tname,.005,9) && pass;
pass = vcompare(o_f2_int, t_f2_int, 'f2 int', tname,.005,10) && pass;
pass = vcompare(o_f1_int, t_f1_int, 'f1 int', tname,.005,11) && pass;
% Much larger tolerances on unimportant statistics
pass = vcompare(o_ppm , t_ppm, 'ppm', tname,.02,12) && pass;
pass = vcompare(o_EbNodB, t_EbNodB,'EbNodB', tname,.02,13) && pass;
pass = vcompare(o_nin, t_nin, 'nin', tname,.0001,14) && pass;
pass = vcompare(o_norm_rx_timing, t_norm_rx_timing,'norm rx timing',tname,.02,15) && pass;
assert(pass);
diffpass = sum(xor(obits,bits'))<4;
diffbits = sum(xor(obits,bits'));
if diffpass==0
printf('\n***bitcompare test failed test %s diff %d\n\n',tname,sum(xor(obits,bits')))
figure(15)
plot(xor(obits,bits'))
title(sprintf('Bitcompare failure test %s',tname))
end
pass = pass && diffpass;
test_stats.pass = pass;
test_stats.diff = sum(xor(obits,bits'));
test_stats.cbits = bits';
test_stats.obits = obits;
endfunction
function [dmod,cmod,omod,pass] = fsk_mod_test(Fs,Rs,f1,fsp,bits,tname,M=2)
global mod_pass_fail_maxdiff;
%Run the C modulator
cmod = fsk_mod_c(Fs,Rs,f1,fsp,bits,M);
%Set up and run the octave modulator
states.M = M;
states = fsk_horus_init(Fs,Rs,M);
states.ftx(1) = f1;
states.ftx(2) = f1+fsp;
if states.M == 4
states.ftx(3) = f1+fsp*2;
states.ftx(4) = f1+fsp*3;
end
states.dA = [1 1 1 1];
states.dF = 0;
omod = fsk_horus_mod(states,bits);
dmod = cmod-omod;
pass = max(dmod)<(mod_pass_fail_maxdiff*length(dmod));
if !pass
printf('Mod failed test %s!\n',tname);
end
endfunction
% Random bit modulator test
% Pass random bits through the modulators and compare
function pass = test_mod_horuscfg_randbits
rand('state',1);
randn('state',1);
bits = rand(1,10000)>.5;
[dmod,cmod,omod,pass] = fsk_mod_test(8000,100,1200,1600,bits,"mod horuscfg randbits");
if(!pass)
figure(1)
plot(dmod)
title("Difference between octave and C mod impl");
end
endfunction
% Random bit modulator test
% Pass random bits through the modulators and compare
function pass = test_mod_horuscfgm4_randbits
rand('state',1);
randn('state',1);
bits = rand(1,10000)>.5;
[dmod,cmod,omod,pass] = fsk_mod_test(8000,100,1200,1600,bits,"mod horuscfg randbits",4);
if(!pass)
figure(1)
plot(dmod)
title("Difference between octave and C mod impl");
end
endfunction
% A big ol' channel impairment tester
% Shamlessly taken from fsk_horus
% This throws some channel imparment or another at the C and octave modem so they
% may be compared.
