|
|
|
/*
|
|
|
|
** $Id: ltable.c,v 2.139 2018/06/15 14:14:20 roberto Exp roberto $
|
|
|
|
** Lua tables (hash)
|
|
|
|
** See Copyright Notice in lua.h
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define ltable_c
|
|
|
|
#define LUA_CORE
|
|
|
|
|
|
|
|
#include "lprefix.h"
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Implementation of tables (aka arrays, objects, or hash tables).
|
|
|
|
** Tables keep its elements in two parts: an array part and a hash part.
|
|
|
|
** Non-negative integer keys are all candidates to be kept in the array
|
|
|
|
** part. The actual size of the array is the largest 'n' such that
|
|
|
|
** more than half the slots between 1 and n are in use.
|
|
|
|
** Hash uses a mix of chained scatter table with Brent's variation.
|
|
|
|
** A main invariant of these tables is that, if an element is not
|
|
|
|
** in its main position (i.e. the 'original' position that its hash gives
|
|
|
|
** to it), then the colliding element is in its own main position.
|
|
|
|
** Hence even when the load factor reaches 100%, performance remains good.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <limits.h>
|
|
|
|
|
|
|
|
#include "lua.h"
|
|
|
|
|
|
|
|
#include "ldebug.h"
|
|
|
|
#include "ldo.h"
|
|
|
|
#include "lgc.h"
|
|
|
|
#include "lmem.h"
|
|
|
|
#include "lobject.h"
|
|
|
|
#include "lstate.h"
|
|
|
|
#include "lstring.h"
|
|
|
|
#include "ltable.h"
|
|
|
|
#include "lvm.h"
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** MAXABITS is the largest integer such that MAXASIZE fits in an
|
|
|
|
** unsigned int.
|
|
|
|
*/
|
|
|
|
#define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** MAXASIZE is the maximum size of the array part. It is the minimum
|
|
|
|
** between 2^MAXABITS and the maximum size such that, measured in bytes,
|
|
|
|
** it fits in a 'size_t'.
|
|
|
|
*/
|
|
|
|
#define MAXASIZE luaM_limitN(1u << MAXABITS, TValue)
|
|
|
|
|
|
|
|
/*
|
|
|
|
** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
|
|
|
|
** signed int.
|
|
|
|
*/
|
|
|
|
#define MAXHBITS (MAXABITS - 1)
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** MAXHSIZE is the maximum size of the hash part. It is the minimum
|
|
|
|
** between 2^MAXHBITS and the maximum size such that, measured in bytes,
|
|
|
|
** it fits in a 'size_t'.
|
|
|
|
*/
|
|
|
|
#define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node)
|
|
|
|
|
|
|
|
|
|
|
|
#define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
|
|
|
|
|
|
|
|
#define hashstr(t,str) hashpow2(t, (str)->hash)
|
|
|
|
#define hashboolean(t,p) hashpow2(t, p)
|
|
|
|
#define hashint(t,i) hashpow2(t, i)
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** for some types, it is better to avoid modulus by power of 2, as
|
|
|
|
** they tend to have many 2 factors.
|
|
|
|
*/
|
|
|
|
#define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
|
|
|
|
|
|
|
|
|
|
|
|
#define hashpointer(t,p) hashmod(t, point2uint(p))
|
|
|
|
|
|
|
|
|
|
|
|
#define dummynode (&dummynode_)
|
|
|
|
|
|
|
|
static const Node dummynode_ = {
|
|
|
|
{{NULL}, LUA_TEMPTY, /* value's value and type */
|
|
|
|
LUA_TNIL, 0, {NULL}} /* key type, next, and key value */
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
static const TValue absentkey = {ABSTKEYCONSTANT};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Hash for floating-point numbers.
|
|
|
|
** The main computation should be just
|
|
|
|
** n = frexp(n, &i); return (n * INT_MAX) + i
|
|
|
|
** but there are some numerical subtleties.
|
|
|
|
** In a two-complement representation, INT_MAX does not has an exact
|
|
|
|
** representation as a float, but INT_MIN does; because the absolute
|
|
|
|
** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
|
|
|
|
** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
|
|
|
|
** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
|
|
|
|
** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
|
|
|
|
** INT_MIN.
|
|
|
|
*/
|
|
|
|
#if !defined(l_hashfloat)
|
|
|
|
static int l_hashfloat (lua_Number n) {
|
|
|
|
int i;
|
|
|
|
lua_Integer ni;
|
|
|
|
n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
|
|
|
|
if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
|
|
|
|
lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
else { /* normal case */
|
|
|
|
unsigned int u = cast_uint(i) + cast_uint(ni);
|
|
|
|
return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** returns the 'main' position of an element in a table (that is,
