/* * Copyright 2008, Freescale Semiconductor, Inc * Andy Fleming * * Based vaguely on the Linux code * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmc_private.h" static const unsigned int sd_au_size[] = { 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, }; static char mmc_ext_csd[512]; #if CONFIG_IS_ENABLED(MMC_TINY) static struct mmc mmc_static; struct mmc *find_mmc_device(int dev_num) { return &mmc_static; } void mmc_do_preinit(void) { struct mmc *m = &mmc_static; #ifdef CONFIG_FSL_ESDHC_ADAPTER_IDENT mmc_set_preinit(m, 1); #endif if (m->preinit) mmc_start_init(m); } struct blk_desc *mmc_get_blk_desc(struct mmc *mmc) { return &mmc->block_dev; } #endif #if !CONFIG_IS_ENABLED(DM_MMC) __weak int board_mmc_getwp(struct mmc *mmc) { return -1; } int mmc_getwp(struct mmc *mmc) { int wp; wp = board_mmc_getwp(mmc); if (wp < 0) { if (mmc->cfg->ops->getwp) wp = mmc->cfg->ops->getwp(mmc); else wp = 0; } return wp; } __weak int board_mmc_getcd(struct mmc *mmc) { return -1; } #endif #ifdef CONFIG_MMC_TRACE void mmmc_trace_before_send(struct mmc *mmc, struct mmc_cmd *cmd) { printf("CMD_SEND:%d\n", cmd->cmdidx); printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg); } void mmmc_trace_after_send(struct mmc *mmc, struct mmc_cmd *cmd, int ret) { int i; u8 *ptr; if (ret) { printf("\t\tRET\t\t\t %d\n", ret); } else { switch (cmd->resp_type) { case MMC_RSP_NONE: printf("\t\tMMC_RSP_NONE\n"); break; case MMC_RSP_R1: printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n", cmd->response[0]); break; case MMC_RSP_R1b: printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n", cmd->response[0]); break; case MMC_RSP_R2: printf("\t\tMMC_RSP_R2\t\t 0x%08X \n", cmd->response[0]); printf("\t\t \t\t 0x%08X \n", cmd->response[1]); printf("\t\t \t\t 0x%08X \n", cmd->response[2]); printf("\t\t \t\t 0x%08X \n", cmd->response[3]); printf("\n"); printf("\t\t\t\t\tDUMPING DATA\n"); for (i = 0; i < 4; i++) { int j; printf("\t\t\t\t\t%03d - ", i*4); ptr = (u8 *)&cmd->response[i]; ptr += 3; for (j = 0; j < 4; j++) printf("%02X ", *ptr--); printf("\n"); } break; case MMC_RSP_R3: printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n", cmd->response[0]); break; default: printf("\t\tERROR MMC rsp not supported\n"); break; } } } void mmc_trace_state(struct mmc *mmc, struct mmc_cmd *cmd) { int status; status = (cmd->response[0] & MMC_STATUS_CURR_STATE) >> 9; printf("CURR STATE:%d\n", status); } #endif #if !CONFIG_IS_ENABLED(DM_MMC) int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { int ret; mmmc_trace_before_send(mmc, cmd); ret = mmc->cfg->ops->send_cmd(mmc, cmd, data); mmmc_trace_after_send(mmc, cmd, ret); return ret; } #endif int mmc_send_status(struct mmc *mmc, int timeout) { struct mmc_cmd cmd; int err, retries = 5; cmd.cmdidx = MMC_CMD_SEND_STATUS; cmd.resp_type = MMC_RSP_R1; if (!mmc_host_is_spi(mmc)) cmd.cmdarg = mmc->rca << 16; while (1) { err = mmc_send_cmd(mmc, &cmd, NULL); if (!err) { if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) && (cmd.response[0] & MMC_STATUS_CURR_STATE) != MMC_STATE_PRG) break; else if (cmd.response[0] & MMC_STATUS_MASK) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("Status Error: 0x%08X\n", cmd.response[0]); #endif return -ECOMM; } } else if (--retries < 0) return err; if (timeout-- <= 0) break; udelay(1000); } mmc_trace_state(mmc, &cmd); if (timeout <= 0) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("Timeout waiting card ready\n"); #endif return -ETIMEDOUT; } return 0; } int mmc_set_blocklen(struct mmc *mmc, int len) { struct mmc_cmd cmd; if (mmc_card_ddr(mmc)) return 0; cmd.cmdidx = MMC_CMD_SET_BLOCKLEN; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = len; return mmc_send_cmd(mmc, &cmd, NULL); } static int mmc_read_blocks(struct mmc *mmc, void *dst, lbaint_t start, lbaint_t blkcnt) { struct mmc_cmd cmd; struct mmc_data data; if (blkcnt > 1) cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK; else cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK; if (mmc->high_capacity) cmd.cmdarg = start; else cmd.cmdarg = start * mmc->read_bl_len; cmd.resp_type = MMC_RSP_R1; data.dest = dst; data.blocks = blkcnt; data.blocksize = mmc->read_bl_len; data.flags = MMC_DATA_READ; if (mmc_send_cmd(mmc, &cmd, &data)) return 0; if (blkcnt > 1) { cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1b; if (mmc_send_cmd(mmc, &cmd, NULL)) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("mmc fail to send stop cmd\n"); #endif return 0; } } return blkcnt; } #ifdef CONFIG_SPL_BLK_READ_PREPARE static int mmc_read_blocks_prepare(struct mmc *mmc, void *dst, lbaint_t start, lbaint_t blkcnt) { struct mmc_cmd cmd; struct mmc_data data; if (blkcnt > 1) cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK; else cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK; if (mmc->high_capacity) cmd.cmdarg = start; else cmd.cmdarg = start * mmc->read_bl_len; cmd.resp_type = MMC_RSP_R1; data.dest = dst; data.blocks = blkcnt; data.blocksize = mmc->read_bl_len; data.flags = MMC_DATA_READ; if (mmc_send_cmd_prepare(mmc, &cmd, &data)) return 0; return blkcnt; } #endif #ifdef CONFIG_SPL_BLK_READ_PREPARE #if CONFIG_IS_ENABLED(BLK) ulong mmc_bread_prepare(struct udevice *dev, lbaint_t start, lbaint_t blkcnt, void *dst) #else ulong mmc_bread_prepare(struct blk_desc *block_dev, lbaint_t start, lbaint_t blkcnt, void *dst) #endif { #if CONFIG_IS_ENABLED(BLK) struct blk_desc *block_dev = dev_get_uclass_platdata(dev); #endif int dev_num = block_dev->devnum; int timeout = 0; int err; if (blkcnt == 0) return 0; struct mmc *mmc = find_mmc_device(dev_num); if (!mmc) return 0; if (CONFIG_IS_ENABLED(MMC_TINY)) err = mmc_switch_part(mmc, block_dev->hwpart); else err = blk_dselect_hwpart(block_dev, block_dev->hwpart); if (err < 0) return 0; if ((start + blkcnt) > block_dev->lba) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n", start + blkcnt, block_dev->lba); #endif return 0; } if (mmc_set_blocklen(mmc, mmc->read_bl_len)) { debug("%s: Failed to set blocklen\n", __func__); return 