function stats = tfsk_run_sim(test_frame_mode,EbNodB,timing_offset,fading,df,dA,M=2)
global print_verbose;
frames = 90;
%EbNodB = 10;
%timing_offset = 2.0; % see resample() for clock offset below
%fading = 0; % modulates tx power at 2Hz with 20dB fade depth,
% to simulate balloon rotating at end of mission
%df = 0; % tx tone freq drift in Hz/s
%dA = 1; % amplitude imbalance of tones (note this affects Eb so not a gd idea)
more off
rand('state',1);
randn('state',1);
% ----------------------------------------------------------------------
% sm2000 config ------------------------
%states = fsk_horus_init(96000, 1200);
%states.f1_tx = 4000;
%states.f2_tx = 5200;
if test_frame_mode == 2
% horus rtty config ---------------------
states = fsk_horus_init(8000, 100, M);
states.f1_tx = 1200;
states.f2_tx = 1600;
end
if test_frame_mode == 4
% horus rtty config ---------------------
states = fsk_horus_init(8000, 100, M);
states.f1_tx = 1200;
states.f2_tx = 1600;
states.tx_bits_file = "horus_tx_bits_rtty.txt"; % Octave file of bits we FSK modulate
end
if test_frame_mode == 5
% horus binary config ---------------------
states = fsk_horus_init(8000, 100, M);
states.f1_tx = 1200;
states.f2_tx = 1600;
%%%states.tx_bits_file = "horus_tx_bits_binary.txt"; % Octave file of bits we FSK modulate
states.tx_bits_file = "horus_payload_rtty.txt";
end
% ----------------------------------------------------------------------
states.verbose = 0;%x1;
N = states.N;
P = states.P;
Rs = states.Rs;
nsym = states.nsym;
Fs = states.Fs;
states.df = df;
states.dA = [dA dA dA dA];
states.M = M;
EbNo = 10^(EbNodB/10);
variance = states.Fs/(states.Rs*EbNo*states.bitspersymbol);
% set up tx signal with payload bits based on test mode
if test_frame_mode == 1
% test frame of bits, which we repeat for convenience when BER testing
test_frame = round(rand(1, states.nsym));
tx_bits = [];
for i=1:frames+1
tx_bits = [tx_bits test_frame];
end
end
if test_frame_mode == 2
% random bits, just to make sure sync algs work on random data
tx_bits = round(rand(1, states.nbit*(frames+1)));
end
if test_frame_mode == 3
% ...10101... sequence
tx_bits = zeros(1, states.nsym*(frames+1));
tx_bits(1:2:length(tx_bits)) = 1;
end
if (test_frame_mode == 4) || (test_frame_mode == 5)
% load up a horus msg from disk and modulate that
test_frame = load(states.tx_bits_file);
ltf = length(test_frame);
ntest_frames = ceil((frames+1)*nsym/ltf);
tx_bits = [];
for i=1:ntest_frames
tx_bits = [tx_bits test_frame];
end
end
f1 = states.f1_tx;
fsp = states.f2_tx-f1;
states.dA = [dA dA dA dA];
states.ftx(1) = f1;
states.ftx(2) = f1+fsp;
if states.M == 4
states.ftx(3) = f1+fsp*2;
states.ftx(4) = f1+fsp*3;
end
tx = fsk_horus_mod(states, tx_bits);
if timing_offset
tx = resample(tx, 1000, 1001); % simulated 1000ppm sample clock offset
end
if fading
ltx = length(tx);
tx = tx .* (1.1 + cos(2*pi*2*(0:ltx-1)/Fs))'; % min amplitude 0.1, -20dB fade, max 3dB
end
noise = sqrt(variance)*randn(length(tx),1);
rx = tx + noise;
test_name = sprintf("tfsk run sim EbNodB:%d frames:%d timing_offset:%d fading:%d df:%d",EbNodB,frames,timing_offset,fading,df);
tstats = fsk_demod_xt(Fs,Rs,states.f1_tx,fsp,rx,test_name,M);
pass = tstats.pass;
obits = tstats.obits;
cbits = tstats.cbits;
% Figure out BER of octave and C modems
bitcnt = length(tx_bits);
rx_bits = obits;
ber = 1;
ox = 1;
for offset = (1:100)
nerr = sum(xor(rx_bits(offset:length(rx_bits)),tx_bits(1:length(rx_bits)+1-offset)));
bern = nerr/(bitcnt-offset);
if(bern < ber)
ox = offset;
best_nerr = nerr;
end
ber = min([ber bern]);
end
offset = ox;
bero = ber;
ber = 1;
rx_bits = cbits;
ox = 1;
for offset = (1:100)
nerr = sum(xor(rx_bits(offset:length(rx_bits)),tx_bits(1:length(rx_bits)+1-offset)));
