// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2015-2017 Google, Inc * * USB Power Delivery protocol stack. */ #include #include #include #include #include #include #include #include #define FOREACH_STATE(S) \ S(INVALID_STATE), \ S(TOGGLING), \ S(SRC_UNATTACHED), \ S(SRC_ATTACH_WAIT), \ S(SRC_ATTACHED), \ S(SRC_STARTUP), \ S(SRC_SEND_CAPABILITIES), \ S(SRC_SEND_CAPABILITIES_TIMEOUT), \ S(SRC_NEGOTIATE_CAPABILITIES), \ S(SRC_TRANSITION_SUPPLY), \ S(SRC_READY), \ S(SRC_WAIT_NEW_CAPABILITIES), \ \ S(SNK_UNATTACHED), \ S(SNK_ATTACH_WAIT), \ S(SNK_DEBOUNCED), \ S(SNK_ATTACHED), \ S(SNK_STARTUP), \ S(SNK_DISCOVERY), \ S(SNK_DISCOVERY_DEBOUNCE), \ S(SNK_DISCOVERY_DEBOUNCE_DONE), \ S(SNK_WAIT_CAPABILITIES), \ S(SNK_NEGOTIATE_CAPABILITIES), \ S(SNK_NEGOTIATE_PPS_CAPABILITIES), \ S(SNK_TRANSITION_SINK), \ S(SNK_TRANSITION_SINK_VBUS), \ S(SNK_READY), \ \ S(ACC_UNATTACHED), \ S(DEBUG_ACC_ATTACHED), \ S(AUDIO_ACC_ATTACHED), \ S(AUDIO_ACC_DEBOUNCE), \ \ S(HARD_RESET_SEND), \ S(HARD_RESET_START), \ S(SRC_HARD_RESET_VBUS_OFF), \ S(SRC_HARD_RESET_VBUS_ON), \ S(SNK_HARD_RESET_SINK_OFF), \ S(SNK_HARD_RESET_WAIT_VBUS), \ S(SNK_HARD_RESET_SINK_ON), \ \ S(SOFT_RESET), \ S(SRC_SOFT_RESET_WAIT_SNK_TX), \ S(SNK_SOFT_RESET), \ S(SOFT_RESET_SEND), \ \ S(DR_SWAP_ACCEPT), \ S(DR_SWAP_SEND), \ S(DR_SWAP_SEND_TIMEOUT), \ S(DR_SWAP_CANCEL), \ S(DR_SWAP_CHANGE_DR), \ \ S(PR_SWAP_ACCEPT), \ S(PR_SWAP_SEND), \ S(PR_SWAP_SEND_TIMEOUT), \ S(PR_SWAP_CANCEL), \ S(PR_SWAP_START), \ S(PR_SWAP_SRC_SNK_TRANSITION_OFF), \ S(PR_SWAP_SRC_SNK_SOURCE_OFF), \ S(PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED), \ S(PR_SWAP_SRC_SNK_SINK_ON), \ S(PR_SWAP_SNK_SRC_SINK_OFF), \ S(PR_SWAP_SNK_SRC_SOURCE_ON), \ S(PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP), \ \ S(VCONN_SWAP_ACCEPT), \ S(VCONN_SWAP_SEND), \ S(VCONN_SWAP_SEND_TIMEOUT), \ S(VCONN_SWAP_CANCEL), \ S(VCONN_SWAP_START), \ S(VCONN_SWAP_WAIT_FOR_VCONN), \ S(VCONN_SWAP_TURN_ON_VCONN), \ S(VCONN_SWAP_TURN_OFF_VCONN), \ \ S(FR_SWAP_SEND), \ S(FR_SWAP_SEND_TIMEOUT), \ S(FR_SWAP_SNK_SRC_TRANSITION_TO_OFF), \ S(FR_SWAP_SNK_SRC_NEW_SINK_READY), \ S(FR_SWAP_SNK_SRC_SOURCE_VBUS_APPLIED), \ S(FR_SWAP_CANCEL), \ \ S(SNK_TRY), \ S(SNK_TRY_WAIT), \ S(SNK_TRY_WAIT_DEBOUNCE), \ S(SNK_TRY_WAIT_DEBOUNCE_CHECK_VBUS), \ S(SRC_TRYWAIT), \ S(SRC_TRYWAIT_DEBOUNCE), \ S(SRC_TRYWAIT_UNATTACHED), \ \ S(SRC_TRY), \ S(SRC_TRY_WAIT), \ S(SRC_TRY_DEBOUNCE), \ S(SNK_TRYWAIT), \ S(SNK_TRYWAIT_DEBOUNCE), \ S(SNK_TRYWAIT_VBUS), \ S(BIST_RX), \ \ S(GET_STATUS_SEND), \ S(GET_STATUS_SEND_TIMEOUT), \ S(GET_PPS_STATUS_SEND), \ S(GET_PPS_STATUS_SEND_TIMEOUT), \ \ S(GET_SINK_CAP), \ S(GET_SINK_CAP_TIMEOUT), \ \ S(ERROR_RECOVERY), \ S(PORT_RESET), \ S(PORT_RESET_WAIT_OFF), \ \ S(AMS_START), \ S(CHUNK_NOT_SUPP) #define FOREACH_AMS(S) \ S(NONE_AMS), \ S(POWER_NEGOTIATION), \ S(GOTOMIN), \ S(SOFT_RESET_AMS), \ S(HARD_RESET), \ S(CABLE_RESET), \ S(GET_SOURCE_CAPABILITIES), \ S(GET_SINK_CAPABILITIES), \ S(POWER_ROLE_SWAP), \ S(FAST_ROLE_SWAP), \ S(DATA_ROLE_SWAP), \ S(VCONN_SWAP), \ S(SOURCE_ALERT), \ S(GETTING_SOURCE_EXTENDED_CAPABILITIES),\ S(GETTING_SOURCE_SINK_STATUS), \ S(GETTING_BATTERY_CAPABILITIES), \ S(GETTING_BATTERY_STATUS), \ S(GETTING_MANUFACTURER_INFORMATION), \ S(SECURITY), \ S(FIRMWARE_UPDATE), \ S(DISCOVER_IDENTITY), \ S(SOURCE_STARTUP_CABLE_PLUG_DISCOVER_IDENTITY), \ S(DISCOVER_SVIDS), \ S(DISCOVER_MODES), \ S(DFP_TO_UFP_ENTER_MODE), \ S(DFP_TO_UFP_EXIT_MODE), \ S(DFP_TO_CABLE_PLUG_ENTER_MODE), \ S(DFP_TO_CABLE_PLUG_EXIT_MODE), \ S(ATTENTION), \ S(BIST), \ S(UNSTRUCTURED_VDMS), \ S(STRUCTURED_VDMS), \ S(COUNTRY_INFO), \ S(COUNTRY_CODES) #define GENERATE_ENUM(e) e #define GENERATE_STRING(s) #s #define TCPM_POLL_EVENT_TIME_OUT 2000 enum tcpm_state { FOREACH_STATE(GENERATE_ENUM) }; static const char * const tcpm_states[] = { FOREACH_STATE(GENERATE_STRING) }; enum tcpm_ams { FOREACH_AMS(GENERATE_ENUM) }; static const char * const tcpm_ams_str[] = { FOREACH_AMS(GENERATE_STRING) }; enum vdm_states { VDM_STATE_ERR_BUSY = -3, VDM_STATE_ERR_SEND = -2, VDM_STATE_ERR_TMOUT = -1, VDM_STATE_DONE = 0, /* Anything >0 represents an active state */ VDM_STATE_READY = 1, VDM_STATE_BUSY = 2, VDM_STATE_WAIT_RSP_BUSY = 3, VDM_STATE_SEND_MESSAGE = 4, }; enum pd_msg_request { PD_MSG_NONE = 0, PD_MSG_CTRL_REJECT, PD_MSG_CTRL_WAIT, PD_MSG_CTRL_NOT_SUPP, PD_MSG_DATA_SINK_CAP, PD_MSG_DATA_SOURCE_CAP, }; enum adev_actions { ADEV_NONE = 0, ADEV_NOTIFY_USB_AND_QUEUE_VDM, ADEV_QUEUE_VDM, ADEV_QUEUE_VDM_SEND_EXIT_MODE_ON_FAIL, ADEV_ATTENTION, }; /* * Initial current capability of the new source when vSafe5V is applied during PD3.0 Fast Role Swap. * Based on "Table 6-14 Fixed Supply PDO - Sink" of "USB Power Delivery Specification Revision 3.0, * Version 1.2" */ enum frs_typec_current { FRS_NOT_SUPPORTED, FRS_DEFAULT_POWER, FRS_5V_1P5A, FRS_5V_3A, }; /* Events from low level driver */ #define TCPM_CC_EVENT BIT(0) #define TCPM_VBUS_EVENT BIT(1) #define TCPM_RESET_EVENT BIT(2) #define TCPM_FRS_EVENT BIT(3) #define TCPM_SOURCING_VBUS BIT(4) #define LOG_BUFFER_ENTRIES 1024 #define LOG_BUFFER_ENTRY_SIZE 128 /* Alternate mode support */ #define SVID_DISCOVERY_MAX 16 #define ALTMODE_DISCOVERY_MAX (SVID_DISCOVERY_MAX * MODE_DISCOVERY_MAX) #define GET_SINK_CAP_RETRY_MS 100 #define SEND_DISCOVER_RETRY_MS 100 /* * @min_volt: Actual min voltage at the local port * @req_min_volt: Requested min voltage to the port partner * @max_volt: Actual max voltage at the local port * @req_max_volt: Requested max voltage to the port partner * @max_curr: Actual max current at the local port * @req_max_curr: Requested max current of the port partner * @req_out_volt: Requested output voltage to the port partner * @req_op_curr: Requested operating current to the port partner * @supported: Parter has atleast one APDO hence supports PPS * @active: PPS mode is active */ struct pd_pps_data { u32 min_volt; u32 req_min_volt; u32 max_volt; u32 req_max_volt; u32 max_curr; u32 req_max_curr; u32 req_out_volt; u32 req_op_curr; bool supported; bool active; }; enum power_supply_usb_type { POWER_SUPPLY_USB_TYPE_UNKNOWN = 0, POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */ POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */ POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */ POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */ POWER_SUPPLY_USB_TYPE_C, /* Type C Port */ POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */ POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */ POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */ POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ }; struct tcpm_port { struct udevice *dev; struct typec_capability typec_caps; struct tcpc_dev *tcpc; enum typec_role vconn_role; enum typec_role pwr_role; enum typec_data_role data_role; enum typec_pwr_opmode pwr_opmode; struct usb_pd_identity partner_ident; struct typec_partner_desc partner_desc; struct typec_partner *partner; enum typec_cc_status cc_req; enum typec_cc_status cc1; enum typec_cc_status cc2; enum typec_cc_polarity polarity; bool attached; bool connected; int poll_event_cnt; enum typec_port_type port_type; /* * Set to true when vbus is greater than VSAFE5V min. * Set to false when vbus falls below vSinkDisconnect max threshold. */ bool vbus_present; /* * Set to true when vbus is less than VSAFE0V max. * Set to false when vbus is greater than VSAFE0V max. */ bool vbus_vsafe0v; bool vbus_never_low; bool vbus_source; bool vbus_charge; /* Set to true when Discover_Identity Command is expected to be sent in Ready states. */ bool send_discover; bool op_vsafe5v; int try_role; int try_snk_count; int try_src_count; enum pd_msg_request queued_message; enum tcpm_state enter_state; enum tcpm_state prev_state; enum tcpm_state state; enum tcpm_state delayed_state; unsigned long delay_ms; spinlock_t pd_event_lock; u32 pd_events; bool state_machine_running; /* Set to true when VDM State Machine has following actions. */ bool vdm_sm_running; bool tx_complete; enum tcpm_transmit_status tx_status; struct mutex swap_lock; /* swap command lock */ bool swap_pending; bool non_pd_role_swap; int swap_status; unsigned int negotiated_rev; unsigned int message_id; unsigned int caps_count; unsigned int hard_reset_count; bool pd_capable; bool explicit_contract; unsigned int rx_msgid; /* Partner capabilities/requests */ u32 sink_request; u32 source_caps[PDO_MAX_OBJECTS]; unsigned int nr_source_caps; u32 sink_caps[PDO_MAX_OBJECTS]; unsigned int nr_sink_caps; /* * whether to wait for the Type-C device to send the DR_SWAP Message flag * For Type-C device with Dual-Role Power and Dual-Role Data, the port side * is used as sink + ufp, then the tcpm framework needs to wait for Type-C * device to initiate DR_swap Message. */ bool wait_dr_swap_Message; /* Local capabilities */ u32 src_pdo[PDO_MAX_OBJECTS]; unsigned int nr_src_pdo; u32 snk_pdo[PDO_MAX_OBJECTS]; unsigned int nr_snk_pdo; u32 snk_vdo_v1[VDO_MAX_OBJECTS]; unsigned int nr_snk_vdo_v1; u32 snk_vdo[VDO_MAX_OBJECTS]; unsigned int nr_snk_vdo; unsigned int operating_snk_mw; bool update_sink_caps; /* Requested current / voltage to the port partner */ u32 req_current_limit; u32 req_supply_voltage; /* Actual current / voltage limit of the local port */ u32 current_limit; u32 supply_voltage; enum power_supply_usb_type usb_type; u32 bist_request; /* PD state for Vendor Defined Messages */ enum vdm_states vdm_state; u32 vdm_retries; /* next Vendor Defined Message to send */ u32 vdo_data[VDO_MAX_SIZE]; u8 vdo_count; /* VDO to retry if UFP responder replied busy */ u32 vdo_retry; /* PPS */ struct pd_pps_data pps_data; bool pps_pending; int pps_status; /* Deadline in jiffies to exit src_try_wait state */ unsigned long max_wait; /* port belongs