|
|
|
|
** the index of its hash value). The key comes broken (tag in 'ktt'
|
|
|
|
** and value in 'vkl') so that we can call it on keys inserted into
|
|
|
|
** nodes.
|
|
|
|
*/
|
|
|
|
static Node *mainposition (const Table *t, int ktt, const Value *kvl) {
|
|
|
|
switch (withvariant(ktt)) {
|
|
|
|
case LUA_TNUMINT:
|
|
|
|
return hashint(t, ivalueraw(*kvl));
|
|
|
|
case LUA_TNUMFLT:
|
|
|
|
return hashmod(t, l_hashfloat(fltvalueraw(*kvl)));
|
|
|
|
case LUA_TSHRSTR:
|
|
|
|
return hashstr(t, tsvalueraw(*kvl));
|
|
|
|
case LUA_TLNGSTR:
|
|
|
|
return hashpow2(t, luaS_hashlongstr(tsvalueraw(*kvl)));
|
|
|
|
case LUA_TBOOLEAN:
|
|
|
|
return hashboolean(t, bvalueraw(*kvl));
|
|
|
|
case LUA_TLIGHTUSERDATA:
|
|
|
|
return hashpointer(t, pvalueraw(*kvl));
|
|
|
|
case LUA_TLCF:
|
|
|
|
return hashpointer(t, fvalueraw(*kvl));
|
|
|
|
default:
|
|
|
|
return hashpointer(t, gcvalueraw(*kvl));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static Node *mainpositionTV (const Table *t, const TValue *key) {
|
|
|
|
return mainposition(t, rawtt(key), valraw(key));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Check whether key 'k1' is equal to the key in node 'n2'.
|
|
|
|
** This equality is raw, so there are no metamethods. Floats
|
|
|
|
** with integer values have been normalized, so integers cannot
|
|
|
|
** be equal to floats. It is assumed that 'eqshrstr' is simply
|
|
|
|
** pointer equality, so that short strings are handled in the
|
|
|
|
** default case.
|
|
|
|
*/
|
|
|
|
static int equalkey (const TValue *k1, const Node *n2) {
|
|
|
|
if (rawtt(k1) != keytt(n2)) /* not the same variants? */
|
|
|
|
return 0; /* cannot be same key */
|
|
|
|
switch (ttypetag(k1)) {
|
|
|
|
case LUA_TNIL:
|
|
|
|
return 1;
|
|
|
|
case LUA_TNUMINT:
|
|
|
|
return (ivalue(k1) == keyival(n2));
|
|
|
|
case LUA_TNUMFLT:
|
|
|
|
return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
|
|
|
|
case LUA_TBOOLEAN:
|
|
|
|
return bvalue(k1) == bvalueraw(keyval(n2));
|
|
|
|
case LUA_TLIGHTUSERDATA:
|
|
|
|
return pvalue(k1) == pvalueraw(keyval(n2));
|
|
|
|
case LUA_TLCF:
|
|
|
|
return fvalue(k1) == fvalueraw(keyval(n2));
|
|
|
|
case LUA_TLNGSTR:
|
|
|
|
return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
|
|
|
|
default:
|
|
|
|
return gcvalue(k1) == gcvalueraw(keyval(n2));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** True if value of 'alimit' is equal to the real size of the array
|
|
|
|
** part of table 't'. (Otherwise, the array part must be larger than
|
|
|
|
** 'alimit'.)
|
|
|
|
*/
|
|
|
|
#define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit))
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Returns the real size of the 'array' array
|
|
|
|
*/
|
|
|
|
LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
|
|
|
|
if (limitequalsasize(t))
|
|
|
|
return t->alimit; /* this is the size */
|
|
|
|
else {
|
|
|
|
unsigned int size = t->alimit;
|
|
|
|
/* compute the smallest power of 2 not smaller than 'n' */
|
|
|
|
size |= (size >> 1);
|
|
|
|
size |= (size >> 2);
|
|
|
|
size |= (size >> 4);
|
|
|
|
size |= (size >> 8);
|
|
|
|
size |= (size >> 16);
|
|
|
|
#if (INT_MAX >> 30 >> 1) > 0
|
|
|
|
size |= (size >> 32); /* int has more than 32 bits */
|
|
|
|
#endif
|
|
|
|
size++;
|
|
|
|
lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
|
|
|
|
return size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Check whether real size of the array is a power of 2.
