|
|
@ -1,5 +1,5 @@ |
|
|
|
/*
|
|
|
|
** $Id: ltable.c,v 2.119 2017/05/09 14:39:46 roberto Exp roberto $ |
|
|
|
** $Id: ltable.c,v 2.120 2017/05/16 19:07:08 roberto Exp roberto $ |
|
|
|
** Lua tables (hash) |
|
|
|
** See Copyright Notice in lua.h |
|
|
|
*/ |
|
|
@ -610,29 +610,35 @@ void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { |
|
|
|
|
|
|
|
/*
|
|
|
|
** Try to find a boundary in the hash part of table 't'. From the |
|
|
|
** caller, we know that 'i' is zero or present. We need to find an |
|
|
|
** upper bound (an absent index larger than 'i') to do a binary search |
|
|
|
** for a boundary. We try 'max', a number larger than the total number |
|
|
|
** of keys in the table. (Given the size of the array elements, 'max' |
|
|
|
** computation cannot overflow a 'size_t'.) If 'max' does not fit in a |
|
|
|
** lua_Integer or it is present in the table, we try LUA_MAXINTEGER. If |
|
|
|
** LUA_MAXINTEGER is present, it is a boundary, so we are done. Otherwise, |
|
|
|
** we are left with a 'j' that is within the size of lua_Integers and |
|
|
|
** absent, so can do the binary search. |
|
|
|
** caller, we know that 'j' is zero or present and that 'j + 1' is |
|
|
|
** present. We want to find a larger key that is absent from the |
|
|
|
** table, so that we can do a binary search between the two keys to |
|
|
|
** find a boundary. We keep doubling 'j' until we get an absent index. |
|
|
|
** If the doubling would overflow, we try LUA_MAXINTEGER. If it is |
|
|
|
** absent, we are ready for the binary search. ('j', being max integer, |
|
|
|
** is larger or equal to 'i', but it cannot be equal because it is |
|
|
|
** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a |
|
|
|
** boundary. ('j + 1' cannot be a present integer key because it is |
|
|
|
** not a valid integer in Lua.) |
|
|
|
*/ |
|
|
|
static lua_Unsigned hash_search (Table *t, lua_Unsigned i) { |
|
|
|
lua_Unsigned j; |
|
|
|
size_t max = (cast(size_t, i) + sizenode(t) + 10) * 2; |
|
|
|
if (max <= l_castS2U(LUA_MAXINTEGER) && ttisnil(luaH_getint(t, max))) |
|
|
|
j = max; |
|
|
|
else { |
|
|
|
j = LUA_MAXINTEGER; |
|
|
|
if (!ttisnil(luaH_getint(t, j))) /* weird case? */ |
|
|
|
return j; /* well, that is a boundary... */ |
|
|
|
} |
|
|
|
/* now, 'i' is zero or present and 'j' is absent */ |
|
|
|
static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { |
|
|
|
lua_Unsigned i; |
|
|
|
if (j == 0) j++; /* the caller ensures 'j + 1' is present */ |
|
|
|
do { |
|
|
|
i = j; /* 'i' is a present index */ |
|
|
|
if (j <= l_castS2U(LUA_MAXINTEGER) / 2) |
|
|
|
j *= 2; |
|
|
|
else { |
|
|
|
j = LUA_MAXINTEGER; |
|
|
|
if (ttisnil(luaH_getint(t, j))) /* t[j] == nil? */ |
|
|
|
break; /* 'j' now is an absent index */ |
|
|
|
else /* weird case */ |
|
|
|
return j; /* well, max integer is a boundary... */ |
|
|
|
} |
|
|
|
} while (!ttisnil(luaH_getint(t, j))); /* repeat until t[j] == nil */ |
|
|
|
/* i < j && t[i] !≃ nil && t[j] == nil */ |
|
|
|
while (j - i > 1u) { /* do a binary search between them */ |
|
|
|
size_t m = (i + j) / 2; |
|
|
|
lua_Unsigned m = (i + j) / 2; |
|
|
|
if (ttisnil(luaH_getint(t, m))) j = m; |
|
|
|
else i = m; |
|
|
|
} |
|
|
@ -642,7 +648,8 @@ static lua_Unsigned hash_search (Table *t, lua_Unsigned i) { |
|
|
|
|
|
|
|
/*
|
|
|
|
** Try to find a boundary in table 't'. (A 'boundary' is an integer index |
|
|
|
** such that t[i] is non-nil and t[i+1] is nil (or 0 if t[1] is nil).) |
|
|
|
** such that t[i] is non-nil and t[i+1] is nil, plus 0 if t[1] is nil |
|
|
|
** and 'maxinteger' if t[maxinteger] is not nil.) |
|
|
|
** First, try the array part: if there is an array part and its last |
|
|
|
** element is nil, there must be a boundary there; a binary search |
|
|
|
** finds that boundary. Otherwise, if the hash part is empty or does not |
|
|
@ -660,11 +667,12 @@ lua_Unsigned luaH_getn (Table *t) { |
|
|
|
} |
|
|
|
return i; |
|
|
|
} |
|
|
|
/* 'j' is zero or present in table */ |
|
|
|
else if (isdummy(t) || ttisnil(luaH_getint(t, l_castU2S(j + 1)))) |
|
|
|
return j; /* 'j + 1' is absent... */ |
|
|
|
else |
|
|
|
return hash_search(t, j); |
|
|
|
else { /* 'j' is zero or present in table */ |
|
|
|
if (isdummy(t) || ttisnil(luaH_getint(t, l_castU2S(j + 1)))) |
|
|
|
return j; /* 'j + 1' is absent... */ |
|
|
|
else /* 'j + 1' is also present */ |
|
|
|
return hash_search(t, j); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|