0; } if (mmc_read_blocks_prepare(mmc, dst, start, blkcnt) != blkcnt) { debug("%s: Failed to read blocks\n", __func__); re_init_retry: timeout++; /* * Try re-init seven times. */ if (timeout > 7) { printf("Re-init retry timeout\n"); return 0; } mmc->has_init = 0; if (mmc_init(mmc)) return 0; if (mmc_read_blocks_prepare(mmc, dst, start, blkcnt) != blkcnt) { printf("%s: Re-init mmc_read_blocks_prepare error\n", __func__); goto re_init_retry; } } return blkcnt; } #endif #if CONFIG_IS_ENABLED(BLK) ulong mmc_bread(struct udevice *dev, lbaint_t start, lbaint_t blkcnt, void *dst) #else ulong mmc_bread(struct blk_desc *block_dev, lbaint_t start, lbaint_t blkcnt, void *dst) #endif { #if CONFIG_IS_ENABLED(BLK) struct blk_desc *block_dev = dev_get_uclass_platdata(dev); #endif int dev_num = block_dev->devnum; int err; lbaint_t cur, blocks_todo = blkcnt; #ifdef CONFIG_SPL_BLK_READ_PREPARE if (block_dev->op_flag == BLK_PRE_RW) #if CONFIG_IS_ENABLED(BLK) return mmc_bread_prepare(dev, start, blkcnt, dst); #else return mmc_bread_prepare(block_dev, start, blkcnt, dst); #endif #endif if (blkcnt == 0) return 0; struct mmc *mmc = find_mmc_device(dev_num); if (!mmc) return 0; if (CONFIG_IS_ENABLED(MMC_TINY)) err = mmc_switch_part(mmc, block_dev->hwpart); else err = blk_dselect_hwpart(block_dev, block_dev->hwpart); if (err < 0) return 0; if ((start + blkcnt) > block_dev->lba) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n", start + blkcnt, block_dev->lba); #endif return 0; } if (mmc_set_blocklen(mmc, mmc->read_bl_len)) { debug("%s: Failed to set blocklen\n", __func__); return 0; } do { cur = (blocks_todo > mmc->cfg->b_max) ? mmc->cfg->b_max : blocks_todo; if (mmc_read_blocks(mmc, dst, start, cur) != cur) { debug("%s: Failed to read blocks\n", __func__); int timeout = 0; re_init_retry: timeout++; /* * Try re-init seven times. */ if (timeout > 7) { printf("Re-init retry timeout\n"); return 0; } mmc->has_init = 0; if (mmc_init(mmc)) return 0; if (mmc_read_blocks(mmc, dst, start, cur) != cur) { printf("%s: Re-init mmc_read_blocks error\n", __func__); goto re_init_retry; } } blocks_todo -= cur; start += cur; dst += cur * mmc->read_bl_len; } while (blocks_todo > 0); return blkcnt; } void mmc_set_clock(struct mmc *mmc, uint clock) { if (clock > mmc->cfg->f_max) clock = mmc->cfg->f_max; if (clock < mmc->cfg->f_min) clock = mmc->cfg->f_min; mmc->clock = clock; mmc_set_ios(mmc); } static void mmc_set_bus_width(struct mmc *mmc, uint width) { mmc->bus_width = width; mmc_set_ios(mmc); } static void mmc_set_timing(struct mmc *mmc, uint timing) { mmc->timing = timing; mmc_set_ios(mmc); } static int mmc_go_idle(struct mmc *mmc) { struct mmc_cmd cmd; int err; udelay(1000); cmd.cmdidx = MMC_CMD_GO_IDLE_STATE; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_NONE; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; udelay(2000); return 0; } #ifndef CONFIG_MMC_USE_PRE_CONFIG static int sd_send_op_cond(struct mmc *mmc) { int timeout = 1000; int err; struct mmc_cmd cmd; while (1) { cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; /* * Most cards do not answer if some reserved bits * in the ocr are set. However, Some controller * can set bit 7 (reserved for low voltages), but * how to manage low voltages SD card is not yet * specified. */ cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 : (mmc->cfg->voltages & 0xff8000); if (mmc->version == SD_VERSION_2) cmd.cmdarg |= OCR_HCS; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if (cmd.response[0] & OCR_BUSY) break; if (timeout-- <= 0) return -EOPNOTSUPP; udelay(1000); } if (mmc->version != SD_VERSION_2) mmc->version = SD_VERSION_1_0; if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ cmd.cmdidx = MMC_CMD_SPI_READ_OCR; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } mmc->ocr = cmd.response[0]; mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); mmc->rca = 0; return 0; } #endif static int mmc_send_op_cond_iter(struct mmc *mmc, int use_arg) { struct mmc_cmd cmd; int err; cmd.cmdidx = MMC_CMD_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; if (use_arg && !mmc_host_is_spi(mmc)) cmd.cmdarg = OCR_HCS | (mmc->cfg->voltages & (mmc->ocr & OCR_VOLTAGE_MASK)) | (mmc->ocr & OCR_ACCESS_MODE); err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc->ocr = cmd.response[0]; return 0; } #ifndef CONFIG_MMC_USE_PRE_CONFIG static int mmc_send_op_cond(struct mmc *mmc) { int err, i; /* Some cards seem to need this */ mmc_go_idle(mmc); /* Asking to the card its capabilities */ for (i = 0; i < 2; i++) { err = mmc_send_op_cond_iter(mmc, i != 0); if (err) return err; /* exit if not busy (flag seems to be inverted) */ if (mmc->ocr & OCR_BUSY) break; } mmc->op_cond_pending = 1; return 0; } #endif static int mmc_complete_op_cond(struct mmc *mmc) { struct mmc_cmd cmd; int timeout = 1000; uint start; int err; mmc->op_cond_pending = 0; if (!(mmc->ocr & OCR_BUSY)) { /* Some cards seem to need this */ mmc_go_idle(mmc); start = get_timer(0); while (1) { err = mmc_send_op_cond_iter(mmc, 1); if (err) return err; if (mmc->ocr & OCR_BUSY) break; if (get_timer(start) > timeout) return -EOPNOTSUPP; udelay(100); } } if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ cmd.cmdidx = MMC_CMD_SPI_READ_OCR; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc->ocr = cmd.response[0]; } mmc->version = MMC_VERSION_UNKNOWN; mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); mmc->rca = 1; return 0; } static int mmc_send_ext_csd(struct mmc *mmc, u8 *ext_csd) { struct mmc_cmd cmd; struct mmc_data data; int err; #ifdef CONFIG_MMC_USE_PRE_CONFIG static int initialized; if (initialized) { memcpy(ext_csd, mmc_ext_csd, 512); return 0; } initialized = 1; #endif /* Get the Card Status Register */ cmd.cmdidx = MMC_CMD_SEND_EXT_CSD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; data.dest = (char *)ext_csd; data.blocks = 1; data.blocksize = MMC_MAX_BLOCK_LEN; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); memcpy(mmc_ext_csd, ext_csd, 512); #if defined(CONFIG_MMC_USE_PRE_CONFIG) && defined(CONFIG_SPL_BUILD) char *mmc_ecsd_base = NULL; ulong mmc_ecsd; mmc_ecsd = dev_read_u32_default(mmc->dev, "mmc-ecsd", 0); mmc_ecsd_base = (char *)mmc_ecsd; if (mmc_ecsd_base) { memcpy(mmc_ecsd_base, ext_csd, 512); *(unsigned int *)(mmc_ecsd_base + 512) = 0x55aa55aa; } #endif return err; } static int mmc_poll_for_busy(struct mmc *mmc, u8 send_status) { struct mmc_cmd cmd; u8 busy = true; uint start; int ret; int timeout = 1000; cmd.cmdidx = MMC_CMD_SEND_STATUS; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; start = get_timer(0); if (!send_status && !mmc_can_card_busy(mmc)) { mdelay(timeout); return 0; } do { if (!send_status) { busy = mmc_card_busy(mmc); } else { ret = mmc_send_cmd(mmc, &cmd, NULL); if (ret) return ret; if (cmd.response[0] & MMC_STATUS_SWITCH_ERROR) return -EBADMSG; busy = (cmd.response[0] & MMC_STATUS_CURR_STATE) == MMC_STATE_PRG; } if (get_timer(start) > timeout && busy) return -ETIMEDOUT; } while (busy); return 0; } static int __mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value, u8 send_status) { struct mmc_cmd cmd; int retries = 3; int ret; cmd.cmdidx = MMC_CMD_SWITCH; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8); do { ret = mmc_send_cmd(mmc, &cmd, NULL); if (!ret) return mmc_poll_for_busy(mmc, send_status); } while (--retries > 0 && ret); return ret; } int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value) { return __mmc_switch(mmc, set, index, value, true); } static int mmc_select_bus_width(struct mmc *mmc) { u32 ext_csd_bits[] = { EXT_CSD_BUS_WIDTH_8, EXT_CSD_BUS_WIDTH_4, }; u32 bus_widths[] = { MMC_BUS_WIDTH_8BIT, MMC_BUS_WIDTH_4BIT, }; ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN); u32 idx, bus_width = 0; int err = 0; if (mmc->version < MMC_VERSION_4 || !(mmc->cfg->host_caps & (MMC_MODE_4BIT | MMC_MODE_8BIT))) return 0; err = mmc_send_ext_csd(mmc, ext_csd); if (err) return err; idx = (mmc->cfg->host_caps & MMC_MODE_8BIT) ? 0 : 1; /* * Unlike SD, MMC cards dont have a configuration register to notify * supported bus width. So bus test command should be run to identify * the supported bus width or compare the ext csd values of current * bus width and ext csd values of 1 bit mode read earlier. */ for (; idx < ARRAY_SIZE(bus_widths); idx++) { /* * Host is capable of 8bit transfer, then switch * the device to work in 8bit transfer mode. If the * mmc switch command returns error then switch to * 4bit transfer mode. On success set the corresponding * bus width on the host. */ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, ext_csd_bits[idx]); if (err) continue; bus_width = bus_widths[idx]; mmc_set_bus_width(mmc, bus_width); err = mmc_send_ext_csd(mmc, test_csd); if (err) continue; /* Only compare read only fields */ if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] == test_csd[EXT_CSD_PARTITIONING_SUPPORT]) && (ext_csd[EXT_CSD_HC_WP_GRP_SIZE] == test_csd[EXT_CSD_HC_WP_GRP_SIZE]) && (ext_csd[EXT_CSD_REV] == test_csd[EXT_CSD_REV]) && (ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] == test_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && !memcmp(&ext_csd[EXT_CSD_SEC_CNT], &test_csd[EXT_CSD_SEC_CNT], 4)) { err = bus_width; break; } else { err = -EBADMSG; } } return err; } #ifndef CONFIG_MMC_SIMPLE static const u8 tuning_blk_pattern_4bit[] = { 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc, 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef, 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb, 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef, 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c, 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee, 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff, 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde, }; static const u8 tuning_blk_pattern_8bit[] = { 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, }; int mmc_send_tuning(struct mmc *mmc, u32 opcode) { struct mmc_cmd cmd; struct mmc_data data; const u8 *tuning_block_pattern; int size, err = 0; u8 *data_buf; if (mmc->bus_width == MMC_BUS_WIDTH_8BIT) { tuning_block_pattern = tuning_blk_pattern_8bit; size = sizeof(tuning_blk_pattern_8bit); } else if (mmc->bus_width == MMC_BUS_WIDTH_4BIT) { tuning_block_pattern = tuning_blk_pattern_4bit; size = sizeof(tuning_blk_pattern_4bit); } else { return -EINVAL; } data_buf = calloc(1, size); if (!data_buf) return -ENOMEM; cmd.cmdidx = opcode; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; data.dest = (char *)data_buf; data.blocksize = size; data.blocks = 1; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); if (err) goto out; if (memcmp(data_buf, tuning_block_pattern, size)) err = -EIO; out: free(data_buf); return err; } static int mmc_execute_tuning(struct mmc *mmc) { #ifdef CONFIG_DM_MMC struct dm_mmc_ops *ops = mmc_get_ops(mmc->dev); #endif u32 opcode; if (IS_SD(mmc)) opcode = MMC_SEND_TUNING_BLOCK; else opcode = MMC_SEND_TUNING_BLOCK_HS200; #ifndef CONFIG_DM_MMC if (mmc->cfg->ops->execute_tuning) { return mmc->cfg->ops->execute_tuning(mmc, opcode); #else if (ops->execute_tuning) { return ops->execute_tuning(mmc->dev, opcode); #endif } else { debug("Tuning feature required for HS200 mode.