|
|
|
|
** (If it is not, 'alimit' cannot be changed to any other value
|
|
|
|
** without changing the real size.)
|
|
|
|
*/
|
|
|
|
static int ispow2realasize (const Table *t) {
|
|
|
|
return (!isrealasize(t) || ispow2(t->alimit));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static unsigned int setlimittosize (Table *t) {
|
|
|
|
t->alimit = luaH_realasize(t);
|
|
|
|
setrealasize(t);
|
|
|
|
return t->alimit;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#define limitasasize(t) check_exp(isrealasize(t), t->alimit)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** "Generic" get version. (Not that generic: not valid for integers,
|
|
|
|
** which may be in array part, nor for floats with integral values.)
|
|
|
|
*/
|
|
|
|
static const TValue *getgeneric (Table *t, const TValue *key) {
|
|
|
|
Node *n = mainpositionTV(t, key);
|
|
|
|
for (;;) { /* check whether 'key' is somewhere in the chain */
|
|
|
|
if (equalkey(key, n))
|
|
|
|
return gval(n); /* that's it */
|
|
|
|
else {
|
|
|
|
int nx = gnext(n);
|
|
|
|
if (nx == 0)
|
|
|
|
return &absentkey; /* not found */
|
|
|
|
n += nx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** returns the index for 'k' if 'k' is an appropriate key to live in
|
|
|
|
** the array part of a table, 0 otherwise.
|
|
|
|
*/
|
|
|
|
static unsigned int arrayindex (lua_Integer k) {
|
|
|
|
if (0 < k && l_castS2U(k) <= MAXASIZE)
|
|
|
|
return cast_uint(k); /* 'key' is an appropriate array index */
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** returns the index of a 'key' for table traversals. First goes all
|
|
|
|
** elements in the array part, then elements in the hash part. The
|
|
|
|
** beginning of a traversal is signaled by 0.
|
|
|
|
*/
|
|
|
|
static unsigned int findindex (lua_State *L, Table *t, TValue *key,
|
|
|
|
unsigned int asize) {
|
|
|
|
unsigned int i;
|
|
|
|
if (ttisnil(key)) return 0; /* first iteration */
|
|
|
|
i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
|
|
|
|
if (i != 0 && i <= asize) /* is 'key' inside array part? */
|
|
|
|
return i; /* yes; that's the index */
|
|
|
|
else {
|
|
|
|
const TValue *n = getgeneric(t, key);
|
|
|
|
if (unlikely(isabstkey(n)))
|
|
|
|
luaG_runerror(L, "invalid key to 'next'"); /* key not found */
|
|
|
|
i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */
|
|
|
|
/* hash elements are numbered after array ones */
|
|
|
|
return (i + 1) + asize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int luaH_next (lua_State *L, Table *t, StkId key) {
|
|
|
|
unsigned int asize = luaH_realasize(t);
|
|
|
|
unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */
|
|
|
|
for (; i < asize; i++) { /* try first array part */
|
|
|
|
if (!isempty(&t->array[i])) { /* a non-empty entry? */
|
|
|
|
setivalue(s2v(key), i + 1);
|
|
|
|
setobj2s(L, key + 1, &t->array[i]);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */
|
|
|
|
if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */
|
|
|
|
Node *n = gnode(t, i);
|
|
|
|
getnodekey(L, s2v(key), n);
|
|
|
|
setobj2s(L, key + 1, gval(n));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0; /* no more elements */
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void freehash (lua_State *L, Table *t) {
|
|
|
|
if (!isdummy(t))
|
|
|
|
luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** {=============================================================
|
|
|
|
** Rehash
|
|
|
|
** ==============================================================
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Compute the optimal size for the array part of table 't'. 'nums' is a
|
|
|
|
** "count array" where 'nums[i]' is the number of integers in the table
|
|
|
|
** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
|
|
|
|
** integer keys in the table and leaves with the number of keys that
|
|
|
|
** will go to the array part; return the optimal size. (The condition
|
|
|
|
** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
|
|
|
|
*/
|
|
|
|
static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
|
|
|
|
int i;
|
|
|
|
unsigned int twotoi; /* 2^i (candidate for optimal size) */
|
|
|
|
unsigned int a = 0; /* number of elements smaller than 2^i */
|
|
|
|
unsigned int na = 0; /* number of elements to go to array part */
|
|
|
|
unsigned int optimal = 0; /* optimal size for array part */
|
|
|
|
/* loop while keys can fill more than half of total size */
|
|
|
|
for (i = 0, twotoi = 1;
|
|
|
|
twotoi > 0 && *pna > twotoi / 2;
|
|
|
|
i++, twotoi *= 2) {
|
|
|
|
a += nums[i];
|
|
|
|
if (a > twotoi/2) { /* more than half elements present? */
|
|
|
|
optimal = twotoi; /* optimal size (till now) */
|
|
|
|
na = a; /* all elements up to 'optimal' will go to array part */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
|
|
|
|
*pna = na;
|
|
|
|
return optimal;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int countint (lua_Integer key, unsigned int *nums) {
|
|
|
|
unsigned int k = arrayindex(key);
|
|
|
|
if (k != 0) { /* is 'key' an appropriate array index? */
|
|
|
|
nums[luaO_ceillog2(k)]++; /* count as such */
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Count keys in array part of table 't': Fill 'nums[i]' with
