|
|
@ -719,16 +719,38 @@ void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) { |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static const TValue *getintfromarray (Table *t, lua_Integer key) { |
|
|
|
if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */ |
|
|
|
return &t->array[key - 1]; |
|
|
|
else if (!limitequalsasize(t) && /* key still may be in the array part? */ |
|
|
|
(l_castS2U(key) == t->alimit + 1 || |
|
|
|
l_castS2U(key) - 1u < luaH_realasize(t))) { |
|
|
|
/*
|
|
|
|
** Check whether key is in the array part. If 'alimit' is not the real |
|
|
|
** size of the array, the key still can be in the array part. In this |
|
|
|
** case, do the "Xmilia trick" to check whether 'key-1' is smaller than |
|
|
|
** the real size. |
|
|
|
** The trick works as follow: let 'p' be an integer such that |
|
|
|
** '2^(p+1) >= alimit > 2^p', or '2^(p+1) > alimit-1 >= 2^p'. |
|
|
|
** That is, 2^(p+1) is the real size of the array, and 'p' is the highest |
|
|
|
** bit on in 'alimit-1'. What we have to check becomes 'key-1 < 2^(p+1)'. |
|
|
|
** We compute '(key-1) & ~(alimit-1)', which we call 'res'; it will |
|
|
|
** have the 'p' bit cleared. If the key is outside the array, that is, |
|
|
|
** 'key-1 >= 2^(p+1)', then 'res' will have some 1-bit higher than 'p', |
|
|
|
** therefore it will be larger or equal to 'alimit', and the check |
|
|
|
** will fail. If 'key-1 < 2^(p+1)', then 'res' has no 1-bit higher than |
|
|
|
** 'p', and as the bit 'p' itself was cleared, 'res' will be smaller |
|
|
|
** than 2^p, therefore smaller than 'alimit', and the check succeeds. |
|
|
|
** As special cases, when 'alimit' is 0 the condition is trivially false, |
|
|
|
** and when 'alimit' is 1 the condition simplifies to 'key-1 < alimit'. |
|
|
|
** If key is 0 or negative, 'res' will have its higher bit on, so that |
|
|
|
** if cannot be smaller than alimit. |
|
|
|
*/ |
|
|
|
static int keyinarray (Table *t, lua_Integer key) { |
|
|
|
lua_Unsigned alimit = t->alimit; |
|
|
|
if (l_castS2U(key) - 1u < alimit) /* 'key' in [1, t->alimit]? */ |
|
|
|
return 1; |
|
|
|
else if (!isrealasize(t) && /* key still may be in the array part? */ |
|
|
|
(((l_castS2U(key) - 1u) & ~(alimit - 1u)) < alimit)) { |
|
|
|
t->alimit = cast_uint(key); /* probably '#t' is here now */ |
|
|
|
return &t->array[key - 1]; |
|
|
|
return 1; |
|
|
|
} |
|
|
|
else return NULL; /* key is not in the array part */ |
|
|
|
else |
|
|
|
return 0; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
@ -748,20 +770,16 @@ static const TValue *getintfromhash (Table *t, lua_Integer key) { |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Search function for integers. If integer is inside 'alimit', get it |
|
|
|
** directly from the array part. Otherwise, if 'alimit' is not equal to |
|
|
|
** the real size of the array, key still can be in the array part. In |
|
|
|
** this case, try to avoid a call to 'luaH_realasize' when key is just |
|
|
|
** one more than the limit (so that it can be incremented without |
|
|
|
** changing the real size of the array). |
|
|
|
*/ |
|
|
|
static const TValue *Hgetint (Table *t, lua_Integer key) { |
|
|
|
const TValue *slot = getintfromarray(t, key); |