\n"); return -EIO; } } static int mmc_hs200_tuning(struct mmc *mmc) { return mmc_execute_tuning(mmc); } #else int mmc_send_tuning(struct mmc *mmc, u32 opcode) { return 0; } int mmc_execute_tuning(struct mmc *mmc) { return 0; } static int mmc_hs200_tuning(struct mmc *mmc) { return 0; } #endif static int mmc_select_hs(struct mmc *mmc) { int ret; ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS); if (!ret) mmc_set_timing(mmc, MMC_TIMING_MMC_HS); return ret; } static int mmc_select_hs_ddr(struct mmc *mmc) { u32 ext_csd_bits; int err = 0; if (mmc->bus_width == MMC_BUS_WIDTH_1BIT) return 0; ext_csd_bits = (mmc->bus_width == MMC_BUS_WIDTH_8BIT) ? EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, ext_csd_bits); if (err) return err; mmc_set_timing(mmc, MMC_TIMING_MMC_DDR52); return 0; } #ifndef CONFIG_MMC_SIMPLE static int mmc_select_hs200(struct mmc *mmc) { int ret; /* * Set the bus width(4 or 8) with host's support and * switch to HS200 mode if bus width is set successfully. */ ret = mmc_select_bus_width(mmc); if (ret > 0) { ret = __mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS200, false); if (ret) return ret; mmc_set_timing(mmc, MMC_TIMING_MMC_HS200); } return ret; } static int mmc_select_hs400(struct mmc *mmc) { int ret; /* Reduce frequency to HS frequency */ mmc_set_clock(mmc, MMC_HIGH_52_MAX_DTR); /* Switch card to HS mode */ ret = __mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, false); if (ret) return ret; /* Set host controller to HS timing */ mmc_set_timing(mmc, MMC_TIMING_MMC_HS); ret = mmc_send_status(mmc, 1000); if (ret) return ret; /* Switch card to DDR */ ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_DDR_BUS_WIDTH_8); if (ret) return ret; /* Switch card to HS400 */ ret = __mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS400, false); if (ret) return ret; /* Set host controller to HS400 timing and frequency */ mmc_set_timing(mmc, MMC_TIMING_MMC_HS400); return ret; } #else static int mmc_select_hs200(struct mmc *mmc) { return 0; } static int mmc_select_hs400(struct mmc *mmc) { return 0; } #endif static u32 mmc_select_card_type(struct mmc *mmc, u8 *ext_csd) { u8 card_type; u32 host_caps, avail_type = 0; card_type = ext_csd[EXT_CSD_CARD_TYPE]; host_caps = mmc->cfg->host_caps; if ((host_caps & MMC_MODE_HS) && (card_type & EXT_CSD_CARD_TYPE_26)) avail_type |= EXT_CSD_CARD_TYPE_26; if ((host_caps & MMC_MODE_HS) && (card_type & EXT_CSD_CARD_TYPE_52)) avail_type |= EXT_CSD_CARD_TYPE_52; /* * For the moment, u-boot doesn't support signal voltage * switch, therefor we assume that host support ddr52 * at 1.8v or 3.3v I/O(1.2v I/O not supported, hs200 and * hs400 are the same). */ if ((host_caps & MMC_MODE_DDR_52MHz) && (card_type & EXT_CSD_CARD_TYPE_DDR_1_8V)) avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; if ((host_caps & MMC_MODE_HS200) && (card_type & EXT_CSD_CARD_TYPE_HS200_1_8V)) avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; /* * If host can support HS400, it means that host can also * support HS200. */ if ((host_caps & MMC_MODE_HS400) && (host_caps & MMC_MODE_8BIT) && (card_type & EXT_CSD_CARD_TYPE_HS400_1_8V)) avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V | EXT_CSD_CARD_TYPE_HS400_1_8V; if ((host_caps & MMC_MODE_HS400ES) && (host_caps & MMC_MODE_8BIT) && ext_csd[EXT_CSD_STROBE_SUPPORT] && (avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)) avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V | EXT_CSD_CARD_TYPE_HS400_1_8V | EXT_CSD_CARD_TYPE_HS400ES; return avail_type; } static void mmc_set_bus_speed(struct mmc *mmc, u8 avail_type) { int clock = 0; if (mmc_card_hs(mmc)) clock = (avail_type & EXT_CSD_CARD_TYPE_52) ? MMC_HIGH_52_MAX_DTR : MMC_HIGH_26_MAX_DTR; else if (mmc_card_hs200(mmc) || mmc_card_hs400(mmc) || mmc_card_hs400es(mmc)) clock = MMC_HS200_MAX_DTR; mmc_set_clock(mmc, clock); } static int mmc_change_freq(struct mmc *mmc) { ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); u32 avail_type; int err; mmc->card_caps = 0; if (mmc_host_is_spi(mmc)) return 0; /* Only version 4 supports high-speed */ if (mmc->version < MMC_VERSION_4) return 0; mmc->card_caps |= MMC_MODE_4BIT | MMC_MODE_8BIT; err = mmc_send_ext_csd(mmc, ext_csd); if (err) return err; avail_type = mmc_select_card_type(mmc, ext_csd); if (avail_type & EXT_CSD_CARD_TYPE_HS200) err = mmc_select_hs200(mmc); else if (avail_type & EXT_CSD_CARD_TYPE_HS) err = mmc_select_hs(mmc); else err = -EINVAL; if (err) return err; mmc_set_bus_speed(mmc, avail_type); if (mmc_card_hs200(mmc)) { err = mmc_hs200_tuning(mmc); if (avail_type & EXT_CSD_CARD_TYPE_HS400 && mmc->bus_width == MMC_BUS_WIDTH_8BIT) { err = mmc_select_hs400(mmc); mmc_set_bus_speed(mmc, avail_type); } } else if (!mmc_card_hs400es(mmc)) { err = mmc_select_bus_width(mmc) > 0 ? 0 : err; if (!err && avail_type & EXT_CSD_CARD_TYPE_DDR_52) err = mmc_select_hs_ddr(mmc); } return err; } static int mmc_set_capacity(struct mmc *mmc, int part_num) { switch (part_num) { case 0: mmc->capacity = mmc->capacity_user; break; case 1: case 2: mmc->capacity = mmc->capacity_boot; break; case 3: mmc->capacity = mmc->capacity_rpmb; break; case 4: case 5: case 6: case 7: mmc->capacity = mmc->capacity_gp[part_num - 4]; break; default: return -1; } mmc_get_blk_desc(mmc)->lba = lldiv(mmc->capacity, mmc->read_bl_len); return 0; } int mmc_switch_part(struct mmc *mmc, unsigned int part_num) { int ret; ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF, (mmc->part_config & ~PART_ACCESS_MASK) | (part_num & PART_ACCESS_MASK)); /* * Set the capacity if the switch succeeded or was intended * to return to representing the raw device. */ if ((ret == 0) || ((ret == -ENODEV) && (part_num == 0))) { ret = mmc_set_capacity(mmc, part_num); mmc_get_blk_desc(mmc)->hwpart = part_num; } return ret; } int mmc_hwpart_config(struct mmc *mmc, const struct mmc_hwpart_conf *conf, enum mmc_hwpart_conf_mode mode) { u8 part_attrs = 0; u32 enh_size_mult; u32 enh_start_addr; u32 gp_size_mult[4]; u32 max_enh_size_mult; u32 tot_enh_size_mult = 0; u8 wr_rel_set; int i, pidx, err; ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); if (mode < MMC_HWPART_CONF_CHECK || mode > MMC_HWPART_CONF_COMPLETE) return -EINVAL; if (IS_SD(mmc) || (mmc->version < MMC_VERSION_4_41)) { printf("eMMC >= 4.4 required for enhanced user data area\n"); return -EMEDIUMTYPE; } if (!