bern = nerr/(bitcnt-offset);
if(bern < ber)
ox = offset;
best_nerr = nerr;
end
ber = min([ber bern]);
end
offset = ox;
berc = ber;
stats.berc = berc;
stats.bero = bero;
stats.name = test_name;
% coherent BER theory calculation
stats.thrcoh = .5*(M-1)*erfc(sqrt( (log2(M)/2) * EbNo ));
% non-coherent BER theory calculation
% It was complicated, so I broke it up
ms = M;
ns = (1:ms-1);
as = (-1).^(ns+1);
bs = (as./(ns+1));
cs = ((ms-1)./ns);
ds = ns.*log2(ms);
es = ns+1;
fs = exp( -(ds./es)*EbNo );
thrncoh = ((ms/2)/(ms-1)) * sum(bs.*((ms-1)./ns).*exp( -(ds./es)*EbNo ));
stats.thrncoh = thrncoh;
stats.pass = pass;
endfunction
function pass = ebno_battery_test(timing_offset,fading,df,dA,M)
%Range of EbNodB over which to test
ebnodbrange = (5:2:13);
ebnodbs = length(ebnodbrange);
mode = 2;
%Replication of other parameters for parcellfun
modev = repmat(mode,1,ebnodbs);
timingv = repmat(timing_offset,1,ebnodbs);
fadingv = repmat(fading,1,ebnodbs);
dfv = repmat(df,1,ebnodbs);
dav = repmat(dA,1,ebnodbs);
mv = repmat(M,1,ebnodbs);
statv = pararrayfun(floor(1.25*nproc()),@tfsk_run_sim,modev,ebnodbrange,timingv,fadingv,dfv,dav,mv);
%statv = arrayfun(@tfsk_run_sim,modev,ebnodbrange,timingv,fadingv,dfv,dav,mv);
passv = zeros(1,length(statv));
for ii=(1:length(statv))
passv(ii)=statv(ii).pass;
if statv(ii).pass
printf("Test %s passed\n",statv(ii).name);
else
printf("Test %s failed\n",statv(ii).name);
end
end
%All pass flags are '1'
pass = sum(passv)>=length(passv);
%and no tests died
pass = pass && length(passv)==ebnodbs;
passv;
assert(pass)
endfunction
%Test with and without sample clock offset
function pass = test_timing_var(df,dA,M)
pass = ebno_battery_test(1,0,df,dA,M)
assert(pass)
pass = pass && ebno_battery_test(0,0,df,dA,M)
assert(pass)
endfunction
%Test with and without 1 Hz/S freq drift
function pass = test_drift_var(M)
pass = test_timing_var(1,1,M)
assert(pass)
pass = pass && test_timing_var(0,1,M)
assert(pass)
endfunction
function pass = test_fsk_battery()
pass = test_mod_horuscfg_randbits;
assert(pass)
pass = pass && test_mod_horuscfgm4_randbits;
assert(pass)
pass = pass && test_drift_var(4);
assert(pass)
pass = pass && test_drift_var(2);
assert(pass)
if pass
printf("***** All tests passed! *****\n");
end
endfunction
function plot_fsk_bers(M=2)
%Range of EbNodB over which to plot
ebnodbrange = (4:13);
berc = ones(1,length(ebnodbrange));
bero = ones(1,length(ebnodbrange));
berinc = ones(1,length(ebnodbrange));
beric = ones(1,length(ebnodbrange));
ebnodbs = length(ebnodbrange)
mode = 2;
%Replication of other parameters for parcellfun
modev = repmat(mode,1,ebnodbs);
timingv = repmat(1,1,ebnodbs);
fadingv = repmat(0,1,ebnodbs);
dfv = repmat(1,1,ebnodbs);
dav = repmat(1,1,ebnodbs);
Mv = repmat(M,1,ebnodbs);
statv = pararrayfun(floor(nproc()),@tfsk_run_sim,modev,ebnodbrange,timingv,fadingv,dfv,dav,Mv);
%statv = arrayfun(@tfsk_run_sim,modev,ebnodbrange,timingv,fadingv,dfv,dav,Mv);
for ii = (1:length(statv))
stat = statv(ii);
berc(ii)=stat.berc;
bero(ii)=stat.bero;
berinc(ii)=stat.thrncoh;
beric(ii) = stat.thrcoh;
end
clf;
figure(M)
semilogy(ebnodbrange, berinc,sprintf('r;%dFSK non-coherent theory;',M))
hold on;
semilogy(ebnodbrange, beric ,sprintf('g;%dFSK coherent theory;',M))
semilogy(ebnodbrange, bero ,sprintf('b;Octave fsk horus %dFSK Demod;',M))
semilogy(ebnodbrange, berc,sprintf('+;C fsk horus %dFSK Demod;',M))
hold off;
grid("minor");
axis([min(ebnodbrange) max(ebnodbrange) 1E-5 1])
legend("boxoff");
xlabel("Eb/No (dB)");
ylabel("Bit Error Rate (BER)")
endfunction
xpass = test_fsk_battery
%plot_fsk_bers(2)
plot_fsk_bers(4)
if xpass
printf("***** All tests passed! *****\n");
else
printf("***** Some test failed! Look back thorugh output to find failed test *****\n");
end