You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1545 lines
47 KiB

28 years ago
/*
** $Id: lgc.c $
28 years ago
** Garbage Collector
** See Copyright Notice in lua.h
*/
#define lgc_c
#define LUA_CORE
#include "lprefix.h"
#include <stdio.h>
#include <string.h>
#include "lua.h"
#include "ldebug.h"
28 years ago
#include "ldo.h"
#include "lfunc.h"
#include "lgc.h"
#include "lmem.h"
28 years ago
#include "lobject.h"
#include "lstate.h"
28 years ago
#include "lstring.h"
#include "ltable.h"
#include "ltm.h"
/*
** Maximum number of elements to sweep in each single step.
** (Large enough to dissipate fixed overheads but small enough
** to allow small steps for the collector.)
*/
#define GCSWEEPMAX 100
/*
** Maximum number of finalizers to call in each single step.
*/
#define GCFINMAX 10
/*
** Cost of calling one finalizer.
*/
#define GCFINALIZECOST 50
/*
** The equivalent, in bytes, of one unit of "work" (visiting a slot,
** sweeping an object, etc.)
*/
#define WORK2MEM sizeof(TValue)
/*
** macro to adjust 'pause': 'pause' is actually used like
** 'pause / PAUSEADJ' (value chosen by tests)
*/
#define PAUSEADJ 100
/* mask to erase all color bits (plus gen. related stuff) */
#define maskcolors (~(bitmask(BLACKBIT) | WHITEBITS | AGEBITS))
/* macro to erase all color bits then sets only the current white bit */
#define makewhite(g,x) \
(x->marked = cast_byte((x->marked & maskcolors) | luaC_white(g)))
#define white2gray(x) resetbits(x->marked, WHITEBITS)
#define black2gray(x) resetbit(x->marked, BLACKBIT)
28 years ago
#define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x)))
#define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n)))
#define checkconsistency(obj) \
lua_longassert(!iscollectable(obj) || righttt(obj))
/*
** Protected access to objects in values
*/
#define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL)
#define markvalue(g,o) { checkconsistency(o); \
if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
#define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); }
#define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
/*
** mark an object that can be NULL (either because it is really optional,
** or it was stripped as debug info, or inside an uncompleted structure)
*/
#define markobjectN(g,t) { if (t) markobject(g,t); }
28 years ago
static void reallymarkobject (global_State *g, GCObject *o);
static lu_mem atomic (lua_State *L);
/*
** {======================================================
** Generic functions
** =======================================================
*/
/*
** one after last element in a hash array
*/
#define gnodelast(h) gnode(h, cast_sizet(sizenode(h)))
static GCObject **getgclist (GCObject *o) {
switch (o->tt) {
case LUA_TTABLE: return &gco2t(o)->gclist;
case LUA_TLCL: return &gco2lcl(o)->gclist;
case LUA_TCCL: return &gco2ccl(o)->gclist;
case LUA_TTHREAD: return &gco2th(o)->gclist;
case LUA_TPROTO: return &gco2p(o)->gclist;
case LUA_TUSERDATA: {
Udata *u = gco2u(o);
lua_assert(u->nuvalue > 0);
return &u->gclist;
}
default: lua_assert(0); return 0;
}
}
/*
** Link a collectable object 'o' with a known type into list pointed by 'p'.
*/
#define linkgclist(o,p) ((o)->gclist = (p), (p) = obj2gco(o))
/*
** Link a generic collectable object 'o' into list pointed by 'p'.
*/
#define linkobjgclist(o,p) (*getgclist(o) = (p), (p) = obj2gco(o))
/*
** Clear keys for empty entries in tables. If entry is empty
** and its key is not marked, mark its entry as dead. This allows the
** collection of the key, but keeps its entry in the table (its removal
** could break a chain). The main feature of a dead key is that it must
** be different from any other value, to do not disturb searches.
** Other places never manipulate dead keys, because its associated empty
** value is enough to signal that the entry is logically empty.
*/
static void clearkey (Node *n) {
lua_assert(isempty(gval(n)));
if (keyiswhite(n))
setdeadkey(n); /* unused and unmarked key; remove it */
}
/*
** tells whether a key or value can be cleared from a weak
** table. Non-collectable objects are never removed from weak
** tables. Strings behave as 'values', so are never removed too. for
** other objects: if really collected, cannot keep them; for objects
** being finalized, keep them in keys, but not in values
*/
static int iscleared (global_State *g, const GCObject *o) {
if (o == NULL) return 0; /* non-collectable value */
else if (novariant(o->tt) == LUA_TSTRING) {
markobject(g, o); /* strings are 'values', so are never weak */
return 0;
}
else return iswhite(o);
}
/*
** barrier that moves collector forward, that is, mark the white object
** 'v' being pointed by the black object 'o'. (If in sweep phase, clear
** the black object to white [sweep it] to avoid other barrier calls for
** this same object.) In the generational mode, 'v' must also become
** old, if 'o' is old; however, it cannot be changed directly to OLD,
** because it may still point to non-old objects. So, it is marked as
** OLD0. In the next cycle it will become OLD1, and in the next it
** will finally become OLD (regular old).
*/
void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
global_State *g = G(L);
lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
if (keepinvariant(g)) { /* must keep invariant? */
reallymarkobject(g, v); /* restore invariant */
if (isold(o)) {
lua_assert(!isold(v)); /* white object could not be old */
setage(v, G_OLD0); /* restore generational invariant */
}
}
else { /* sweep phase */
lua_assert(issweepphase(g));