(mmc->part_support & PART_SUPPORT)) { printf("Card does not support partitioning\n"); return -EMEDIUMTYPE; } if (!mmc->hc_wp_grp_size) { printf("Card does not define HC WP group size\n"); return -EMEDIUMTYPE; } /* check partition alignment and total enhanced size */ if (conf->user.enh_size) { if (conf->user.enh_size % mmc->hc_wp_grp_size || conf->user.enh_start % mmc->hc_wp_grp_size) { printf("User data enhanced area not HC WP group " "size aligned\n"); return -EINVAL; } part_attrs |= EXT_CSD_ENH_USR; enh_size_mult = conf->user.enh_size / mmc->hc_wp_grp_size; if (mmc->high_capacity) { enh_start_addr = conf->user.enh_start; } else { enh_start_addr = (conf->user.enh_start << 9); } } else { enh_size_mult = 0; enh_start_addr = 0; } tot_enh_size_mult += enh_size_mult; for (pidx = 0; pidx < 4; pidx++) { if (conf->gp_part[pidx].size % mmc->hc_wp_grp_size) { printf("GP%i partition not HC WP group size " "aligned\n", pidx+1); return -EINVAL; } gp_size_mult[pidx] = conf->gp_part[pidx].size / mmc->hc_wp_grp_size; if (conf->gp_part[pidx].size && conf->gp_part[pidx].enhanced) { part_attrs |= EXT_CSD_ENH_GP(pidx); tot_enh_size_mult += gp_size_mult[pidx]; } } if (part_attrs && ! (mmc->part_support & ENHNCD_SUPPORT)) { printf("Card does not support enhanced attribute\n"); return -EMEDIUMTYPE; } err = mmc_send_ext_csd(mmc, ext_csd); if (err) return err; max_enh_size_mult = (ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT+2] << 16) + (ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT+1] << 8) + ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT]; if (tot_enh_size_mult > max_enh_size_mult) { printf("Total enhanced size exceeds maximum (%u > %u)\n", tot_enh_size_mult, max_enh_size_mult); return -EMEDIUMTYPE; } /* The default value of EXT_CSD_WR_REL_SET is device * dependent, the values can only be changed if the * EXT_CSD_HS_CTRL_REL bit is set. The values can be * changed only once and before partitioning is completed. */ wr_rel_set = ext_csd[EXT_CSD_WR_REL_SET]; if (conf->user.wr_rel_change) { if (conf->user.wr_rel_set) wr_rel_set |= EXT_CSD_WR_DATA_REL_USR; else wr_rel_set &= ~EXT_CSD_WR_DATA_REL_USR; } for (pidx = 0; pidx < 4; pidx++) { if (conf->gp_part[pidx].wr_rel_change) { if (conf->gp_part[pidx].wr_rel_set) wr_rel_set |= EXT_CSD_WR_DATA_REL_GP(pidx); else wr_rel_set &= ~EXT_CSD_WR_DATA_REL_GP(pidx); } } if (wr_rel_set != ext_csd[EXT_CSD_WR_REL_SET] && !(ext_csd[EXT_CSD_WR_REL_PARAM] & EXT_CSD_HS_CTRL_REL)) { puts("Card does not support host controlled partition write " "reliability settings\n"); return -EMEDIUMTYPE; } if (ext_csd[EXT_CSD_PARTITION_SETTING] & EXT_CSD_PARTITION_SETTING_COMPLETED) { printf("Card already partitioned\n"); return -EPERM; } if (mode == MMC_HWPART_CONF_CHECK) return 0; /* Partitioning requires high-capacity size definitions */ if (!(ext_csd[EXT_CSD_ERASE_GROUP_DEF] & 0x01)) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ERASE_GROUP_DEF, 1); if (err) return err; ext_csd[EXT_CSD_ERASE_GROUP_DEF] = 1; /* update erase group size to be high-capacity */ mmc->erase_grp_size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 1024; } /* all OK, write the configuration */ for (i = 0; i < 4; i++) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ENH_START_ADDR+i, (enh_start_addr >> (i*8)) & 0xFF); if (err) return err; } for (i = 0; i < 3; i++) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ENH_SIZE_MULT+i, (enh_size_mult >> (i*8)) & 0xFF); if (err) return err; } for (pidx = 0; pidx < 4; pidx++) { for (i = 0; i < 3; i++) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_GP_SIZE_MULT+pidx*3+i, (gp_size_mult[pidx] >> (i*8)) & 0xFF); if (err) return err; } } err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PARTITIONS_ATTRIBUTE, part_attrs); if (err) return err; if (mode == MMC_HWPART_CONF_SET) return 0; /* The WR_REL_SET is a write-once register but shall be * written before setting PART_SETTING_COMPLETED. As it is * write-once we can only write it when completing the * partitioning. */ if (wr_rel_set != ext_csd[EXT_CSD_WR_REL_SET]) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_WR_REL_SET, wr_rel_set); if (err) return err; } /* Setting PART_SETTING_COMPLETED confirms the partition * configuration but it only becomes effective after power * cycle, so we do not adjust the partition related settings * in the mmc struct. */ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PARTITION_SETTING, EXT_CSD_PARTITION_SETTING_COMPLETED); if (err) return err; return 0; } #if !CONFIG_IS_ENABLED(DM_MMC) int mmc_getcd(struct mmc *mmc) { int cd; cd = board_mmc_getcd(mmc); if (cd < 0) { if (mmc->cfg->ops->getcd) cd = mmc->cfg->ops->getcd(mmc); else cd = 1; } return cd; } #endif static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp) { struct mmc_cmd cmd; struct mmc_data data; /* Switch the frequency */ cmd.cmdidx = SD_CMD_SWITCH_FUNC; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = (mode << 31) | 0xffffff; cmd.cmdarg &= ~(0xf << (group * 4)); cmd.cmdarg |= value << (group * 4); data.dest = (char *)resp; data.blocksize = 64; data.blocks = 1; data.flags = MMC_DATA_READ; return mmc_send_cmd(mmc, &cmd, &data); } static int sd_change_freq(struct mmc *mmc) { int err; struct mmc_cmd cmd; ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2); ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16); struct mmc_data data; int timeout; mmc->card_caps = 0; if (mmc_host_is_spi(mmc)) return 0; /* Read the SCR to find out if this card supports higher speeds */ cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SEND_SCR; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; timeout = 3; retry_scr: data.dest = (char *)scr; data.blocksize = 8; data.blocks = 1; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); if (err) { if (timeout--) goto retry_scr; return err; } mmc->scr[0] = __be32_to_cpu(scr[0]); mmc->scr[1] = __be32_to_cpu(scr[1]); switch ((mmc->scr[0] >> 24) & 0xf) { case 0: mmc->version = SD_VERSION_1_0; break; case 1: mmc->version = SD_VERSION_1_10; break; case 2: mmc->version = SD_VERSION_2; if ((mmc->scr[0] >> 15) & 0x1) mmc->version = SD_VERSION_3; break; default: mmc->version = SD_VERSION_1_0; break; } if (mmc->scr[0] & SD_DATA_4BIT) mmc->card_caps |= MMC_MODE_4BIT; /* Version 1.0 doesn't support switching */ if (mmc->version == SD_VERSION_1_0) return 0; timeout = 4; while (timeout--) { err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1, (u8 *)switch_status); if (err) return err; /* The high-speed function is busy. Try again */ if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY)) break; } /* If high-speed isn't supported, we return */ if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED)) return 0; /* * If the host doesn't support SD_HIGHSPEED, do not switch card to * HIGHSPEED mode even if the card support SD_HIGHSPPED. * This can avoid furthur problem when the card runs in different * mode between the host. */ if (!