to a self powered device */ bool self_powered; /* Sink FRS */ enum frs_typec_current new_source_frs_current; /* Sink caps have been queried */ bool sink_cap_done; /* Port is still in tCCDebounce */ bool debouncing; /* Collision Avoidance and Atomic Message Sequence */ enum tcpm_state upcoming_state; enum tcpm_ams ams; enum tcpm_ams next_ams; bool in_ams; /* Auto vbus discharge status */ bool auto_vbus_discharge_enabled; /* * When set, port requests PD_P_SNK_STDBY_MW upon entering SNK_DISCOVERY and * the actual currrent limit after RX of PD_CTRL_PSRDY for PD link, * SNK_READY for non-pd link. */ bool slow_charger_loop; #ifdef CONFIG_DEBUG_FS struct dentry *dentry; struct mutex logbuffer_lock; /* log buffer access lock */ int logbuffer_head; int logbuffer_tail; u8 *logbuffer[LOG_BUFFER_ENTRIES]; #endif }; struct pd_rx_event { struct tcpm_port *port; struct pd_message msg; }; static const char * const pd_rev[] = { [PD_REV10] = "rev1", [PD_REV20] = "rev2", [PD_REV30] = "rev3", }; #define tcpm_cc_is_sink(cc) \ ((cc) == TYPEC_CC_RP_DEF || (cc) == TYPEC_CC_RP_1_5 || \ (cc) == TYPEC_CC_RP_3_0) #define tcpm_port_is_sink(port) \ ((tcpm_cc_is_sink((port)->cc1) && !tcpm_cc_is_sink((port)->cc2)) || \ (tcpm_cc_is_sink((port)->cc2) && !tcpm_cc_is_sink((port)->cc1))) #define tcpm_cc_is_source(cc) ((cc) == TYPEC_CC_RD) #define tcpm_cc_is_audio(cc) ((cc) == TYPEC_CC_RA) #define tcpm_cc_is_open(cc) ((cc) == TYPEC_CC_OPEN) #define tcpm_port_is_source(port) \ ((tcpm_cc_is_source((port)->cc1) && \ !tcpm_cc_is_source((port)->cc2)) || \ (tcpm_cc_is_source((port)->cc2) && \ !tcpm_cc_is_source((port)->cc1))) #define tcpm_port_is_debug(port) \ (tcpm_cc_is_source((port)->cc1) && tcpm_cc_is_source((port)->cc2)) #define tcpm_port_is_audio(port) \ (tcpm_cc_is_audio((port)->cc1) && tcpm_cc_is_audio((port)->cc2)) #define tcpm_port_is_audio_detached(port) \ ((tcpm_cc_is_audio((port)->cc1) && tcpm_cc_is_open((port)->cc2)) || \ (tcpm_cc_is_audio((port)->cc2) && tcpm_cc_is_open((port)->cc1))) #define tcpm_try_snk(port) \ ((port)->try_snk_count == 0 && (port)->try_role == TYPEC_SINK && \ (port)->port_type == TYPEC_PORT_DRP) #define tcpm_try_src(port) \ ((port)->try_src_count == 0 && (port)->try_role == TYPEC_SOURCE && \ (port)->port_type == TYPEC_PORT_DRP) #define tcpm_data_role_for_source(port) \ ((port)->typec_caps.data == TYPEC_PORT_UFP ? \ TYPEC_DEVICE : TYPEC_HOST) #define tcpm_data_role_for_sink(port) \ ((port)->typec_caps.data == TYPEC_PORT_DFP ? \ TYPEC_HOST : TYPEC_DEVICE) static enum tcpm_state tcpm_default_state(struct tcpm_port *port) { if (port->port_type == TYPEC_PORT_DRP) { if (port->try_role == TYPEC_SINK) return SNK_UNATTACHED; else if (port->try_role == TYPEC_SOURCE) return SRC_UNATTACHED; /* Fall through to return SRC_UNATTACHED */ } else if (port->port_type == TYPEC_PORT_SNK) { return SNK_UNATTACHED; } return SRC_UNATTACHED; } static bool tcpm_port_is_disconnected(struct tcpm_port *port) { return (!port->attached && port->cc1 == TYPEC_CC_OPEN && port->cc2 == TYPEC_CC_OPEN) || (port->attached && ((port->polarity == TYPEC_POLARITY_CC1 && port->cc1 == TYPEC_CC_OPEN) || (port->polarity == TYPEC_POLARITY_CC2 && port->cc2 == TYPEC_CC_OPEN))); } static void tcpm_set_cc(struct tcpm_port *port, enum