makewhite(g, o); /* mark main obj. as white to avoid other barriers */
}
}
/*
** barrier that moves collector backward, that is, mark the black object
** pointing to a white object as gray again.
*/
void luaC_barrierback_ (lua_State *L, GCObject *o) {
global_State *g = G(L);
lua_assert(isblack(o) && !isdead(g, o));
lua_assert(g->gckind != KGC_GEN || (isold(o) && getage(o) != G_TOUCHED1));
if (getage(o) != G_TOUCHED2) /* not already in gray list? */
linkobjgclist(o, g->grayagain); /* link it in 'grayagain' */
black2gray(o); /* make object gray (again) */
setage(o, G_TOUCHED1); /* touched in current cycle */
}
void luaC_fix (lua_State *L, GCObject *o) {
global_State *g = G(L);
lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */
white2gray(o); /* they will be gray forever */
setage(o, G_OLD); /* and old forever */
g->allgc = o->next; /* remove object from 'allgc' list */
o->next = g->fixedgc; /* link it to 'fixedgc' list */
g->fixedgc = o;
}
/*
** create a new collectable object (with given type and size) and link
** it to 'allgc' list.
*/
GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
global_State *g = G(L);
GCObject *o = cast(GCObject *, luaM_newobject(L, novariant(tt), sz));
o->marked = luaC_white(g);
o->tt = tt;
o->next = g->allgc;
g->allgc = o;
return o;
}
/* }====================================================== */
/*
** {======================================================
** Mark functions
** =======================================================
*/
/*
** Mark an object. Userdata, strings, and closed upvalues are visited
** and turned black here. Other objects are marked gray and added
** to appropriate list to be visited (and turned black) later. (Open
** upvalues are already linked in 'headuv' list. They are kept gray
** to avoid barriers, as their values will be revisited by the thread.)
*/
static void reallymarkobject (global_State *g, GCObject *o) {
white2gray(o);
switch (o->tt) {
case LUA_TSHRSTR:
case LUA_TLNGSTR: {
11 years ago
gray2black(o);
break;
}
case LUA_TUPVAL:
case LUA_TUPVALTBC: {
UpVal *uv = gco2upv(o);
if (!upisopen(uv)) /* open upvalues are kept gray */
gray2black(o);
markvalue(g, uv->v); /* mark its content */
break;
}
case LUA_TUSERDATA: {
Udata *u = gco2u(o);
if (u->nuvalue == 0) { /* no user values? */
markobjectN(g, u->metatable); /* mark its metatable */
gray2black(o); /* nothing else to mark */
break;
}
/* else... */
} /* FALLTHROUGH */
case LUA_TLCL: case LUA_TCCL: case LUA_TTABLE:
case LUA_TTHREAD: case LUA_TPROTO: {
linkobjgclist(o, g->gray);
11 years ago
break;
}
11 years ago
default: lua_assert(0); break;
}
}
/*
** mark metamethods for basic types
*/
static void markmt (global_State *g) {
int i;
for (i=0; i < LUA_NUMTAGS; i++)
markobjectN(g, g->mt[i]);
}
/*
** mark all objects in list of being-finalized
*/
static lu_mem markbeingfnz (global_State *g) {
GCObject *o;
lu_mem count = 0;
for (o = g->tobefnz; o != NULL; o = o->next) {
count++;
markobject(g, o);
}
return count;
}
/*
** Mark all values stored in marked open upvalues from non-marked threads.
** (Values from marked threads were already marked when traversing the
** thread.) Remove from the list threads that no longer have upvalues and
** not-marked threads.
*/
static int remarkupvals (global_State *g) {
lua_State *thread;
lua_State **p = &g->twups;
int work = 0;
while ((thread = *p) != NULL) {
work++;
lua_assert(!isblack(thread)); /* threads are never black */
if (isgray(thread) && thread->openupval != NULL)
p = &thread->twups; /* keep marked thread with upvalues in the list */
else { /* thread is not marked or without upvalues */
UpVal *uv;
*p = thread->twups; /* remove thread from the list */
thread->twups = thread; /* mark that it is out of list */
for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
work++;
if (!iswhite(uv)) /* upvalue already visited? */
markvalue(g, uv->v); /* mark its value */
}
}
}
return work;
}
/*
** mark root set and reset all gray lists, to start a new collection
*/
static void restartcollection (global_State *g) {
g->gray = g->grayagain = NULL;
g->weak = g->allweak = g->ephemeron = NULL;
markobject(g, g->mainthread);
markvalue(g, &g->l_registry);
markmt(g);
markbeingfnz(g); /* mark any finalizing object left from previous cycle */
}
/* }====================================================== */
/*
** {======================================================
** Traverse functions
** =======================================================
*/
/*
** Traverse a table with weak values and link it to proper list. During
** propagate phase, keep it in 'grayagain' list, to be revisited in the
** atomic phase. In the atomic phase, if table has any white value,
** put it in 'weak' list, to be cleared.
*/
static void traverseweakvalue (global_State *g, Table *h) {
Node *n, *limit = gnodelast(h);
/* if there is array part, assume it may have white values (it is not
worth traversing it now just to check) */
int hasclears = (h->alimit > 0);
for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
if (isempty(gval(n))) /* entry is empty? */
clearkey(n); /* clear its key */
else {
lua_assert(!keyisnil(n));
markkey(g, n);
if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */
hasclears = 1; /* table will have to be cleared */
}
}
if (g->gcstate == GCSatomic && hasclears)