|
|
|
|
** number of keys that will go into corresponding slice and return
|
|
|
|
** total number of non-nil keys.
|
|
|
|
*/
|
|
|
|
static unsigned int numusearray (const Table *t, unsigned int *nums) {
|
|
|
|
int lg;
|
|
|
|
unsigned int ttlg; /* 2^lg */
|
|
|
|
unsigned int ause = 0; /* summation of 'nums' */
|
|
|
|
unsigned int i = 1; /* count to traverse all array keys */
|
|
|
|
unsigned int asize = limitasasize(t); /* real array size */
|
|
|
|
/* traverse each slice */
|
|
|
|
for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
|
|
|
|
unsigned int lc = 0; /* counter */
|
|
|
|
unsigned int lim = ttlg;
|
|
|
|
if (lim > asize) {
|
|
|
|
lim = asize; /* adjust upper limit */
|
|
|
|
if (i > lim)
|
|
|
|
break; /* no more elements to count */
|
|
|
|
}
|
|
|
|
/* count elements in range (2^(lg - 1), 2^lg] */
|
|
|
|
for (; i <= lim; i++) {
|
|
|
|
if (!isempty(&t->array[i-1]))
|
|
|
|
lc++;
|
|
|
|
}
|
|
|
|
nums[lg] += lc;
|
|
|
|
ause += lc;
|
|
|
|
}
|
|
|
|
return ause;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
|
|
|
|
int totaluse = 0; /* total number of elements */
|
|
|
|
int ause = 0; /* elements added to 'nums' (can go to array part) */
|
|
|
|
int i = sizenode(t);
|
|
|
|
while (i--) {
|
|
|
|
Node *n = &t->node[i];
|
|
|
|
if (!isempty(gval(n))) {
|
|
|
|
if (keyisinteger(n))
|
|
|
|
ause += countint(keyival(n), nums);
|
|
|
|
totaluse++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*pna += ause;
|
|
|
|
return totaluse;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Creates an array for the hash part of a table with the given
|
|
|
|
** size, or reuses the dummy node if size is zero.
|
|
|
|
** The computation for size overflow is in two steps: the first
|
|
|
|
** comparison ensures that the shift in the second one does not
|
|
|
|
** overflow.
|
|
|
|
*/
|
|
|
|
static void setnodevector (lua_State *L, Table *t, unsigned int size) {
|
|
|
|
if (size == 0) { /* no elements to hash part? */
|
|
|
|
t->node = cast(Node *, dummynode); /* use common 'dummynode' */
|
|
|
|
t->lsizenode = 0;
|
|
|
|
t->lastfree = NULL; /* signal that it is using dummy node */
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
int i;
|
|
|
|
int lsize = luaO_ceillog2(size);
|
|
|
|
if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
|
|
|
|
luaG_runerror(L, "table overflow");
|
|
|
|
size = twoto(lsize);
|
|
|
|
t->node = luaM_newvector(L, size, Node);
|
|
|
|
for (i = 0; i < (int)size; i++) {
|
|
|
|
Node *n = gnode(t, i);
|
|
|
|
gnext(n) = 0;
|
|
|
|
setnilkey(n);
|
|
|
|
setempty(gval(n));
|
|
|
|
}
|
|
|
|
t->lsizenode = cast_byte(lsize);
|
|
|
|
t->lastfree = gnode(t, size); /* all positions are free */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** (Re)insert all elements from the hash part of 'ot' into table 't'.
|
|
|
|
*/
|
|
|
|
static void reinsert (lua_State *L, Table *ot, Table *t) {
|
|
|
|
int j;
|
|
|
|
int size = sizenode(ot);
|
|
|
|
for (j = 0; j < size; j++) {
|
|
|
|
Node *old = gnode(ot, j);
|
|
|
|
if (!isempty(gval(old))) {
|
|
|
|
/* doesn't need barrier/invalidate cache, as entry was
|
|
|
|
already present in the table */
|
|
|
|
TValue k;
|
|
|
|
getnodekey(L, &k, old);
|
|
|
|
setobjt2t(L, luaH_set(L, t, &k), gval(old));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Exchange the hash part of 't1' and 't2'.
|
|
|
|
*/
|
|
|
|
static void exchangehashpart (Table *t1, Table *t2) {
|
|
|
|
lu_byte lsizenode = t1->lsizenode;
|
|
|
|
Node *node = t1->node;
|
|
|
|
Node *lastfree = t1->lastfree;
|
|
|
|
t1->lsizenode = t2->lsizenode;
|
|
|
|
t1->node = t2->node;
|
|
|
|
t1->lastfree = t2->lastfree;
|
|
|
|
t2->lsizenode = lsizenode;
|
|
|
|
t2->node = node;
|
|
|
|
t2->lastfree = lastfree;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Resize table 't' for the new given sizes. Both allocations (for
