|
@ -33,7 +33,7 @@ |
|
|
** Computes ceil(log2(x)) |
|
|
** Computes ceil(log2(x)) |
|
|
*/ |
|
|
*/ |
|
|
int luaO_ceillog2 (unsigned int x) { |
|
|
int luaO_ceillog2 (unsigned int x) { |
|
|
static const lu_byte log_2[256] = { /* log_2[i] = ceil(log2(i - 1)) */ |
|
|
static const lu_byte log_2[256] = { /* log_2[i - 1] = ceil(log2(i)) */ |
|
|
0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, |
|
|
0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, |
|
|
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, |
|
|
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, |
|
|
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, |
|
|
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, |
|
@ -49,6 +49,57 @@ int luaO_ceillog2 (unsigned int x) { |
|
|
return l + log_2[x]; |
|
|
return l + log_2[x]; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
|
** Encodes 'p'% as a floating-point byte, represented as (eeeeexxx). |
|
|
|
|
|
** The exponent is represented using excess-7. Mimicking IEEE 754, the |
|
|
|
|
|
** representation normalizes the number when possible, assuming an extra |
|
|
|
|
|
** 1 before the mantissa (xxx) and adding one to the exponent (eeeeexxx) |
|
|
|
|
|
** to signal that. So, the real value is (1xxx) * 2^(eeeee - 8) if |
|
|
|
|
|
** eeeee != 0, and (xxx) * 2^-7 otherwise. |
|
|
|
|
|
*/ |
|
|
|
|
|
unsigned int luaO_codeparam (unsigned int p) { |
|
|
|
|
|
if (p >= (cast(lu_mem, 0xF) << 0xF) / 128 * 100) /* overflow? */ |
|
|
|
|
|
return 0xFF; /* return maximum value */ |
|
|
|
|
|
else { |
|
|
|
|
|
p = (p * 128u) / 100; |
|
|
|
|
|
if (p <= 0xF) |
|
|
|
|
|
return p; |
|
|
|
|
|
else { |
|
|
|
|
|
int log = luaO_ceillog2(p + 1) - 5; |
|
|
|
|
|
return ((p >> log) - 0x10) | ((log + 1) << 4); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
|
** Computes 'p' times 'x', where 'p' is a floating-point byte. |
|
|
|
|
|
*/ |
|
|
|
|
|
l_obj luaO_applyparam (unsigned int p, l_obj x) { |
|
|
|
|
|
unsigned int m = p & 0xF; /* mantissa */ |
|
|
|
|
|
int e = (p >> 4); /* exponent */ |
|
|
|
|
|
if (e > 0) { /* normalized? */ |
|
|
|
|
|
e--; |
|
|
|
|
|
m += 0x10; /* maximum 'm' is 0x1F */ |
|
|
|
|
|
} |
|
|
|
|
|
e -= 7; /* correct excess-7 */ |
|
|
|
|
|
if (e < 0) { |
|
|
|
|
|
e = -e; |
|
|
|
|
|
if (x < MAX_LOBJ / 0x1F) /* multiplication cannot overflow? */ |
|
|
|
|
|
return (x * m) >> e; /* multiplying first gives more precision */ |
|
|
|
|
|
else if ((x >> e) < MAX_LOBJ / 0x1F) /* cannot overflow after shift? */ |
|
|
|
|
|
return (x >> e) * m; |
|
|
|
|
|
else /* real overflow */ |
|
|
|
|
|
return MAX_LOBJ; |
|
|
|
|
|
} |
|
|
|
|
|
else { |
|
|
|
|
|
if (x < (MAX_LOBJ / 0x1F) >> e) /* no overflow? */ |
|
|
|
|
|
return (x * m) << e; /* order doesn't matter here */ |
|
|
|
|
|
else /* real overflow */ |
|
|
|
|
|
return MAX_LOBJ; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static lua_Integer intarith (lua_State *L, int op, lua_Integer v1, |
|
|
static lua_Integer intarith (lua_State *L, int op, lua_Integer v1, |
|
|
lua_Integer v2) { |
|
|
lua_Integer v2) { |
|
|