linkgclist(h, g->weak); /* has to be cleared later */
else
linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
}
/*
** Traverse an ephemeron table and link it to proper list. Returns true
** iff any object was marked during this traversal (which implies that
** convergence has to continue). During propagation phase, keep table
** in 'grayagain' list, to be visited again in the atomic phase. In
** the atomic phase, if table has any white->white entry, it has to
** be revisited during ephemeron convergence (as that key may turn
** black). Otherwise, if it has any white key, table has to be cleared
** (in the atomic phase). In generational mode, it (like all visited
** tables) must be kept in some gray list for post-processing.
*/
static int traverseephemeron (global_State *g, Table *h) {
int marked = 0; /* true if an object is marked in this traversal */
int hasclears = 0; /* true if table has white keys */
int hasww = 0; /* true if table has entry "white-key -> white-value" */
Node *n, *limit = gnodelast(h);
unsigned int i;
unsigned int asize = luaH_realasize(h);
/* traverse array part */
for (i = 0; i < asize; i++) {
if (valiswhite(&h->array[i])) {
marked = 1;
reallymarkobject(g, gcvalue(&h->array[i]));
}
}
/* traverse hash part */
for (n = gnode(h, 0); n < limit; n++) {
if (isempty(gval(n))) /* entry is empty? */
clearkey(n); /* clear its key */
else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */
hasclears = 1; /* table must be cleared */
if (valiswhite(gval(n))) /* value not marked yet? */
hasww = 1; /* white-white entry */
}
else if (valiswhite(gval(n))) { /* value not marked yet? */
marked = 1;
reallymarkobject(g, gcvalue(gval(n))); /* mark it now */
}
}
/* link table into proper list */
if (g->gcstate == GCSpropagate)
linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
else if (hasww) /* table has white->white entries? */
linkgclist(h, g->ephemeron); /* have to propagate again */
else if (hasclears) /* table has white keys? */
linkgclist(h, g->allweak); /* may have to clean white keys */
else if (g->gckind == KGC_GEN)
linkgclist(h, g->grayagain); /* keep it in some list */
else
gray2black(h);
return marked;
}
static void traversestrongtable (global_State *g, Table *h) {
Node *n, *limit = gnodelast(h);
unsigned int i;
unsigned int asize = luaH_realasize(h);
for (i = 0; i < asize; i++) /* traverse array part */
markvalue(g, &h->array[i]);
for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
if (isempty(gval(n))) /* entry is empty? */
clearkey(n); /* clear its key */
else {
lua_assert(!keyisnil(n));
markkey(g, n);
markvalue(g, gval(n));
}
}
if (g->gckind == KGC_GEN) {
linkgclist(h, g->grayagain); /* keep it in some gray list */
black2gray(h);
}
}
static lu_mem traversetable (global_State *g, Table *h) {
const char *weakkey, *weakvalue;
const TValue *mode = gfasttm(g, h->metatable, TM_MODE);
markobjectN(g, h->metatable);
if (mode && ttisstring(mode) && /* is there a weak mode? */
((weakkey = strchr(svalue(mode), 'k')),
(weakvalue = strchr(svalue(mode), 'v')),
(weakkey || weakvalue))) { /* is really weak? */
black2gray(h); /* keep table gray */
if (!weakkey) /* strong keys? */
traverseweakvalue(g, h);
else if (!weakvalue) /* strong values? */
traverseephemeron(g, h);
else /* all weak */
linkgclist(h, g->allweak); /* nothing to traverse now */
}
else /* not weak */
traversestrongtable(g, h);
return 1 + h->alimit + 2 * allocsizenode(h);
}
static int traverseudata (global_State *g, Udata *u) {
int i;
markobjectN(g, u->metatable); /* mark its metatable */
for (i = 0; i < u->nuvalue; i++)
markvalue(g, &u->uv[i].uv);
if (g->gckind == KGC_GEN) {
linkgclist(u, g->grayagain); /* keep it in some gray list */
black2gray(u);
}
return 1 + u->nuvalue;
}
/*
** Traverse a prototype. (While a prototype is being build, its
** arrays can be larger than needed; the extra slots are filled with
** NULL, so the use of 'markobjectN')
*/
static int traverseproto (global_State *g, Proto *f) {
int i;
markobjectN(g, f->source);
for (i = 0; i < f->sizek; i++) /* mark literals */
markvalue(g, &f->k[i]);
for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */
markobjectN(g, f->upvalues[i].name);
for (i = 0; i < f->sizep; i++) /* mark nested protos */
markobjectN(g, f->p[i]);
for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */
markobjectN(g, f->locvars[i].varname);
return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars;
}
static int traverseCclosure (global_State *g, CClosure *cl) {
int i;
for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */
markvalue(g, &cl->upvalue[i]);
return 1 + cl->nupvalues;
}
/*
** Traverse a Lua closure, marking its prototype and its upvalues.
** (Both can be NULL while closure is being created.)
*/
static int traverseLclosure (global_State *g, LClosure *cl) {
int i;
markobjectN(g, cl->p); /* mark its prototype */
for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */
UpVal *uv = cl->upvals[i];
markobjectN(g, uv); /* mark upvalue */
}
return 1 + cl->nupvalues;
}
/*
** Traverse a thread, marking the elements in the stack up to its top
** and cleaning the rest of the stack in the final traversal.
** That ensures that the entire stack have valid (non-dead) objects.
*/
static int traversethread (global_State *g, lua_State *th) {
UpVal *uv;
StkId o = th->stack;
if (o == NULL)
return 1; /* stack not completely built yet */
lua_assert(g->gcstate == GCSatomic ||
th->openupval == NULL || isintwups(th));
for (; o < th->top; o++) /* mark live elements in the stack */
markvalue(g, s2v(o));
for (uv = th->openupval; uv != NULL; uv = uv->u.open.next) {
if (uv->tt == LUA_TUPVALTBC) /* to be closed? */
markobject(g, uv); /* cannot be collected */
}
if (g->gcstate == GCSatomic) { /* final traversal? */
StkId lim = th->stack + th->stacksize; /* real end of stack */
for (; o < lim; o++) /* clear not-marked stack slice */
setnilvalue(s2v(o));
/* 'remarkupvals' may have removed thread from 'twups' list */
if (!isintwups(th) && th->openupval != NULL) {
th->twups = g->twups; /* link it back to the list */
g->twups = th;
}
}
else if (!g->gcemergency)
luaD_shrinkstack(th); /* do not change stack in emergency cycle */
return 1 + th->stacksize;