|
|
|
|
** the hash part and for the array part) can fail, which creates some
|
|
|
|
** subtleties. If the first allocation, for the hash part, fails, an
|
|
|
|
** error is raised and that is it. Otherwise, it copies the elements from
|
|
|
|
** the shrinking part of the array (if it is shrinking) into the new
|
|
|
|
** hash. Then it reallocates the array part. If that fails, the table
|
|
|
|
** is in its original state; the function frees the new hash part and then
|
|
|
|
** raises the allocation error. Otherwise, it sets the new hash part
|
|
|
|
** into the table, initializes the new part of the array (if any) with
|
|
|
|
** nils and reinserts the elements of the old hash back into the new
|
|
|
|
** parts of the table.
|
|
|
|
*/
|
|
|
|
void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
|
|
|
|
unsigned int nhsize) {
|
|
|
|
unsigned int i;
|
|
|
|
Table newt; /* to keep the new hash part */
|
|
|
|
unsigned int oldasize = setlimittosize(t);
|
|
|
|
TValue *newarray;
|
|
|
|
/* create new hash part with appropriate size into 'newt' */
|
|
|
|
setnodevector(L, &newt, nhsize);
|
|
|
|
if (newasize < oldasize) { /* will array shrink? */
|
|
|
|
t->alimit = newasize; /* pretend array has new size... */
|
|
|
|
exchangehashpart(t, &newt); /* and new hash */
|
|
|
|
/* re-insert into the new hash the elements from vanishing slice */
|
|
|
|
for (i = newasize; i < oldasize; i++) {
|
|
|
|
if (!isempty(&t->array[i]))
|
|
|
|
luaH_setint(L, t, i + 1, &t->array[i]);
|
|
|
|
}
|
|
|
|
t->alimit = oldasize; /* restore current size... */
|
|
|
|
exchangehashpart(t, &newt); /* and hash (in case of errors) */
|
|
|
|
}
|
|
|
|
/* allocate new array */
|
|
|
|
newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
|
|
|
|
if (unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */
|
|
|
|
freehash(L, &newt); /* release new hash part */
|
|
|
|
luaM_error(L); /* raise error (with array unchanged) */
|
|
|
|
}
|
|
|
|
/* allocation ok; initialize new part of the array */
|
|
|
|
exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */
|
|
|
|
t->array = newarray; /* set new array part */
|
|
|
|
t->alimit = newasize;
|
|
|
|
for (i = oldasize; i < newasize; i++) /* clear new slice of the array */
|
|
|
|
setempty(&t->array[i]);
|
|
|
|
/* re-insert elements from old hash part into new parts */
|
|
|
|
reinsert(L, &newt, t); /* 'newt' now has the old hash */
|
|
|
|
freehash(L, &newt); /* free old hash part */
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
|
|
|
|
int nsize = allocsizenode(t);
|
|
|
|
luaH_resize(L, t, nasize, nsize);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
|
|
|
|
*/
|
|
|
|
static void rehash (lua_State *L, Table *t, const TValue *ek) {
|
|
|
|
unsigned int asize; /* optimal size for array part */
|
|
|
|
unsigned int na; /* number of keys in the array part */
|
|
|
|
unsigned int nums[MAXABITS + 1];
|
|
|
|
int i;
|
|
|
|
int totaluse;
|
|
|
|
for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
|
|
|
|
setlimittosize(t);
|
|
|
|
na = numusearray(t, nums); /* count keys in array part */
|
|
|
|
totaluse = na; /* all those keys are integer keys */
|
|
|
|
totaluse += numusehash(t, nums, &na); /* count keys in hash part */
|
|
|
|
/* count extra key */
|
|
|
|
if (ttisinteger(ek))
|
|
|
|
na += countint(ivalue(ek), nums);
|
|
|
|
totaluse++;
|
|
|
|
/* compute new size for array part */
|
|
|
|
asize = computesizes(nums, &na);
|
|
|
|
/* resize the table to new computed sizes */
|
|
|
|
luaH_resize(L, t, asize, totaluse - na);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** }=============================================================
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
Table *luaH_new (lua_State *L) {
|
|
|
|
GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
|
|
|
|
Table *t = gco2t(o);
|
|
|
|
t->metatable = NULL;
|
|
|
|
t->flags = cast_byte(~0);
|
|
|
|
t->array = NULL;
|
|
|
|
t->alimit = 0;
|
|
|
|
setnodevector(L, t, 0);
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void luaH_free (lua_State *L, Table *t) {
|
|
|
|
freehash(L, t);
|
|
|
|
luaM_freearray(L, t->array, luaH_realasize(t));
|
|
|
|
luaM_free(L, t);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static Node *getfreepos (Table *t) {
|
|
|
|
if (!isdummy(t)) {
|
|
|
|
while (t->lastfree > t->node) {
|
|
|
|
t->lastfree--;
|
|
|
|
if (keyisnil(t->lastfree))
|
|
|
|
return t->lastfree;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return NULL; /* could not find a free place */
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** inserts a new key into a hash table; first, check whether key's main