typec_cc_status cc) { debug("%s: cc = %d", __func__, cc); port->cc_req = cc; port->tcpc->set_cc(port->tcpc, cc); } /* * Determine RP value to set based on maximum current supported * by a port if configured as source. * Returns CC value to report to link partner. */ static enum typec_cc_status tcpm_rp_cc(struct tcpm_port *port) { const u32 *src_pdo = port->src_pdo; int nr_pdo = port->nr_src_pdo; int i; /* * Search for first entry with matching voltage. * It should report the maximum supported current. */ for (i = 0; i < nr_pdo; i++) { const u32 pdo = src_pdo[i]; if (pdo_type(pdo) == PDO_TYPE_FIXED && pdo_fixed_voltage(pdo) == 5000) { unsigned int curr = pdo_max_current(pdo); if (curr >= 3000) return TYPEC_CC_RP_3_0; else if (curr >= 1500) return TYPEC_CC_RP_1_5; return TYPEC_CC_RP_DEF; } } return TYPEC_CC_RP_DEF; } static int tcpm_pd_transmit(struct tcpm_port *port, enum tcpm_transmit_type type, const struct pd_message *msg) { int ret; int timeout = PD_T_TCPC_TX_TIMEOUT; if (msg) debug("PD TX, header: %#x\n", le16_to_cpu(msg->header)); else debug("PD TX, type: %#x\n", type); port->tx_complete = false; ret = port->tcpc->pd_transmit(port->tcpc, type, msg, port->negotiated_rev); if (ret < 0) return ret; while ((timeout > 0) && (!port->tx_complete)) { port->tcpc->poll_event(port->tcpc); udelay(1000); timeout--; } if (!timeout) { printf("%s: pd transmit data timeout\n", __func__); return -ETIMEDOUT; } switch (port->tx_status) { case TCPC_TX_SUCCESS: port->message_id = (port->message_id + 1) & PD_HEADER_ID_MASK; break; case TCPC_TX_DISCARDED: ret = -EAGAIN; break; case TCPC_TX_FAILED: default: ret = -EIO; break; } return ret; } void tcpm_pd_transmit_complete(struct tcpm_port *port, enum tcpm_transmit_status status) { debug("%s: PD TX complete, status: %u\n", __func__, status); port->poll_event_cnt = 0; port->tx_status = status; port->tx_complete = true; } EXPORT_SYMBOL_GPL(tcpm_pd_transmit_complete); static int tcpm_set_polarity(struct tcpm_port *port, enum typec_cc_polarity polarity) { int ret; debug("%s: polarity %d\n", __func__, polarity); ret = port->tcpc->set_polarity(port->tcpc, polarity); if (ret < 0) return ret; port->polarity = polarity; return 0; } static int tcpm_set_vconn(struct tcpm_port *port, bool enable) { int ret; debug("%s: vconn = %d\n", __func__, enable); ret = port->tcpc->set_vconn(port->tcpc, enable); if (!ret) port->vconn_role = enable ? TYPEC_SOURCE : TYPEC_SINK; return ret; } static u32 tcpm_get_current_limit(struct tcpm_port *port) { enum typec_cc_status cc; u32 limit; cc = port->polarity ? port->cc2 : port->cc1; switch (cc) { case TYPEC_CC_RP_1_5: limit = 1500; break; case TYPEC_CC_RP_3_0: limit = 3000; break; case TYPEC_CC_RP_DEF: default: if (port->tcpc->get_current_limit) limit = port->tcpc->get_current_limit(port->tcpc); else limit = 0; break; } return limit; } static int tcpm_set_current_limit(struct tcpm_port *port, u32 max_ma, u32 mv) { int ret = -EOPNOTSUPP; debug("Setting voltage/current limit %u mV %u mA\n", mv, max_ma); port->supply_voltage = mv; port->current_limit = max_ma; if (port->tcpc->set_current_limit) ret = port->tcpc->set_current_limit(port->tcpc, max_ma, mv); return ret; } static int tcpm_set_attached_state(struct tcpm_port *port, bool attached) { return port->tcpc->set_roles(port->tcpc, attached, port->pwr_role, port->data_role); } static int tcpm_set_roles(struct tcpm_port *port, bool attached, enum typec_role role, enum typec_data_role data) { #if 0 enum typec_orientation orientation; enum usb_role usb_role; #endif int ret; #if 0 if (port->polarity == TYPEC_POLARITY_CC1) orientation = TYPEC_ORIENTATION_NORMAL; else orientation = TYPEC_ORIENTATION_REVERSE; if (data == TYPEC_HOST) usb_role = USB_ROLE_HOST; else usb_role = USB_ROLE_DEVICE; ret = tcpm_mux_set(port, TYPEC_STATE_USB, usb_role, orientation); if (ret < 0) return ret; #endif ret = port->tcpc->set_roles(port->tcpc, attached, role, data); if (ret < 0) return ret; port->pwr_role = role; port->data_role = data; #if 0 typec_set_data_role(port->typec_port, data); typec_set_pwr_role(port->typec_port, role); #endif return 0; } static int tcpm_pd_send_source_caps(struct tcpm_port *port) { struct pd_message msg; int i; memset(&msg, 0, sizeof(msg)); if (!port->nr_src_pdo) { /* No source capabilities defined, sink only */ msg.header = PD_HEADER_LE(PD_CTRL_REJECT, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 0); } else { msg.header = PD_HEADER_LE(PD_DATA_SOURCE_CAP, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, port->nr_src_pdo); } for (i = 0; i < port->nr_src_pdo; i++) msg.payload[i] = cpu_to_le32(port->src_pdo[i]); return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg); } static int tcpm_pd_send_sink_caps(struct tcpm_port *port) { struct pd_message msg; unsigned int i; memset(&msg, 0, sizeof(msg)); if (!port->nr_snk_pdo) { /* No sink capabilities defined, source only */ msg.header = PD_HEADER_LE(PD_CTRL_REJECT, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 0); } else { msg.header = PD_HEADER_LE(PD_DATA_SINK_CAP, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, port->nr_snk_pdo); } for (i = 0; i < port->nr_snk_pdo; i++) msg.payload[i] = cpu_to_le32(port->snk_pdo[i]); return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg); } static void tcpm_state_machine(struct tcpm_port *port); static void tcpm_timer_uninit(struct tcpm_port *port); static void tcpm_timer_irq(int irq, void *data) { struct tcpm_port *port = data; writel(TIMER_CLR_INT, TIMER_BASE + TIMER_INTSTATUS); tcpm_timer_uninit(port); tcpm_state_machine(port); } static void tcpm_timer_init(struct tcpm_port *port, uint32_t ms) { uint64_t period = 24000ULL * ms; /* Disable before conifg */ writel(0, TIMER_BASE + TIMER_CTRL); /* Config */ writel((uint32_t)period, TIMER_BASE + TIMER_LOAD_COUNT0); writel((uint32_t)(period >> 32), TIMER_BASE + TIMER_LOAD_COUNT1); writel(TIMER_CLR_INT, TIMER_BASE + TIMER_INTSTATUS); writel(TIMER_EN | TIMER_INT_EN, TIMER_BASE + TIMER_CTRL); /* IRQ */ irq_install_handler(TIMER_IRQ, (interrupt_handler_t *)tcpm_timer_irq, port); irq_handler_enable(TIMER_IRQ); } static void tcpm_timer_uninit(struct tcpm_port *port) { writel(0, TIMER_BASE + TIMER_CTRL); irq_handler_disable(TIMER_IRQ); irq_free_handler(TIMER_IRQ); } static void mod_tcpm_delayed_work(struct tcpm_port *port, unsigned int delay_ms) { if (delay_ms) { tcpm_timer_init(port, delay_ms); } else { tcpm_timer_uninit(port); tcpm_state_machine(port); } } static void