}
/*
** traverse one gray object, turning it to black (except for threads,
** which are always gray).
*/
static lu_mem propagatemark (global_State *g) {
GCObject *o = g->gray;
gray2black(o);
g->gray = *getgclist(o); /* remove from 'gray' list */
switch (o->tt) {
case LUA_TTABLE: return traversetable(g, gco2t(o));
case LUA_TUSERDATA: return traverseudata(g, gco2u(o));
case LUA_TLCL: return traverseLclosure(g, gco2lcl(o));
case LUA_TCCL: return traverseCclosure(g, gco2ccl(o));
case LUA_TPROTO: return traverseproto(g, gco2p(o));
case LUA_TTHREAD: {
lua_State *th = gco2th(o);
linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
black2gray(o);
return traversethread(g, th);
}
default: lua_assert(0); return 0;
}
}
static lu_mem propagateall (global_State *g) {
lu_mem tot = 0;
while (g->gray)
tot += propagatemark(g);
return tot;
}
static void convergeephemerons (global_State *g) {
int changed;
do {
GCObject *w;
GCObject *next = g->ephemeron; /* get ephemeron list */
g->ephemeron = NULL; /* tables may return to this list when traversed */
changed = 0;
while ((w = next) != NULL) {
next = gco2t(w)->gclist;
if (traverseephemeron(g, gco2t(w))) { /* traverse marked some value? */
propagateall(g); /* propagate changes */
changed = 1; /* will have to revisit all ephemeron tables */
}
}
} while (changed);
}
/* }====================================================== */
/*
** {======================================================
** Sweep Functions
** =======================================================
*/
/*
** clear entries with unmarked keys from all weaktables in list 'l'
*/
static void clearbykeys (global_State *g, GCObject *l) {
for (; l; l = gco2t(l)->gclist) {
Table *h = gco2t(l);
Node *limit = gnodelast(h);
Node *n;
for (n = gnode(h, 0); n < limit; n++) {
if (iscleared(g, gckeyN(n))) /* unmarked key? */
setempty(gval(n)); /* remove entry */
if (isempty(gval(n))) /* is entry empty? */
clearkey(n); /* clear its key */
}
}
}
/*
** clear entries with unmarked values from all weaktables in list 'l' up
** to element 'f'
*/
static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) {
for (; l != f; l = gco2t(l)->gclist) {
Table *h = gco2t(l);
Node *n, *limit = gnodelast(h);
unsigned int i;
unsigned int asize = luaH_realasize(h);
for (i = 0; i < asize; i++) {
TValue *o = &h->array[i];
if (iscleared(g, gcvalueN(o))) /* value was collected? */
setempty(o); /* remove entry */
}
for (n = gnode(h, 0); n < limit; n++) {
if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */
setempty(gval(n)); /* remove entry */
if (isempty(gval(n))) /* is entry empty? */
clearkey(n); /* clear its key */
}
}
}
static void freeupval (lua_State *L, UpVal *uv) {
if (upisopen(uv))
luaF_unlinkupval(uv);
luaM_free(L, uv);
}
static void freeobj (lua_State *L, GCObject *o) {
switch (o->tt) {
case LUA_TPROTO:
luaF_freeproto(L, gco2p(o));
break;
case LUA_TUPVAL:
case LUA_TUPVALTBC:
freeupval(L, gco2upv(o));
break;
case LUA_TLCL:
luaM_freemem(L, o, sizeLclosure(gco2lcl(o)->nupvalues));
break;
case LUA_TCCL:
luaM_freemem(L, o, sizeCclosure(gco2ccl(o)->nupvalues));
break;
case LUA_TTABLE:
luaH_free(L, gco2t(o));
break;
case LUA_TTHREAD:
luaE_freethread(L, gco2th(o));
break;
case LUA_TUSERDATA: {
Udata *u = gco2u(o);
luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
break;
}
case LUA_TSHRSTR:
luaS_remove(L, gco2ts(o)); /* remove it from hash table */
luaM_freemem(L, o, sizelstring(gco2ts(o)->shrlen));
break;
case LUA_TLNGSTR:
luaM_freemem(L, o, sizelstring(gco2ts(o)->u.lnglen));
break;
default: lua_assert(0);
}
}
/*
** sweep at most 'countin' elements from a list of GCObjects erasing dead
** objects, where a dead object is one marked with the old (non current)
** white; change all non-dead objects back to white, preparing for next
** collection cycle. Return where to continue the traversal or NULL if
** list is finished. ('*countout' gets the number of elements traversed.)
*/
static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
int *countout) {
global_State *g = G(L);
int ow = otherwhite(g);
int i;
int white = luaC_white(g); /* current white */
for (i = 0; *p != NULL && i < countin; i++) {
GCObject *curr = *p;
int marked = curr->marked;
if (isdeadm(ow, marked)) { /* is 'curr' dead? */
*p = curr->next; /* remove 'curr' from list */
freeobj(L, curr); /* erase 'curr' */
}
else { /* change mark to 'white' */
curr->marked = cast_byte((marked & maskcolors) | white);
p = &curr->next; /* go to next element */
}
}
if (countout)
*countout = i; /* number of elements traversed */
return (*p == NULL) ? NULL : p;
}
/*
** sweep a list until a live object (or end of list)
*/
static GCObject **sweeptolive (lua_State *L, GCObject **p) {
GCObject **old = p;
do {
p = sweeplist(L, p, 1, NULL);
} while (p == old);
return p;