((mmc->cfg->host_caps & MMC_MODE_HS_52MHz) && (mmc->cfg->host_caps & MMC_MODE_HS))) return 0; err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status); if (err) return err; if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000) mmc->card_caps |= MMC_MODE_HS; return 0; } static int sd_read_ssr(struct mmc *mmc) { int err, i; struct mmc_cmd cmd; ALLOC_CACHE_ALIGN_BUFFER(uint, ssr, 16); struct mmc_data data; int timeout = 3; unsigned int au, eo, et, es; cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SD_STATUS; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; retry_ssr: data.dest = (char *)ssr; data.blocksize = 64; data.blocks = 1; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); if (err) { if (timeout--) goto retry_ssr; return err; } for (i = 0; i < 16; i++) ssr[i] = be32_to_cpu(ssr[i]); au = (ssr[2] >> 12) & 0xF; if ((au <= 9) || (mmc->version == SD_VERSION_3)) { mmc->ssr.au = sd_au_size[au]; es = (ssr[3] >> 24) & 0xFF; es |= (ssr[2] & 0xFF) << 8; et = (ssr[3] >> 18) & 0x3F; if (es && et) { eo = (ssr[3] >> 16) & 0x3; mmc->ssr.erase_timeout = (et * 1000) / es; mmc->ssr.erase_offset = eo * 1000; } } else { debug("Invalid Allocation Unit Size.\n"); } return 0; } /* frequency bases */ /* divided by 10 to be nice to platforms without floating point */ static const int fbase[] = { 10000, 100000, 1000000, 10000000, }; /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice * to platforms without floating point. */ static const u8 multipliers[] = { 0, /* reserved */ 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; #if !CONFIG_IS_ENABLED(DM_MMC) static void mmc_set_ios(struct mmc *mmc) { if (mmc->cfg->ops->set_ios) mmc->cfg->ops->set_ios(mmc); } static bool mmc_card_busy(struct mmc *mmc) { if (!mmc->cfg->ops->card_busy) return -ENOSYS; return mmc->cfg->ops->card_busy(mmc); } static bool mmc_can_card_busy(struct mmc *) { return !!mmc->cfg->ops->card_busy; } #endif static int mmc_startup(struct mmc *mmc) { int err, i; uint mult, freq, tran_speed; u64 cmult, csize, capacity; struct mmc_cmd cmd; ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); bool has_parts = false; bool part_completed; struct blk_desc *bdesc; #ifdef CONFIG_MMC_SPI_CRC_ON if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */ cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 1; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } #endif #ifndef CONFIG_MMC_USE_PRE_CONFIG /* Put the Card in Identify Mode */ cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID : MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */ cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; memcpy(mmc->cid, cmd.response, 16); /* * For MMC cards, set the Relative Address. * For SD cards, get the Relatvie Address. * This also puts the cards into Standby State */ if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR; cmd.cmdarg = mmc->rca << 16; cmd.resp_type = MMC_RSP_R6; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if (IS_SD(mmc)) mmc->rca = (cmd.response[0] >> 16) & 0xffff; } #endif /* Get the Card-Specific Data */ cmd.cmdidx = MMC_CMD_SEND_CSD; cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc->csd[0] = cmd.response[0]; mmc->csd[1] = cmd.response[1]; mmc->csd[2] = cmd.response[2]; mmc->csd[3] = cmd.response[3]; if (mmc->version == MMC_VERSION_UNKNOWN) { int version = (cmd.response[0] >> 26) & 0xf; switch (version) { case 0: mmc->version = MMC_VERSION_1_2; break; case 1: mmc->version = MMC_VERSION_1_4; break; case 2: mmc->version = MMC_VERSION_2_2; break; case 3: mmc->version = MMC_VERSION_3; break; case 4: mmc->version = MMC_VERSION_4; break; default: mmc->version = MMC_VERSION_1_2; break; } } /* divide frequency by 10, since the mults are 10x bigger */ freq = fbase[(cmd.response[0] & 0x7)]; mult = multipliers[((cmd.response[0] >> 3) & 0xf)]; tran_speed = freq * mult; mmc->dsr_imp = ((cmd.response[1] >> 12) & 0x1); mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf); if (IS_SD(mmc)) mmc->write_bl_len = mmc->read_bl_len; else mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf); if (mmc->high_capacity) { csize = (mmc->csd[1] & 0x3f) << 16 | (mmc->csd[2] & 0xffff0000) >> 16; cmult = 8; } else { csize = (mmc->csd[1] & 0x3ff) << 2 | (mmc->csd[2] & 0xc0000000) >> 30; cmult = (mmc->csd[2] & 0x00038000) >> 15; } mmc->capacity_user = (csize + 1) << (cmult + 2); mmc->capacity_user *= mmc->read_bl_len; mmc->capacity_boot = 0; mmc->capacity_rpmb = 0; for (i = 0; i < 4; i++) mmc->capacity_gp[i] = 0; if (mmc->read_bl_len > MMC_MAX_BLOCK_LEN) mmc->read_bl_len = MMC_MAX_BLOCK_LEN; if (mmc->write_bl_len > MMC_MAX_BLOCK_LEN) mmc->write_bl_len = MMC_MAX_BLOCK_LEN; if ((mmc->dsr_imp) && (0xffffffff != mmc->dsr)) { cmd.cmdidx = MMC_CMD_SET_DSR; cmd.cmdarg = (mmc->dsr & 0xffff) << 16; cmd.resp_type = MMC_RSP_NONE; if (mmc_send_cmd(mmc, &cmd, NULL)) printf("MMC: SET_DSR failed\n"); } /* Select the card, and put it into Transfer Mode */ if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ cmd.cmdidx = MMC_CMD_SELECT_CARD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } /* * For SD, its erase group is always one sector */ mmc->erase_grp_size = 1; mmc->part_config = MMCPART_NOAVAILABLE; if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) { /* check ext_csd version and capacity */ err = mmc_send_ext_csd(mmc, ext_csd); if (err) return err; if (ext_csd[EXT_CSD_REV] >= 2) { /* * According to the JEDEC Standard, the value of * ext_csd's capacity is valid if the value is more * than 2GB */ capacity = ext_csd[EXT_CSD_SEC_CNT] << 0 | ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | ext_csd[EXT_CSD_SEC_CNT + 3] << 24; capacity *= MMC_MAX_BLOCK_LEN; if ((capacity >> 20) > 2 * 1024) mmc->capacity_user = capacity; } switch (ext_csd[EXT_CSD_REV]) { case 1: mmc->version = MMC_VERSION_4_1; break; case 2: mmc->version = MMC_VERSION_4_2; break; case 3: mmc->version = MMC_VERSION_4_3; break; case 5: mmc->version = MMC_VERSION_4_41; break; case 6: mmc->version = MMC_VERSION_4_5; break; case 7: mmc->version = MMC_VERSION_5_0; break; case 8: mmc->version = MMC_VERSION_5_1; break; } /* The partition data may be non-zero but it is only * effective if PARTITION_SETTING_COMPLETED is set in * EXT_CSD, so ignore any data if this bit is not set, * except for enabling the high-capacity group size * definition (see below). */ part_completed = !!