|
|
|
|
** position is free. If not, check whether colliding node is in its main
|
|
|
|
** position or not: if it is not, move colliding node to an empty place and
|
|
|
|
** put new key in its main position; otherwise (colliding node is in its main
|
|
|
|
** position), new key goes to an empty position.
|
|
|
|
*/
|
|
|
|
TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
|
|
|
|
Node *mp;
|
|
|
|
TValue aux;
|
|
|
|
if (unlikely(ttisnil(key)))
|
|
|
|
luaG_runerror(L, "table index is nil");
|
|
|
|
else if (ttisfloat(key)) {
|
|
|
|
lua_Number f = fltvalue(key);
|
|
|
|
lua_Integer k;
|
|
|
|
if (luaV_flttointeger(f, &k, 0)) { /* does key fit in an integer? */
|
|
|
|
setivalue(&aux, k);
|
|
|
|
key = &aux; /* insert it as an integer */
|
|
|
|
}
|
|
|
|
else if (unlikely(luai_numisnan(f)))
|
|
|
|
luaG_runerror(L, "table index is NaN");
|
|
|
|
}
|
|
|
|
mp = mainpositionTV(t, key);
|
|
|
|
if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */
|
|
|
|
Node *othern;
|
|
|
|
Node *f = getfreepos(t); /* get a free place */
|
|
|
|
if (f == NULL) { /* cannot find a free place? */
|
|
|
|
rehash(L, t, key); /* grow table */
|
|
|
|
/* whatever called 'newkey' takes care of TM cache */
|
|
|
|
return luaH_set(L, t, key); /* insert key into grown table */
|
|
|
|
}
|
|
|
|
lua_assert(!isdummy(t));
|
|
|
|
othern = mainposition(t, keytt(mp), &keyval(mp));
|
|
|
|
if (othern != mp) { /* is colliding node out of its main position? */
|
|
|
|
/* yes; move colliding node into free position */
|
|
|
|
while (othern + gnext(othern) != mp) /* find previous */
|
|
|
|
othern += gnext(othern);
|
|
|
|
gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
|
|
|
|
*f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
|
|
|
|
if (gnext(mp) != 0) {
|
|
|
|
gnext(f) += cast_int(mp - f); /* correct 'next' */
|
|
|
|
gnext(mp) = 0; /* now 'mp' is free */
|
|
|
|
}
|
|
|
|
setempty(gval(mp));
|
|
|
|
}
|
|
|
|
else { /* colliding node is in its own main position */
|
|
|
|
/* new node will go into free position */
|
|
|
|
if (gnext(mp) != 0)
|
|
|
|
gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
|
|
|
|
else lua_assert(gnext(f) == 0);
|
|
|
|
gnext(mp) = cast_int(f - mp);
|
|
|
|
mp = f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
setnodekey(L, mp, key);
|
|
|
|
luaC_barrierback(L, obj2gco(t), key);
|
|
|
|
lua_assert(isempty(gval(mp)));
|
|
|
|
return gval(mp);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Search function for integers. If integer is inside 'alimit', get it