}
/* }====================================================== */
/*
** {======================================================
** Finalization
** =======================================================
*/
/*
** If possible, shrink string table.
*/
static void checkSizes (lua_State *L, global_State *g) {
if (!g->gcemergency) {
l_mem olddebt = g->GCdebt;
if (g->strt.nuse < g->strt.size / 4) /* string table too big? */
luaS_resize(L, g->strt.size / 2);
g->GCestimate += g->GCdebt - olddebt; /* correct estimate */
}
}
/*
** Get the next udata to be finalized from the 'tobefnz' list, and
** link it back into the 'allgc' list.
*/
static GCObject *udata2finalize (global_State *g) {
GCObject *o = g->tobefnz; /* get first element */
lua_assert(tofinalize(o));
g->tobefnz = o->next; /* remove it from 'tobefnz' list */
o->next = g->allgc; /* return it to 'allgc' list */
g->allgc = o;
resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */
if (issweepphase(g))
makewhite(g, o); /* "sweep" object */
return o;
}
static void dothecall (lua_State *L, void *ud) {
UNUSED(ud);
luaD_callnoyield(L, L->top - 2, 0);
}
static void GCTM (lua_State *L, int propagateerrors) {
global_State *g = G(L);
const TValue *tm;
TValue v;
lua_assert(!g->gcemergency);
setgcovalue(L, &v, udata2finalize(g));
tm = luaT_gettmbyobj(L, &v, TM_GC);
if (tm != NULL && ttisfunction(tm)) { /* is there a finalizer? */
int status;
lu_byte oldah = L->allowhook;
int running = g->gcrunning;
L->allowhook = 0; /* stop debug hooks during GC metamethod */
g->gcrunning = 0; /* avoid GC steps */
setobj2s(L, L->top, tm); /* push finalizer... */
setobj2s(L, L->top + 1, &v); /* ... and its argument */
L->top += 2; /* and (next line) call the finalizer */
L->ci->callstatus |= CIST_FIN; /* will run a finalizer */
status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top - 2), 0);
L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */
L->allowhook = oldah; /* restore hooks */
g->gcrunning = running; /* restore state */
if (status != LUA_OK && propagateerrors) { /* error while running __gc? */
if (status == LUA_ERRRUN) { /* is there an error object? */
const char *msg = (ttisstring(s2v(L->top - 1)))
? svalue(s2v(L->top - 1))
: "no message";
luaO_pushfstring(L, "error in __gc metamethod (%s)", msg);
status = LUA_ERRGCMM; /* error in __gc metamethod */
}
luaD_throw(L, status); /* re-throw error */
}
}
}
/*
** Call a few finalizers
*/
static int runafewfinalizers (lua_State *L, int n) {
global_State *g = G(L);
int i;
for (i = 0; i < n && g->tobefnz; i++)
GCTM(L, 1); /* call one finalizer */
return i;
}
/*
** call all pending finalizers
*/
static void callallpendingfinalizers (lua_State *L, int propagateerrors) {
global_State *g = G(L);
while (g->tobefnz)
GCTM(L, propagateerrors);
}
/*
** find last 'next' field in list 'p' list (to add elements in its end)
*/
static GCObject **findlast (GCObject **p) {
while (*p != NULL)
p = &(*p)->next;
return p;
}
/*
** Move all unreachable objects (or 'all' objects) that need
** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
** (Note that objects after 'finobjold' cannot be white, so they
** don't need to be traversed. In incremental mode, 'finobjold' is NULL,
** so the whole list is traversed.)
*/
static void separatetobefnz (global_State *g, int all) {
GCObject *curr;
GCObject **p = &g->finobj;
GCObject **lastnext = findlast(&g->tobefnz);
while ((curr = *p) != g->finobjold) { /* traverse all finalizable objects */
lua_assert(tofinalize(curr));
if (!(iswhite(curr) || all)) /* not being collected? */
p = &curr->next; /* don't bother with it */
else {
if (curr == g->finobjsur) /* removing 'finobjsur'? */
g->finobjsur = curr->next; /* correct it */
*p = curr->next; /* remove 'curr' from 'finobj' list */
curr->next = *lastnext; /* link at the end of 'tobefnz' list */
*lastnext = curr;
lastnext = &curr->next;
}
}
}
/*
** if object 'o' has a finalizer, remove it from 'allgc' list (must
** search the list to find it) and link it in 'finobj' list.
*/
void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
global_State *g = G(L);
if (tofinalize(o) || /* obj. is already marked... */
gfasttm(g, mt, TM_GC) == NULL) /* or has no finalizer? */
return; /* nothing to be done */
else { /* move 'o' to 'finobj' list */
GCObject **p;
if (issweepphase(g)) {
makewhite(g, o); /* "sweep" object 'o' */
if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */
g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */
}
else { /* correct pointers into 'allgc' list, if needed */
if (o == g->survival)
g->survival = o->next;
if (o == g->old)
g->old = o->next;
if (o == g->reallyold)
g->reallyold = o->next;
}
/* search for pointer pointing to 'o' */
for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
*p = o->next; /* remove 'o' from 'allgc' list */
o->next = g->finobj; /* link it in 'finobj' list */
g->finobj = o;
l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */
}
}
/* }====================================================== */
/*
** {======================================================
** Generational Collector
** =======================================================
*/
static void setpause (global_State *g);
/* mask to erase all color bits, not changing gen-related stuff */
#define maskgencolors (~(bitmask(BLACKBIT) | WHITEBITS))
/*
** Sweep a list of objects, deleting dead ones and turning
** the non dead to old (without changing their colors).
*/
static void sweep2old (lua_State *L, GCObject **p) {
GCObject *curr;
while ((curr = *p) != NULL) {
if (iswhite(curr)) { /* is 'curr' dead? */
lua_assert(isdead(G(L), curr));
*p = curr->next; /* remove 'curr' from list */
freeobj(L, curr); /* erase 'curr' */
}
else { /* all surviving objects become old */
setage(curr, G_OLD);