(ext_csd[EXT_CSD_PARTITION_SETTING] & EXT_CSD_PARTITION_SETTING_COMPLETED); /* store the partition info of emmc */ mmc->part_support = ext_csd[EXT_CSD_PARTITIONING_SUPPORT]; if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) || ext_csd[EXT_CSD_BOOT_MULT]) mmc->part_config = ext_csd[EXT_CSD_PART_CONF]; if (part_completed && (ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & ENHNCD_SUPPORT)) mmc->part_attr = ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE]; if (ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT] & EXT_CSD_SEC_GB_CL_EN) mmc->esr.mmc_can_trim = 1; mmc->capacity_boot = ext_csd[EXT_CSD_BOOT_MULT] << 17; mmc->capacity_rpmb = ext_csd[EXT_CSD_RPMB_MULT] << 17; for (i = 0; i < 4; i++) { int idx = EXT_CSD_GP_SIZE_MULT + i * 3; uint mult = (ext_csd[idx + 2] << 16) + (ext_csd[idx + 1] << 8) + ext_csd[idx]; if (mult) has_parts = true; if (!part_completed) continue; mmc->capacity_gp[i] = mult; mmc->capacity_gp[i] *= ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; mmc->capacity_gp[i] *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; mmc->capacity_gp[i] <<= 19; } if (part_completed) { mmc->enh_user_size = (ext_csd[EXT_CSD_ENH_SIZE_MULT+2] << 16) + (ext_csd[EXT_CSD_ENH_SIZE_MULT+1] << 8) + ext_csd[EXT_CSD_ENH_SIZE_MULT]; mmc->enh_user_size *= ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; mmc->enh_user_size *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; mmc->enh_user_size <<= 19; mmc->enh_user_start = (ext_csd[EXT_CSD_ENH_START_ADDR+3] << 24) + (ext_csd[EXT_CSD_ENH_START_ADDR+2] << 16) + (ext_csd[EXT_CSD_ENH_START_ADDR+1] << 8) + ext_csd[EXT_CSD_ENH_START_ADDR]; if (mmc->high_capacity) mmc->enh_user_start <<= 9; } /* * Host needs to enable ERASE_GRP_DEF bit if device is * partitioned. This bit will be lost every time after a reset * or power off. This will affect erase size. */ if (part_completed) has_parts = true; if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) && (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & PART_ENH_ATTRIB)) has_parts = true; if (has_parts) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ERASE_GROUP_DEF, 1); if (err) return err; else ext_csd[EXT_CSD_ERASE_GROUP_DEF] = 1; } if (ext_csd[EXT_CSD_ERASE_GROUP_DEF] & 0x01) { /* Read out group size from ext_csd */ mmc->erase_grp_size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 1024; /* * if high capacity and partition setting completed * SEC_COUNT is valid even if it is smaller than 2 GiB * JEDEC Standard JESD84-B45, 6.2.4 */ if (mmc->high_capacity && part_completed) { capacity = (ext_csd[EXT_CSD_SEC_CNT]) | (ext_csd[EXT_CSD_SEC_CNT + 1] << 8) | (ext_csd[EXT_CSD_SEC_CNT + 2] << 16) | (ext_csd[EXT_CSD_SEC_CNT + 3] << 24); capacity *= MMC_MAX_BLOCK_LEN; mmc->capacity_user = capacity; } } else { /* Calculate the group size from the csd value. */ int erase_gsz, erase_gmul; erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10; erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5; mmc->erase_grp_size = (erase_gsz + 1) * (erase_gmul + 1); } mmc->hc_wp_grp_size = 1024 * ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; mmc->wr_rel_set = ext_csd[EXT_CSD_WR_REL_SET]; } err = mmc_set_capacity(mmc, mmc_get_blk_desc(mmc)->hwpart); if (err) return err; if (IS_SD(mmc)) err = sd_change_freq(mmc); else err = mmc_change_freq(mmc); if (err) return err; /* Restrict card's capabilities by what the host can do */ mmc->card_caps &= mmc->cfg->host_caps; if (IS_SD(mmc)) { if (mmc->card_caps & MMC_MODE_4BIT) { cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 2; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc_set_bus_width(mmc, 4); } err = sd_read_ssr(mmc); if (err) return err; if (mmc->card_caps & MMC_MODE_HS) tran_speed = MMC_HIGH_52_MAX_DTR; else tran_speed = MMC_HIGH_26_MAX_DTR; mmc_set_clock(mmc, tran_speed); } /* Fix the block length for DDR mode */ if (mmc_card_ddr(mmc)) { mmc->read_bl_len = MMC_MAX_BLOCK_LEN; mmc->write_bl_len = MMC_MAX_BLOCK_LEN; } /* fill in device description */ bdesc = mmc_get_blk_desc(mmc); bdesc->lun = 0; bdesc->hwpart = 0; bdesc->type = 0; bdesc->blksz = mmc->read_bl_len; bdesc->log2blksz = LOG2(bdesc->blksz); bdesc->lba = lldiv(mmc->capacity, mmc->read_bl_len); #if !defined(CONFIG_SPL_BUILD) || \ (defined(CONFIG_SPL_LIBCOMMON_SUPPORT) && \ !defined(CONFIG_USE_TINY_PRINTF)) sprintf(bdesc->vendor, "Man %06x Snr %04x%04x", mmc->cid[0] >> 24, (mmc->cid[2] & 0xffff), (mmc->cid[3] >> 16) & 0xffff); sprintf(bdesc->product, "%c%c%c%c%c%c", mmc->cid[0] & 0xff, (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff, (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff, (mmc->cid[2] >> 24) & 0xff); sprintf(bdesc->revision, "%d.