The growth rate of string buffers was reduced from 2 to 1.5 (3/2).
As string buffers start larger (256~1024 bytes), they don't need to
grow that fast. Moreover, a lower rate allows multiplicative growth up
to larger sizes (3/2 of the maximum). (After that, the growth becomes
linear, which is mostly useless.)
Function 'leaveblock' was generating "break" label before removing
variables from the closing block. If 'createlabel' created a 'close'
instruction (which it did when matching a goto/break that exited
the scope of an upvalue), that instruction would use the wrong level.
'luaD_growstack' already checks that. This commit also fixes an
internal bug in 'luaD_growstack': a large 'n' could cause an arithmetic
overflow when computing 'needed'.
Because error handling (luaG_errormsg) uses slots from EXTRA_STACK,
and some errors can recur (e.g., string overflow while creating an
error message in 'luaG_runerror', or a C-stack overflow before calling
the message handler), the code should use stack slots with parsimony.
This commit fixes the bug "Lua-stack overflow when C stack overflows
while handling an error".
luaV_execute should compute 'ra' only when the instruction uses it.
Computing an illegal address is undefined behavior even if the address
is never dereferenced.
The explanation includes the limit case of maxinteger being a border.
It also avoids the term "natural", which might include large floats
with natural values.
The flag CIST_FIN does not mark a finalizer, but the function that was
running when the finalizer was called. (So, the function did not call
the finalizer, but it looks that way in the stack.)
The pointer to the metamethod can be invalidated by a finalizer that
can run during a GC in 'checkstackGCp'. (This commit also fixes a
detail in the manual.) Bug introduced in commit 91673a8ec.
When closing variables during 'coroutine.close' or 'lua_resetthread',
the status of a coroutine must be set to LUA_OK; a coroutine should
not run with any other status. (See assertion in 'lua_callk'.)
After the reset, the status should be kept as normal, as any error
was already reported.
'luaD_pretailcall' mimics 'luaD_precall', handling call metamethods
and calling C functions directly. That makes the code in the
interpreter loop simpler.
This commit also goes back to emulating the tail call in 'luaD_precall'
with a goto, as C compilers may not do proper tail calls and the C
stack can overflow much sooner than the Lua stack (which grows as the
metamethod is added to it).
Any C function can receive maxinteger as an integer argument, and
therefore cannot increment it without some care (e.g., doing unsigned
arithmetic as the core does).