|
|
|
|
** directly from the array part. Otherwise, if 'alimit' is not equal to
|
|
|
|
** the real size of the array, key still can be in the array part. In
|
|
|
|
** this case, try to avoid a call to 'luaH_realasize' when key is just
|
|
|
|
** one more than the limit (so that it can be incremented without
|
|
|
|
** changing the real size of the array).
|
|
|
|
*/
|
|
|
|
const TValue *luaH_getint (Table *t, lua_Integer key) {
|
|
|
|
if (l_castS2U(key) - 1u < t->alimit) /* (1 <= key && key <= t->alimit)? */
|
|
|
|
return &t->array[key - 1];
|
|
|
|
else if (!limitequalsasize(t) && /* key still may be in the array part? */
|
|
|
|
(l_castS2U(key) == t->alimit + 1 ||
|
|
|
|
l_castS2U(key) - 1u < luaH_realasize(t))) {
|
|
|
|
t->alimit = cast_uint(key); /* probably '#t' is here now */
|
|
|
|
return &t->array[key - 1];
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
Node *n = hashint(t, key);
|
|
|
|
for (;;) { /* check whether 'key' is somewhere in the chain */
|
|
|
|
if (keyisinteger(n) && keyival(n) == key)
|
|
|
|
return gval(n); /* that's it */
|
|
|
|
else {
|
|
|
|
int nx = gnext(n);
|
|
|
|
if (nx == 0) break;
|
|
|
|
n += nx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return &absentkey;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** search function for short strings
|
|
|
|
*/
|
|
|
|
const TValue *luaH_getshortstr (Table *t, TString *key) {
|
|
|
|
Node *n = hashstr(t, key);
|
|
|
|
lua_assert(key->tt == LUA_TSHRSTR);
|
|
|
|
for (;;) { /* check whether 'key' is somewhere in the chain */
|
|
|
|
if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
|
|
|
|
return gval(n); /* that's it */
|
|
|
|
else {
|
|
|
|
int nx = gnext(n);
|
|
|
|
if (nx == 0)
|
|
|
|
return &absentkey; /* not found */
|
|
|
|
n += nx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const TValue *luaH_getstr (Table *t, TString *key) {
|
|
|
|
if (key->tt == LUA_TSHRSTR)
|
|
|
|
return luaH_getshortstr(t, key);
|
|
|
|
else { /* for long strings, use generic case */
|
|
|
|
TValue ko;
|
|
|
|
setsvalue(cast(lua_State *, NULL), &ko, key);
|
|
|
|
return getgeneric(t, &ko);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** main search function
|
|
|
|
*/
|
|
|
|
const TValue *luaH_get (Table *t, const TValue *key) {
|
|
|
|
switch (ttypetag(key)) {
|
|
|
|
case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key));
|
|
|
|
case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
|
|
|
|
case LUA_TNIL: return &absentkey;
|
|
|
|
case LUA_TNUMFLT: {
|
|
|
|
lua_Integer k;
|
|
|
|
if (luaV_flttointeger(fltvalue(key), &k, 0)) /* index is an integral? */
|
|
|
|
return luaH_getint(t, k); /* use specialized version */
|
|
|
|
/* else... */
|
|
|
|
} /* FALLTHROUGH */
|
|
|
|
default:
|
|
|
|
return getgeneric(t, key);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** beware: when using this function you probably need to check a GC
|
|
|
|
** barrier and invalidate the TM cache.
|
|
|
|
*/
|
|
|
|
TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
|
|
|
|
const TValue *p = luaH_get(t, key);
|
|
|
|
if (!isabstkey(p))
|
|
|
|
return cast(TValue *, p);
|
|
|
|
else return luaH_newkey(L, t, key);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
|
|
|
|
const TValue *p = luaH_getint(t, key);
|
|
|
|
TValue *cell;
|
|
|
|
if (!isabstkey(p))
|
|
|
|
cell = cast(TValue *, p);
|
|
|
|
else {
|
|
|
|
TValue k;
|
|
|
|
setivalue(&k, key);
|
|
|
|
cell = luaH_newkey(L, t, &k);
|
|
|
|
}
|
|
|
|
setobj2t(L, cell, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Try to find a boundary in the hash part of table 't'. From the
|
|
|
|
** caller, we know that 'j' is zero or present and that 'j + 1' is
|
|
|
|
** present. We want to find a larger key that is absent from the
|
|
|
|
** table, so that we can do a binary search between the two keys to
|
|
|
|
** find a boundary. We keep doubling 'j' until we get an absent index.
|
|
|
|
** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
|
|
|
|
** absent, we are ready for the binary search. ('j', being max integer,
|
|
|
|
** is larger or equal to 'i', but it cannot be equal because it is
|
|
|
|
** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
|
|
|
|
** boundary. ('j + 1' cannot be a present integer key because it is
|
|
|
|
** not a valid integer in Lua.)
|
|
|
|
*/
|
|
|
|
static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
|
|
|
|
lua_Unsigned i;
|
|
|
|
if (j == 0) j++; /* the caller ensures 'j + 1' is present */
|
|
|
|
do {
|
|
|
|
i = j; /* 'i' is a present index */
|
|
|
|
if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
|
|
|
|
j *= 2;
|
|
|
|
else {
|
|
|
|
j = LUA_MAXINTEGER;
|
|
|
|
if (isempty(luaH_getint(t, j))) /* t[j] not present? */
|
|
|
|
break; /* 'j' now is an absent index */
|
|
|
|
else /* weird case */
|
|
|
|
return j; /* well, max integer is a boundary... */
|
|
|
|
}
|
|
|
|
} while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */
|
|
|
|
/* i < j && t[i] present && t[j] absent */
|
|
|
|
while (j - i > 1u) { /* do a binary search between them */
|
|
|
|
lua_Unsigned m = (i + j) / 2;
|
|
|
|
if (isempty(luaH_getint(t, m))) j = m;
|
|
|
|
else i = m;
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static unsigned int binsearch (const TValue *array, unsigned int i,
|
|
|
|
unsigned int j) {
|
|
|
|
while (j - i > 1u) { /* binary search */
|
|
|
|
unsigned int m = (i + j) / 2;
|
|
|
|
if (isempty(&array[m - 1])) j = m;
|
|
|
|
else i = m;
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Try to find a boundary in table 't'. (A 'boundary' is an integer index