p = &curr->next; /* go to next element */
}
}
}
/*
** Sweep for generational mode. Delete dead objects. (Because the
** collection is not incremental, there are no "new white" objects
** during the sweep. So, any white object must be dead.) For
** non-dead objects, advance their ages and clear the color of
** new objects. (Old objects keep their colors.)
*/
static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
GCObject *limit) {
static lu_byte nextage[] = {
G_SURVIVAL, /* from G_NEW */
G_OLD1, /* from G_SURVIVAL */
G_OLD1, /* from G_OLD0 */
G_OLD, /* from G_OLD1 */
G_OLD, /* from G_OLD (do not change) */
G_TOUCHED1, /* from G_TOUCHED1 (do not change) */
G_TOUCHED2 /* from G_TOUCHED2 (do not change) */
};
int white = luaC_white(g);
GCObject *curr;
while ((curr = *p) != limit) {
if (iswhite(curr)) { /* is 'curr' dead? */
lua_assert(!isold(curr) && isdead(g, curr));
*p = curr->next; /* remove 'curr' from list */
freeobj(L, curr); /* erase 'curr' */
}
else { /* correct mark and age */
if (getage(curr) == G_NEW)
curr->marked = cast_byte((curr->marked & maskgencolors) | white);
setage(curr, nextage[getage(curr)]);
p = &curr->next; /* go to next element */
}
}
return p;
}
/*
** Traverse a list making all its elements white and clearing their
** age.
*/
static void whitelist (global_State *g, GCObject *p) {
int white = luaC_white(g);
for (; p != NULL; p = p->next)
p->marked = cast_byte((p->marked & maskcolors) | white);
}
/*
** Correct a list of gray objects.
** Because this correction is done after sweeping, young objects might
** be turned white and still be in the list. They are only removed.
** For tables and userdata, advance 'touched1' to 'touched2'; 'touched2'
** objects become regular old and are removed from the list.
** For threads, just remove white ones from the list.
*/
static GCObject **correctgraylist (GCObject **p) {
GCObject *curr;
while ((curr = *p) != NULL) {
switch (curr->tt) {
case LUA_TTABLE: case LUA_TUSERDATA: {
GCObject **next = getgclist(curr);
if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */
lua_assert(isgray(curr));
gray2black(curr); /* make it black, for next barrier */
changeage(curr, G_TOUCHED1, G_TOUCHED2);
p = next; /* go to next element */
}
else { /* not touched in this cycle */
if (!iswhite(curr)) { /* not white? */
lua_assert(isold(curr));
if (getage(curr) == G_TOUCHED2) /* advance from G_TOUCHED2... */
changeage(curr, G_TOUCHED2, G_OLD); /* ... to G_OLD */
gray2black(curr); /* make it black */
}
/* else, object is white: just remove it from this list */
*p = *next; /* remove 'curr' from gray list */
}
break;
}
case LUA_TTHREAD: {
lua_State *th = gco2th(curr);
lua_assert(!isblack(th));
if (iswhite(th)) /* new object? */
*p = th->gclist; /* remove from gray list */
else /* old threads remain gray */
p = &th->gclist; /* go to next element */
break;
}
default: lua_assert(0); /* nothing more could be gray here */
}
}
return p;
}
/*
** Correct all gray lists, coalescing them into 'grayagain'.
*/
static void correctgraylists (global_State *g) {
GCObject **list = correctgraylist(&g->grayagain);
*list = g->weak; g->weak = NULL;
list = correctgraylist(list);
*list = g->allweak; g->allweak = NULL;
list = correctgraylist(list);
*list = g->ephemeron; g->ephemeron = NULL;
correctgraylist(list);
}
/*
** Mark 'OLD1' objects when starting a new young collection.
** Gray objects are already in some gray list, and so will be visited
** in the atomic step.
*/
static void markold (global_State *g, GCObject *from, GCObject *to) {
GCObject *p;
for (p = from; p != to; p = p->next) {
if (getage(p) == G_OLD1) {
lua_assert(!iswhite(p));
if (isblack(p)) {
black2gray(p); /* should be '2white', but gray works too */
reallymarkobject(g, p);
}
}
}
}
/*
** Finish a young-generation collection.
*/
static void finishgencycle (lua_State *L, global_State *g) {
correctgraylists(g);
checkSizes(L, g);
g->gcstate = GCSpropagate; /* skip restart */
if (!g->gcemergency)
callallpendingfinalizers(L, 1);
}
/*
** Does a young collection. First, mark 'OLD1' objects. (Only survival
** and "recent old" lists can contain 'OLD1' objects. New lists cannot
** contain 'OLD1' objects, at most 'OLD0' objects that were already
** visited when marked old.) Then does the atomic step. Then,
** sweep all lists and advance pointers. Finally, finish the collection.
*/
static void youngcollection (lua_State *L, global_State *g) {
GCObject **psurvival; /* to point to first non-dead survival object */
lua_assert(g->gcstate == GCSpropagate);
markold(g, g->survival, g->reallyold);
markold(g, g->finobj, g->finobjrold);
atomic(L);
/* sweep nursery and get a pointer to its last live element */
psurvival = sweepgen(L, g, &g->allgc, g->survival);
/* sweep 'survival' and 'old' */
sweepgen(L, g, psurvival, g->reallyold);
g->reallyold = g->old;
g->old = *psurvival; /* 'survival' survivals are old now */
g->survival = g->allgc; /* all news are survivals */
/* repeat for 'finobj' lists */
psurvival = sweepgen(L, g, &g->finobj, g->finobjsur);
/* sweep 'survival' and 'old' */
sweepgen(L, g, psurvival, g->finobjrold);
g->finobjrold = g->finobjold;
g->finobjold = *psurvival; /* 'survival' survivals are old now */
g->finobjsur = g->finobj; /* all news are survivals */
sweepgen(L, g, &g->tobefnz, NULL);
finishgencycle(L, g);