|
|
|
if (slot != NULL) |
|
|
|
return slot; |
|
|
|
else |
|
|
|
return getintfromhash(t, key); |
|
|
|
l_sinline int arraykeyisempty (Table *t, lua_Integer key) { |
|
|
|
int tag = *getArrTag(t, key); |
|
|
|
return tagisempty(tag); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static int hashkeyisempty (Table *t, lua_Integer key) { |
|
|
|
const TValue *val = getintfromhash(t, key); |
|
|
|
lua_assert(!keyinarray(t, key)); |
|
|
|
return isempty(val); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
@ -776,7 +794,17 @@ static int finishnodeget (const TValue *val, TValue *res) { |
|
|
|
|
|
|
|
|
|
|
|
int luaH_getint (Table *t, lua_Integer key, TValue *res) { |
|
|
|
return finishnodeget(Hgetint(t, key), res); |
|
|
|
if (keyinarray(t, key)) { |
|
|
|
int tag = *getArrTag(t, key); |
|
|
|
if (!tagisempty(tag)) { |
|
|
|
arr2val(t, key, tag, res); |
|
|
|
return HOK; /* success */ |
|
|
|
} |
|
|
|
else |
|
|
|
return ~cast_int(key); /* empty slot in the array part */ |
|
|
|
} |
|
|
|
else |
|
|
|
return finishnodeget(getintfromhash(t, key), res); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
@ -832,25 +860,28 @@ TString *luaH_getstrkey (Table *t, TString *key) { |
|
|
|
/*
|
|
|
|
** main search function |
|
|
|
*/ |
|
|
|
static const TValue *Hget (Table *t, const TValue *key) { |
|
|
|
int luaH_get (Table *t, const TValue *key, TValue *res) { |
|
|
|
const TValue *slot; |
|
|
|
switch (ttypetag(key)) { |
|
|
|
case LUA_VSHRSTR: return luaH_Hgetshortstr(t, tsvalue(key)); |
|
|
|
case LUA_VNUMINT: return Hgetint(t, ivalue(key)); |
|
|
|
case LUA_VNIL: return &absentkey; |
|
|
|
case LUA_VSHRSTR: |
|
|
|
slot = luaH_Hgetshortstr(t, tsvalue(key)); |
|
|
|
break; |
|
|
|
case LUA_VNUMINT: |
|
|
|
return luaH_getint(t, ivalue(key), res); |
|
|
|
case LUA_VNIL: |
|
|
|
slot = &absentkey; |
|
|
|
break; |
|
|
|
case LUA_VNUMFLT: { |
|
|
|
lua_Integer k; |
|
|
|
if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ |
|
|
|
return Hgetint(t, k); /* use specialized version */ |
|
|
|
return luaH_getint(t, k, res); /* use specialized version */ |
|
|
|
/* else... */ |
|
|
|
} /* FALLTHROUGH */ |
|
|
|
default: |
|
|
|
return getgeneric(t, key, 0); |
|
|
|
slot = getgeneric(t, key, 0); |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
int luaH_get (Table *t, const TValue *key, TValue *res) { |
|
|
|
return finishnodeget(Hget(t, key), res); |
|
|
|
return finishnodeget(slot, res); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
@ -866,10 +897,10 @@ static int finishnodeset (Table *t, const TValue *slot, TValue *val) { |
|
|
|
|
|
|
|
|
|
|
|
int luaH_psetint (Table *t, lua_Integer key, TValue *val) { |
|
|
|
const TValue *slot = getintfromarray(t, key); |
|
|
|
if (slot != NULL) { |
|
|
|
if (!ttisnil(slot)) { |
|
|
|
setobj(((lua_State*)NULL), cast(TValue*, slot), val); |
|
|
|
if (keyinarray(t, key)) { |
|
|
|
lu_byte *tag = getArrTag(t, key); |
|
|
|
if (!tagisempty(*tag)) { |
|
|
|
val2arr(t, key, tag, val); |
|
|
|
return HOK; /* success */ |
|
|
|
} |
|
|
|
else |
|
|
@ -973,27 +1004,26 @@ static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { |
|
|
|
j *= 2; |
|
|
|
else { |
|
|
|
j = LUA_MAXINTEGER; |
|
|
|