tcpm_set_state(struct tcpm_port *port, enum tcpm_state state, unsigned int delay_ms) { debug("%s: line = %d, delay_ms = %d, set state = %s\n", __func__, __LINE__, delay_ms, tcpm_states[state]); if (delay_ms) { debug("pending state change %s -> %s @ %u ms [%s]\n", tcpm_states[port->state], tcpm_states[state], delay_ms, pd_rev[port->negotiated_rev]); port->delayed_state = state; mod_tcpm_delayed_work(port, delay_ms); port->delay_ms = delay_ms; } else { debug("state change %s -> %s\n", tcpm_states[port->state], tcpm_states[state]); port->delayed_state = INVALID_STATE; port->prev_state = port->state; port->state = state; /* * Don't re-queue the state machine work item if we're currently * in the state machine and we're immediately changing states. * tcpm_state_machine_work() will continue running the state * machine. */ if (!port->state_machine_running) mod_tcpm_delayed_work(port, 0); } } static void tcpm_set_state_cond(struct tcpm_port *port, enum tcpm_state state, unsigned int delay_ms) { if (port->enter_state == port->state) tcpm_set_state(port, state, delay_ms); else debug("skipped %sstate change %s -> %s [%u ms], context state %s [%s %s]\n", delay_ms ? "delayed " : "", tcpm_states[port->state], tcpm_states[state], delay_ms, tcpm_states[port->enter_state], pd_rev[port->negotiated_rev], tcpm_ams_str[port->ams]); } static void tcpm_queue_message(struct tcpm_port *port, enum pd_msg_request message) { port->queued_message = message; mod_tcpm_delayed_work(port, 0); } #if 0 static void tcpm_pd_handle_msg(struct tcpm_port *port, enum pd_msg_request message, enum tcpm_ams ams); #endif enum pdo_err { PDO_NO_ERR, PDO_ERR_NO_VSAFE5V, PDO_ERR_VSAFE5V_NOT_FIRST, PDO_ERR_PDO_TYPE_NOT_IN_ORDER, PDO_ERR_FIXED_NOT_SORTED, PDO_ERR_VARIABLE_BATT_NOT_SORTED, PDO_ERR_DUPE_PDO, PDO_ERR_PPS_APDO_NOT_SORTED, PDO_ERR_DUPE_PPS_APDO, }; static const char * const pdo_err_msg[] = { [PDO_ERR_NO_VSAFE5V] = " err: source/sink caps should atleast have vSafe5V", [PDO_ERR_VSAFE5V_NOT_FIRST] = " err: vSafe5V Fixed Supply Object Shall always be the first object", [PDO_ERR_PDO_TYPE_NOT_IN_ORDER] = " err: PDOs should be in the following order: Fixed; Battery; Variable", [PDO_ERR_FIXED_NOT_SORTED] = " err: Fixed supply pdos should be in increasing order of their fixed voltage", [PDO_ERR_VARIABLE_BATT_NOT_SORTED] = " err: Variable/Battery supply pdos should be in increasing order of their minimum voltage", [PDO_ERR_DUPE_PDO] = " err: Variable/Batt supply pdos cannot have same min/max voltage", [PDO_ERR_PPS_APDO_NOT_SORTED] = " err: Programmable power supply apdos should be in increasing order of their maximum voltage", [PDO_ERR_DUPE_PPS_APDO] = " err: Programmable power supply apdos cannot have same min/max voltage and max current", }; static enum pdo_err tcpm_caps_err(struct tcpm_port *port, const u32 *pdo, unsigned int nr_pdo) { unsigned int i; /* Should at least contain vSafe5v */ if (nr_pdo < 1) return PDO_ERR_NO_VSAFE5V; /* The vSafe5V Fixed Supply Object Shall always be the first object */ if (pdo_type(pdo[0]) != PDO_TYPE_FIXED || pdo_fixed_voltage(pdo[0]) != VSAFE5V) return PDO_ERR_VSAFE5V_NOT_FIRST; for (i = 1; i < nr_pdo; i++) { if (pdo_type(pdo[i]) < pdo_type(pdo[i - 1])) { return PDO_ERR_PDO_TYPE_NOT_IN_ORDER; } else