/* ** $Id: lopcodes.h,v 1.194 2018/06/26 18:00:55 roberto Exp $ ** Opcodes for Lua virtual machine ** See Copyright Notice in lua.h */ #ifndef lopcodes_h #define lopcodes_h #include "llimits.h" /*=========================================================================== We assume that instructions are unsigned 32-bit integers. All instructions have an opcode in the first 7 bits. Instructions can have the following formats: 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 iABC C(8) | B(8) |k| A(8) | Op(7) | iABx Bx(17) | A(8) | Op(7) | iAsB sBx (signed)(17) | A(8) | Op(7) | iAx Ax(25) | Op(7) | isJ sJ(24) |m| Op(7) | A signed argument is represented in excess K: the represented value is the written unsigned value minus K, where K is half the maximum for the corresponding unsigned argument. ===========================================================================*/ enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */ /* ** size and position of opcode arguments. */ #define SIZE_C 8 #define SIZE_B 8 #define SIZE_Bx (SIZE_C + SIZE_B + 1) #define SIZE_A 8 #define SIZE_Ax (SIZE_Bx + SIZE_A) #define SIZE_sJ (SIZE_Bx + SIZE_A - 1) #define SIZE_OP 7 #define POS_OP 0 #define POS_A (POS_OP + SIZE_OP) #define POS_k (POS_A + SIZE_A) #define POS_B (POS_k + 1) #define POS_C (POS_B + SIZE_B) #define POS_Bx POS_k #define POS_Ax POS_A #define POS_m POS_A #define POS_sJ (POS_A + 1) /* ** limits for opcode arguments. ** we use (signed) int to manipulate most arguments, ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) */ #if SIZE_Bx < LUAI_BITSINT-1 #define MAXARG_Bx ((1<>1) /* 'sBx' is signed */ #if SIZE_Ax < LUAI_BITSINT-1 #define MAXARG_Ax ((1<> 1) #define MAXARG_A ((1<> 1) #define MAXARG_Cx ((1<<(SIZE_C + 1))-1) /* creates a mask with 'n' 1 bits at position 'p' */ #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) /* creates a mask with 'n' 0 bits at position 'p' */ #define MASK0(n,p) (~MASK1(n,p)) /* ** the following macros help to manipulate instructions */ #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ ((cast(Instruction, o)<>(pos)) & MASK1(size,0))) #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ ((cast(Instruction, v)<> C */ OP_SHLI,/* A B C R(A) := C << R(B) */ OP_ADD,/* A B C R(A) := R(B) + R(C) */ OP_SUB,/* A B C R(A) := R(B) - R(C) */ OP_MUL,/* A B C R(A) := R(B) * R(C) */ OP_MOD,/* A B C R(A) := R(B) % R(C) */ OP_POW,/* A B C R(A) := R(B) ^ R(C) */ OP_DIV,/* A B C R(A) := R(B) / R(C) */ OP_IDIV,/* A B C R(A) := R(B) // R(C) */ OP_BAND,/* A B C R(A) := R(B) & R(C) */ OP_BOR,/* A B C R(A) := R(B) | R(C) */ OP_BXOR,/* A B C R(A) := R(B) ~ R(C) */ OP_SHL,/* A B C R(A) := R(B) << R(C) */ OP_SHR,/* A B C R(A) := R(B) >> R(C) */ OP_UNM,/* A B R(A) := -R(B) */ OP_BNOT,/* A B R(A) := ~R(B) */ OP_NOT,/* A B R(A) := not R(B) */ OP_LEN,/* A B R(A) := length of R(B) */ OP_CONCAT,/* A B R(A) := R(A).. ... ..R(A + B - 1) */ OP_CLOSE,/* A close all upvalues >= R(A) */ OP_JMP,/* k sJ pc += sJ (k is used in code generation) */ OP_EQ,/* A B if ((R(A) == R(B)) ~= k) then pc++ */ OP_LT,/* A B if ((R(A) < R(B)) ~= k) then pc++ */ OP_LE,/* A B if ((R(A) <= R(B)) ~= k) then pc++ */ OP_EQK,/* A B if ((R(A) == K(B)) ~= k) then pc++ */ OP_EQI,/* A sB if ((R(A) == sB) ~= k) then pc++ */ OP_LTI,/* A sB if ((R(A) < sB) ~= k) then pc++ */ OP_LEI,/* A sB if ((R(A) <= sB) ~= k) then pc++ */ OP_GTI,/* A sB if ((R(A) > sB) ~= k) then pc++ */ OP_GEI,/* A sB if ((R(A) >= sB) ~= k) then pc++ */ OP_TEST,/* A if (not R(A) == k) then pc++ */ OP_TESTSET,/* A B if (not R(B) == k) then R(A) := R(B) else pc++ */ OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ OP_RETURN,/* A B C return R(A), ... ,R(A+B-2) (see note) */ OP_RETURN0,/* return */ OP_RETURN1,/* A return R(A) */ OP_FORLOOP1,/* A Bx R(A)++; if R(A) <= R(A+1) then { pc-=Bx; R(A+3)=R(A) } */ OP_FORPREP1,/* A Bx R(A)--; pc+=Bx */ OP_FORLOOP,/* A Bx R(A)+=R(A+2); if R(A) 0 means the function is vararg and (C - 1) is its number of fixed parameters. ===========================================================================*/ /* ** masks for instruction properties. The format is: ** bits 0-2: op mode ** bit 3: instruction set register A ** bit 4: operator is a test (next instruction must be a jump) ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0) ** bit 6: instruction sets 'L->top' for next instruction (when C == 0) */ LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];) #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7)) #define testAMode(m) (luaP_opmodes[m] & (1 << 3)) #define testTMode(m) (luaP_opmodes[m] & (1 << 4)) #define testITMode(m) (luaP_opmodes[m] & (1 << 5)) #define testOTMode(m) (luaP_opmodes[m] & (1 << 6)) /* "out top" (set top for next instruction) */ #define isOT(i) \ ((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \ GET_OPCODE(i) == OP_TAILCALL) /* "in top" (uses top from previous instruction) */ #define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0) #define opmode(ot,it,t,a,m) (((ot)<<6) | ((it)<<5) | ((t)<<4) | ((a)<<3) | (m)) /* number of list items to accumulate before a SETLIST instruction */ #define LFIELDS_PER_FLUSH 50 #endif