if (isempty(Hgetint(t, j))) /* t[j] not present? */ |
|
|
|
if (hashkeyisempty(t, j)) /* t[j] not present? */ |
|
|
|
break; /* 'j' now is an absent index */ |
|
|
|
else /* weird case */ |
|
|
|
return j; /* well, max integer is a boundary... */ |
|
|
|
} |
|
|
|
} while (!isempty(Hgetint(t, j))); /* repeat until an absent t[j] */ |
|
|
|
} while (!hashkeyisempty(t, j)); /* repeat until an absent t[j] */ |
|
|
|
/* i < j && t[i] present && t[j] absent */ |
|
|
|
while (j - i > 1u) { /* do a binary search between them */ |
|
|
|
lua_Unsigned m = (i + j) / 2; |
|
|
|
if (isempty(Hgetint(t, m))) j = m; |
|
|
|
if (hashkeyisempty(t, m)) j = m; |
|
|
|
else i = m; |
|
|
|
} |
|
|
|
return i; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static unsigned int binsearch (const TValue *array, unsigned int i, |
|
|
|
unsigned int j) { |
|
|
|
static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) { |
|
|
|
while (j - i > 1u) { /* binary search */ |
|
|
|
unsigned int m = (i + j) / 2; |
|
|
|
if (isempty(&array[m - 1])) j = m; |
|
|
|
if (arraykeyisempty(array, m)) j = m; |
|
|
|
else i = m; |
|
|
|
} |
|
|
|
return i; |
|
|
@ -1034,9 +1064,9 @@ static unsigned int binsearch (const TValue *array, unsigned int i, |
|
|
|
*/ |
|
|
|
lua_Unsigned luaH_getn (Table *t) { |
|
|
|
unsigned int limit = t->alimit; |
|
|
|
if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */ |
|
|
|
if (limit > 0 && arraykeyisempty(t, limit)) { /* (1)? */ |
|
|
|
/* there must be a boundary before 'limit' */ |
|
|
|
if (limit >= 2 && !isempty(&t->array[limit - 2])) { |
|
|
|
if (limit >= 2 && !arraykeyisempty(t, limit - 1)) { |
|
|
|
/* 'limit - 1' is a boundary; can it be a new limit? */ |
|
|
|
if (ispow2realasize(t) && !ispow2(limit - 1)) { |
|
|
|
t->alimit = limit - 1; |
|
|
@ -1045,7 +1075,7 @@ lua_Unsigned luaH_getn (Table *t) { |
|
|
|
return limit - 1; |
|
|
|
} |
|
|
|
else { /* must search for a boundary in [0, limit] */ |
|
|
|
unsigned int boundary = binsearch(t->array, 0, limit); |
|
|
|
unsigned int boundary = binsearch(t, 0, limit); |
|
|
|
/* can this boundary represent the real size of the array? */ |
|
|
|
if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { |
|
|
|
t->alimit = boundary; /* use it as the new limit */ |
|
|
@ -1064,7 +1094,7 @@ lua_Unsigned luaH_getn (Table *t) { |
|
|
|
if (isempty(&t->array[limit - 1])) { /* empty? */ |
|
|
|
/* there must be a boundary in the array after old limit,
|
|
|
|
and it must be a valid new limit */ |
|
|
|
unsigned int boundary = binsearch(t->array, t->alimit, limit); |
|
|
|
unsigned int boundary = binsearch(t, t->alimit, limit); |
|
|
|
t->alimit = boundary; |
|
|
|
return boundary; |
|
|
|
} |
|
|
@ -1073,7 +1103,7 @@ lua_Unsigned luaH_getn (Table *t) { |
|
|
|
/* (3) 'limit' is the last element and either is zero or present in table */ |
|
|
|
lua_assert(limit == luaH_realasize(t) && |
|
|
|
(limit == 0 || !isempty(&t->array[limit - 1]))); |
|
|
|
if (isdummy(t) || isempty(Hgetint(t, cast(lua_Integer, limit + 1)))) |
|
|
|
if (isdummy(t) || hashkeyisempty(t, cast(lua_Integer, limit + 1))) |
|
|
|
return limit; /* 'limit + 1' is absent */ |
|
|
|
else /* 'limit + 1' is also present */ |
|
|
|
return hash_search(t, limit); |
|
|
|