}
/*
** Enter generational mode. Must go until the end of an atomic cycle
** to ensure that all threads are in the gray list. Then, turn all
** objects into old and finishes the collection.
*/
static void entergen (lua_State *L, global_State *g) {
luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */
luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
atomic(L);
/* sweep all elements making them old */
sweep2old(L, &g->allgc);
/* everything alive now is old */
g->reallyold = g->old = g->survival = g->allgc;
/* repeat for 'finobj' lists */
sweep2old(L, &g->finobj);
g->finobjrold = g->finobjold = g->finobjsur = g->finobj;
sweep2old(L, &g->tobefnz);
g->gckind = KGC_GEN;
g->GCestimate = gettotalbytes(g); /* base for memory control */
finishgencycle(L, g);
}
/*
** Enter incremental mode. Turn all objects white, make all
** intermediate lists point to NULL (to avoid invalid pointers),
** and go to pause state.
*/
static void enterinc (global_State *g) {
whitelist(g, g->allgc);
g->reallyold = g->old = g->survival = NULL;
whitelist(g, g->finobj);
whitelist(g, g->tobefnz);
g->finobjrold = g->finobjold = g->finobjsur = NULL;
g->gcstate = GCSpause;
g->gckind = KGC_INC;
}
/*
** Change collector mode to 'newmode'.
*/
void luaC_changemode (lua_State *L, int newmode) {
global_State *g = G(L);
if (newmode != g->gckind) {
if (newmode == KGC_GEN) /* entering generational mode? */
entergen(L, g);
else
enterinc(g); /* entering incremental mode */
}
}
/*
** Does a full collection in generational mode.
*/
static void fullgen (lua_State *L, global_State *g) {
enterinc(g);
entergen(L, g);
}
/*
** Does a generational "step". If memory grows 'genmajormul'% larger
** than last major collection (kept in 'g->GCestimate'), does a major
** collection. Otherwise, does a minor collection and set debt to make
** another collection when memory grows 'genminormul'% larger.
** When it does a major collection, it then checks whether it could
** reclaim at least ?? memory. If not, it sets a long pause for the
** next collection. (Therefore, the next collection will be a major
** one, too.)
** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
** in that case, always do a minor collection.
*/
static void genstep (lua_State *L, global_State *g) {
lu_mem majorbase = g->GCestimate; /* memory after last major collection */
lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul);
lu_mem memnew = gettotalbytes(g);
if (g->GCdebt > 0 && memnew > majorbase + majorinc) {
fullgen(L, g);
memnew = gettotalbytes(g);
if (memnew < majorbase + (majorinc / 2)) {
/* collected at least half of memory growth since last major
collection; go back to minor collections */
luaE_setdebt(g, -(cast(l_mem, (memnew / 100)) * g->genminormul));
}
else {
/* memory seems to be growing; do a long wait for next (major)
collection */
setpause(g);
}
}
else {
youngcollection(L, g);
memnew = gettotalbytes(g);
luaE_setdebt(g, -(cast(l_mem, (memnew / 100)) * g->genminormul));
g->GCestimate = majorbase; /* preserve base value */
}
}
/* }====================================================== */
/*
** {======================================================
** GC control
** =======================================================
*/
/*
** Set the "time" to wait before starting a new GC cycle; cycle will
** start when memory use hits the threshold of ('estimate' * pause /
** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
** because Lua cannot even start with less than PAUSEADJ bytes).
*/
static void setpause (global_State *g) {
l_mem threshold, debt;
int pause = getgcparam(g->gcpause);
l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */
lua_assert(estimate > 0);
threshold = (pause < MAX_LMEM / estimate) /* overflow? */
? estimate * pause /* no overflow */
: MAX_LMEM; /* overflow; truncate to maximum */
debt = gettotalbytes(g) - threshold;
if (debt > 0) debt = 0;
luaE_setdebt(g, debt);
}
/*
** Enter first sweep phase.
** The call to 'sweeptolive' makes the pointer point to an object
** inside the list (instead of to the header), so that the real sweep do
** not need to skip objects created between "now" and the start of the
** real sweep.
*/
static void entersweep (lua_State *L) {
global_State *g = G(L);
g->gcstate = GCSswpallgc;
lua_assert(g->sweepgc == NULL);
g->sweepgc = sweeptolive(L, &g->allgc);
}
/*
** Delete all objects in list 'p' until (but not including) object
** 'limit'.
*/
static void deletelist (lua_State *L, GCObject *p, GCObject *limit) {
while (p != limit) {
GCObject *next = p->next;
freeobj(L, p);
p = next;