%d", (mmc->cid[2] >> 20) & 0xf, (mmc->cid[2] >> 16) & 0xf); #else bdesc->vendor[0] = 0; bdesc->product[0] = 0; bdesc->revision[0] = 0; #endif #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBDISK_SUPPORT) part_init(bdesc); #endif return 0; } #ifndef CONFIG_MMC_USE_PRE_CONFIG static int mmc_send_if_cond(struct mmc *mmc) { struct mmc_cmd cmd; int err; cmd.cmdidx = SD_CMD_SEND_IF_COND; /* We set the bit if the host supports voltages between 2.7 and 3.6 V */ cmd.cmdarg = ((mmc->cfg->voltages & 0xff8000) != 0) << 8 | 0xaa; cmd.resp_type = MMC_RSP_R7; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if ((cmd.response[0] & 0xff) != 0xaa) return -EOPNOTSUPP; else mmc->version = SD_VERSION_2; return 0; } #endif #if !CONFIG_IS_ENABLED(DM_MMC) /* board-specific MMC power initializations. */ __weak void board_mmc_power_init(void) { } #endif #ifndef CONFIG_MMC_USE_PRE_CONFIG static int mmc_power_init(struct mmc *mmc) { #if CONFIG_IS_ENABLED(DM_MMC) #if defined(CONFIG_DM_REGULATOR) && !defined(CONFIG_SPL_BUILD) struct udevice *vmmc_supply; int ret; ret = device_get_supply_regulator(mmc->dev, "vmmc-supply", &vmmc_supply); if (ret) { debug("%s: No vmmc supply\n", mmc->dev->name); return 0; } ret = regulator_set_enable(vmmc_supply, true); if (ret) { puts("Error enabling VMMC supply\n"); return ret; } #endif #else /* !CONFIG_DM_MMC */ /* * Driver model should use a regulator, as above, rather than calling * out to board code. */ board_mmc_power_init(); #endif return 0; } #endif #ifdef CONFIG_MMC_USE_PRE_CONFIG static int mmc_select_card(struct mmc *mmc, int n) { struct mmc_cmd cmd; int err = 0; memset(&cmd, 0, sizeof(struct mmc_cmd)); if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ mmc->rca = n; cmd.cmdidx = MMC_CMD_SELECT_CARD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); } return err; } int mmc_start_init(struct mmc *mmc) { /* * We use the MMC config set by the bootrom. * So it is no need to reset the eMMC device. */ mmc_set_bus_width(mmc, 8); mmc_set_clock(mmc, 1); mmc_set_timing(mmc, MMC_TIMING_LEGACY); /* Send cmd7 to return stand-by state*/ mmc_select_card(mmc, 0); mmc->version = MMC_VERSION_UNKNOWN; mmc->high_capacity = 1; /* * The RCA is set to 2 by rockchip bootrom, use the default * value here. */ #ifdef CONFIG_ARCH_ROCKCHIP mmc->rca = 2; #else mmc->rca = 1; #endif return 0; } #else int mmc_start_init(struct mmc *mmc) { bool no_card; int err; /* we pretend there's no card when init is NULL */ no_card = mmc_getcd(mmc) == 0; #if !CONFIG_IS_ENABLED(DM_MMC) no_card = no_card || (mmc->cfg->ops->init == NULL); #endif if (no_card) { mmc->has_init = 0; #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("MMC: no card present\n"); #endif return -ENOMEDIUM; } if (mmc->has_init) return 0; #ifdef CONFIG_FSL_ESDHC_ADAPTER_IDENT mmc_adapter_card_type_ident(); #endif err = mmc_power_init(mmc); if (err) return err; #if CONFIG_IS_ENABLED(DM_MMC) /* The device has already been probed ready for use */ #else /* made sure it's not NULL earlier */ err = mmc->cfg->ops->init(mmc); if (err) return err; #endif mmc_set_bus_width(mmc, 1); mmc_set_clock(mmc, 1); mmc_set_timing(mmc, MMC_TIMING_LEGACY); /* Reset the Card */ err = mmc_go_idle(mmc); if (err) return err; /* The internal partition reset to user partition(0) at every CMD0*/ mmc_get_blk_desc(mmc)->hwpart = 0; /* Test for SD version 2 */ err = mmc_send_if_cond(mmc); /* Now try to get the SD card's operating condition */ err = sd_send_op_cond(mmc); /* If the command timed out, we check for an MMC card */ if (err == -ETIMEDOUT) { err = mmc_send_op_cond(mmc); if (err) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("Card did not respond to voltage select!\n"); #endif return -EOPNOTSUPP; } } if (!err) mmc->init_in_progress = 1; return err; } #endif static int mmc_complete_init(struct mmc *mmc) { int err = 0; mmc->init_in_progress = 0; if (mmc->op_cond_pending) err = mmc_complete_op_cond(mmc); if (!err) err = mmc_startup(mmc); if (err) mmc->has_init = 0; else mmc->has_init = 1; return err; } int mmc_init(struct mmc *mmc) { int err = 0; __maybe_unused unsigned start; #if CONFIG_IS_ENABLED(DM_MMC) struct mmc_uclass_priv *upriv = dev_get_uclass_priv(mmc->dev); upriv->mmc = mmc; #endif if (mmc->has_init) return 0; start = get_timer(0); if (!mmc->init_in_progress) err = mmc_start_init(mmc); if (!err) err = mmc_complete_init(mmc); if (err) printf("%s: %d, time %lu\n", __func__, err, get_timer(start)); return err; } int mmc_set_dsr(struct mmc *mmc, u16 val) { mmc->dsr = val; return 0; } /* CPU-specific MMC initializations */ __weak int cpu_mmc_init(bd_t *bis) { return -1; } /* board-specific MMC initializations. */ __weak int board_mmc_init(bd_t *bis) { return -1; } void mmc_set_preinit(struct mmc *mmc, int preinit) { mmc->preinit = preinit; } #if CONFIG_IS_ENABLED(DM_MMC) && defined(CONFIG_SPL_BUILD) static int mmc_probe(bd_t *bis) { return 0; } #elif CONFIG_IS_ENABLED(DM_MMC) static int mmc_probe(bd_t *bis) { int ret, i; struct uclass *uc; struct udevice *dev; ret = uclass_get(UCLASS_MMC, &uc); if (ret) return ret; /* * Try to add them in sequence order. Really with driver model we * should allow holes, but the current MMC list does not allow that. * So if we request 0, 1, 3 we will get 0, 1, 2. */ for (i = 0; ; i++) { ret = uclass_get_device_by_seq(UCLASS_MMC, i, &dev); if (ret == -ENODEV) break; } uclass_foreach_dev(dev, uc) { ret = device_probe(dev); if (ret) printf("%s - probe failed: %d\n", dev->name, ret); } return 0; } #else static int mmc_probe(bd_t *bis) { if (board_mmc_init(bis) < 0) cpu_mmc_init(bis); return 0; } #endif int mmc_initialize(bd_t *bis) { static int initialized = 0; int ret; if (initialized) /* Avoid initializing mmc multiple times */ return 0; initialized = 1; #if !CONFIG_IS_ENABLED(BLK) #if !CONFIG_IS_ENABLED(MMC_TINY) mmc_list_init(); #endif #endif ret = mmc_probe(bis); if (ret) return ret; #ifndef CONFIG_SPL_BUILD print_mmc_devices(','); #endif mmc_do_preinit(); return 0; } #ifdef CONFIG_CMD_BKOPS_ENABLE int mmc_set_bkops_enable(struct mmc *mmc) { int err; ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); err = mmc_send_ext_csd(mmc, ext_csd); if (err) { puts("Could not get ext_csd register values\n"); return err; } if (!(ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1)) { puts("Background operations not supported on device\n"); return -EMEDIUMTYPE; } if (ext_csd[EXT_CSD_BKOPS_EN] & 0x1) { puts("Background operations already enabled\n"); return 0; } err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BKOPS_EN, 1); if (err) { puts("Failed to enable manual background operations\n"); return err; } puts("Enabled manual background operations\n"); return 0; } #endif