|
|
|
|
** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
|
|
|
|
** and 'maxinteger' if t[maxinteger] is present.)
|
|
|
|
** (In the next explanation, we use Lua indices, that is, with base 1.
|
|
|
|
** The code itself uses base 0 when indexing the array part of the table.)
|
|
|
|
** The code starts with 'limit', a position in the array part that may
|
|
|
|
** be a boundary.
|
|
|
|
** (1) If 't[limit]' is empty, there must be a boundary before it.
|
|
|
|
** As a common case (e.g., after 't[#t]=nil'), check whether 'hint-1'
|
|
|
|
** is present. If so, it is a boundary. Otherwise, do a binary search
|
|
|
|
** between 0 and limit to find a boundary. In both cases, try to
|
|
|
|
** use this boundary as the new 'limit', as a hint for the next call.
|
|
|
|
** (2) If 't[limit]' is not empty and the array has more elements
|
|
|
|
** after 'limit', try to find a boundary there. Again, try first
|
|
|
|
** the special case (which should be quite frequent) where 'limit+1'
|
|
|
|
** is empty, so that 'limit' is a boundary. Otherwise, check the
|
|
|
|
** last element of the array part (set it as a new limit). If it is empty,
|
|
|
|
** there must be a boundary between the old limit (present) and the new
|
|
|
|
** limit (absent), which is found with a binary search. (This boundary
|
|
|
|
** always can be a new limit.)
|
|
|
|
** (3) The last case is when there are no elements in the array part
|
|
|
|
** (limit == 0) or its last element (the new limit) is present.
|
|
|
|
** In this case, must check the hash part. If there is no hash part,
|
|
|
|
** the boundary is 0. Otherwise, if 'limit+1' is absent, 'limit' is
|
|
|
|
** a boundary. Finally, if 'limit+1' is present, call 'hash_search'
|
|
|
|
** to find a boundary in the hash part of the table. (In those
|
|
|
|
** cases, the boundary is not inside the array part, and therefore
|
|
|
|
** cannot be used as a new limit.)
|
|
|
|
*/
|
|
|
|
lua_Unsigned luaH_getn (Table *t) {
|
|
|
|
unsigned int limit = t->alimit;
|
|
|
|
if (limit > 0 && isempty(&t->array[limit - 1])) {
|
|
|
|
/* (1) there must be a boundary before 'limit' */
|
|
|
|
if (limit >= 2 && !isempty(&t->array[limit - 2])) {
|
|
|
|
/* 'limit - 1' is a boundary; can it be a new limit? */
|
|
|
|
if (ispow2realasize(t) && !ispow2(limit - 1)) {
|
|
|
|
t->alimit = limit - 1;
|
|
|
|
setnorealasize(t);
|
|
|
|
}
|
|
|
|
return limit - 1;
|
|
|
|
}
|
|
|
|
else { /* must search for a boundary in [0, limit] */
|
|
|
|
unsigned int boundary = binsearch(t->array, 0, limit);
|
|
|
|
/* can this boundary represent the real size of the array? */
|
|
|
|
if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
|
|
|
|
t->alimit = boundary; /* use it as the new limit */
|
|
|
|
setnorealasize(t);
|
|
|
|
}
|
|
|
|
return boundary;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* 'limit' is zero or present in table */
|
|
|
|
if (!limitequalsasize(t)) {
|
|
|
|
/* (2) 'limit' > 0 and array has more elements after 'limit' */
|
|
|
|
if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */
|
|
|
|
return limit; /* this is the boundary */
|
|
|
|
/* else, try last element in the array */
|
|
|
|
limit = luaH_realasize(t);
|
|
|
|
if (isempty(&t->array[limit - 1])) { /* empty? */
|
|
|
|
/* there must be a boundary in the array after old limit,
|
|
|
|
and it must be a valid new limit */
|
|
|
|
unsigned int boundary = binsearch(t->array, t->alimit, limit);
|
|
|
|
t->alimit = boundary;
|
|
|
|
return boundary;
|
|
|
|
}
|
|
|
|
/* else, new limit is present in the table; check the hash part */
|
|
|
|
}
|
|
|
|
/* (3) 'limit' is the last element and either is zero or present in table */
|
|
|
|
lua_assert(limit == luaH_realasize(t) &&
|
|
|
|
(limit == 0 || !isempty(&t->array[limit - 1])));
|
|
|
|
if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
|
|
|
|
return limit; /* 'limit + 1' is absent... */
|
|
|
|
else /* 'limit + 1' is also present */
|
|
|
|
return hash_search(t, limit);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(LUA_DEBUG)
|
|
|
|
|
|
|
|
Node *luaH_mainposition (const Table *t, const TValue *key) {
|
|
|
|
return mainpositionTV(t, key);
|
|
|
|
}
|
|
|
|
|
|
|
|
int luaH_isdummy (const Table *t) { return isdummy(t); }
|
|
|
|
|
|
|
|
#endif
|