}
}
/*
** Call all finalizers of the objects in the given Lua state, and
** then free all objects, except for the main thread.
*/
void luaC_freeallobjects (lua_State *L) {
global_State *g = G(L);
luaC_changemode(L, KGC_INC);
separatetobefnz(g, 1); /* separate all objects with finalizers */
lua_assert(g->finobj == NULL);
callallpendingfinalizers(L, 0);
deletelist(L, g->allgc, obj2gco(g->mainthread));
deletelist(L, g->finobj, NULL);
deletelist(L, g->fixedgc, NULL); /* collect fixed objects */
lua_assert(g->strt.nuse == 0);
28 years ago
}
static lu_mem atomic (lua_State *L) {
global_State *g = G(L);
lu_mem work = 0;
GCObject *origweak, *origall;
GCObject *grayagain = g->grayagain; /* save original list */
g->grayagain = NULL;
lua_assert(g->ephemeron == NULL && g->weak == NULL);
lua_assert(!iswhite(g->mainthread));
g->gcstate = GCSatomic;
markobject(g, L); /* mark running thread */
/* registry and global metatables may be changed by API */
markvalue(g, &g->l_registry);
markmt(g); /* mark global metatables */
/* remark occasional upvalues of (maybe) dead threads */
work += remarkupvals(g);
work += propagateall(g); /* propagate changes */
g->gray = grayagain;
work += propagateall(g); /* traverse 'grayagain' list */
convergeephemerons(g);
/* at this point, all strongly accessible objects are marked. */
/* Clear values from weak tables, before checking finalizers */
clearbyvalues(g, g->weak, NULL);
clearbyvalues(g, g->allweak, NULL);
origweak = g->weak; origall = g->allweak;
separatetobefnz(g, 0); /* separate objects to be finalized */
work += markbeingfnz(g); /* mark objects that will be finalized */
work += propagateall(g); /* remark, to propagate 'resurrection' */
convergeephemerons(g);
/* at this point, all resurrected objects are marked. */
/* remove dead objects from weak tables */
clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */
clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */
/* clear values from resurrected weak tables */
clearbyvalues(g, g->weak, origweak);
clearbyvalues(g, g->allweak, origall);
luaS_clearcache(g);
g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */
lua_assert(g->gray == NULL);
return work; /* estimate of slots marked by 'atomic' */
}
static int sweepstep (lua_State *L, global_State *g,
int nextstate, GCObject **nextlist) {
if (g->sweepgc) {
l_mem olddebt = g->GCdebt;
int count;
g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count);
g->GCestimate += g->GCdebt - olddebt; /* update estimate */
return count;
}
else { /* enter next state */
g->gcstate = nextstate;
g->sweepgc = nextlist;
return 0; /* no work done */
}
}
static lu_mem singlestep (lua_State *L) {
global_State *g = G(L);
switch (g->gcstate) {
case GCSpause: {
restartcollection(g);
g->gcstate = GCSpropagate;
return 1;
}
case GCSpropagate: {
if (g->gray == NULL) { /* no more gray objects? */
g->gcstate = GCSenteratomic; /* finish propagate phase */
return 0;
}
else
return propagatemark(g); /* traverse one gray object */
}
case GCSenteratomic: {
lu_mem work = propagateall(g); /* make sure gray list is empty */
work += atomic(L); /* work is what was traversed by 'atomic' */
entersweep(L);
g->GCestimate = gettotalbytes(g); /* first estimate */;
return work;
}
case GCSswpallgc: { /* sweep "regular" objects */
return sweepstep(L, g, GCSswpfinobj, &g->finobj);
}
case GCSswpfinobj: { /* sweep objects with finalizers */
return sweepstep(L, g, GCSswptobefnz, &g->tobefnz);
}
case GCSswptobefnz: { /* sweep objects to be finalized */
return sweepstep(L, g, GCSswpend, NULL);
}
case GCSswpend: { /* finish sweeps */
checkSizes(L, g);
g->gcstate = GCScallfin;
return 0;
}
case GCScallfin: { /* call remaining finalizers */
if (g->tobefnz && !g->gcemergency) {
int n = runafewfinalizers(L, GCFINMAX);
return n * GCFINALIZECOST;
}
else { /* emergency mode or no more finalizers */
g->gcstate = GCSpause; /* finish collection */
return 0;
}
}
default: lua_assert(0); return 0;
}
}
/*
** advances the garbage collector until it reaches a state allowed
** by 'statemask'
*/
void luaC_runtilstate (lua_State *L, int statesmask) {
global_State *g = G(L);
while (!testbit(statesmask, g->gcstate))
singlestep(L);
}
/*
** Performs a basic incremental step. The debt and step size are
** converted from bytes to "units of work"; then the function loops
** running single steps until adding that many units of work or
** finishing a cycle (pause state). Finally, it sets the debt that
** controls when next step will be performed.
*/
static void incstep (lua_State *L, global_State *g) {
int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */
l_mem debt = (g->GCdebt / WORK2MEM) * stepmul;
l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem))
? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul
: MAX_LMEM; /* overflow; keep maximum value */
do { /* repeat until pause or enough "credit" (negative debt) */
lu_mem work = singlestep(L); /* perform one single step */
debt -= work;
} while (debt > -stepsize && g->gcstate != GCSpause);
if (g->gcstate == GCSpause)
setpause(g); /* pause until next cycle */
else {
debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */
luaE_setdebt(g, debt);
}
}
/*
** performs a basic GC step if collector is running
*/
void luaC_step (lua_State *L) {
global_State *g = G(L);
if (g->gcrunning) { /* running? */
if (g->gckind == KGC_INC)
incstep(L, g);
else
genstep(L, g);
}
}
/*
** Perform a full collection in incremental mode.
** Before running the collection, check 'keepinvariant'; if it is true,
** there may be some objects marked as black, so the collector has
** to sweep all objects to turn them back to white (as white has not
** changed, nothing will be collected).
*/
static void fullinc (lua_State *L, global_State *g) {
if (keepinvariant(g)) /* black objects? */
entersweep(L); /* sweep everything to turn them back to white */
/* finish any pending sweep phase to start a new cycle */
luaC_runtilstate(L, bitmask(GCSpause));
luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */
/* estimate must be correct after a full GC cycle */
lua_assert(g->GCestimate == gettotalbytes(g));
luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */
setpause(g);
}
/*
** Performs a full GC cycle; if 'isemergency', set a flag to avoid
** some operations which could change the interpreter state in some
** unexpected ways (running finalizers and shrinking some structures).
*/
void luaC_fullgc (lua_State *L, int isemergency) {
global_State *g = G(L);
lua_assert(!g->gcemergency);
g->gcemergency = isemergency; /* set flag */
if (g->gckind == KGC_INC)
fullinc(L, g);
else
fullgen(L, g);
g->gcemergency = 0;
}
/* }====================================================== */