if (pdo_type(pdo[i]) == pdo_type(pdo[i - 1])) { enum pd_pdo_type type = pdo_type(pdo[i]); switch (type) { /* * The remaining Fixed Supply Objects, if * present, shall be sent in voltage order; * lowest to highest. */ case PDO_TYPE_FIXED: if (pdo_fixed_voltage(pdo[i]) <= pdo_fixed_voltage(pdo[i - 1])) return PDO_ERR_FIXED_NOT_SORTED; break; /* * The Battery Supply Objects and Variable * supply, if present shall be sent in Minimum * Voltage order; lowest to highest. */ case PDO_TYPE_VAR: case PDO_TYPE_BATT: if (pdo_min_voltage(pdo[i]) < pdo_min_voltage(pdo[i - 1])) return PDO_ERR_VARIABLE_BATT_NOT_SORTED; else if ((pdo_min_voltage(pdo[i]) == pdo_min_voltage(pdo[i - 1])) && (pdo_max_voltage(pdo[i]) == pdo_max_voltage(pdo[i - 1]))) return PDO_ERR_DUPE_PDO; break; /* * The Programmable Power Supply APDOs, if present, * shall be sent in Maximum Voltage order; * lowest to highest. */ case PDO_TYPE_APDO: if (pdo_apdo_type(pdo[i]) != APDO_TYPE_PPS) break; if (pdo_pps_apdo_max_voltage(pdo[i]) < pdo_pps_apdo_max_voltage(pdo[i - 1])) return PDO_ERR_PPS_APDO_NOT_SORTED; else if (pdo_pps_apdo_min_voltage(pdo[i]) == pdo_pps_apdo_min_voltage(pdo[i - 1]) && pdo_pps_apdo_max_voltage(pdo[i]) == pdo_pps_apdo_max_voltage(pdo[i - 1]) && pdo_pps_apdo_max_current(pdo[i]) == pdo_pps_apdo_max_current(pdo[i - 1])) return PDO_ERR_DUPE_PPS_APDO; break; default: printf("%s: Unknown pdo type\n", __func__); } } } return PDO_NO_ERR; } static int tcpm_validate_caps(struct tcpm_port *port, const u32 *pdo, unsigned int nr_pdo) { enum pdo_err err_index = tcpm_caps_err(port, pdo, nr_pdo); if (err_index != PDO_NO_ERR) { printf("%s", pdo_err_msg[err_index]); return -EINVAL; } return 0; } /* * PD (data, control) command handling functions */ static inline enum tcpm_state ready_state(struct tcpm_port *port) { if (port->pwr_role == TYPEC_SOURCE) return SRC_READY; else return SNK_READY; } static int tcpm_pd_send_control(struct tcpm_port *port, enum pd_ctrl_msg_type type); #if 0 static void tcpm_pd_handle_msg(struct tcpm_port *port, enum pd_msg_request message, enum tcpm_ams ams) { switch (port->state) { case SRC_READY: case SNK_READY: port->ams = ams; tcpm_queue_message(port, message); break; /* PD 3.0 Spec 8.3.3.4.1.1 and 6.8.1 */ case SNK_TRANSITION_SINK: case SNK_TRANSITION_SINK_VBUS: case SRC_TRANSITION_SUPPLY: tcpm_set_state(port, HARD_RESET_SEND, 0); break; default: if (!tcpm_ams_interruptible(port)) { tcpm_set_state(port, port->pwr_role == TYPEC_SOURCE ? SRC_SOFT_RESET_WAIT_SNK_TX : SNK_SOFT_RESET, 0); } else { port->next_ams = ams; tcpm_set_state(port, ready_state(port), 0); /* 6.8.1 process the Message */ tcpm_queue_message(port, message); } break; } } #endif static void tcpm_pd_data_request(struct tcpm_port *port, const struct pd_message *msg) { enum pd_data_msg_type type = pd_header_type_le(msg->header); unsigned int cnt = pd_header_cnt_le(msg->header); unsigned int rev = pd_header_rev_le(msg->header); unsigned int i; switch (type) { case PD_DATA_SOURCE_CAP: for (i = 0; i < cnt; i++) port->source_caps[i] = le32_to_cpu(msg->payload[i]); port->nr_source_caps = cnt; tcpm_validate_caps(port, port->source_caps, port->nr_source_caps); /* * Adjust revision in subsequent message headers, as required, * to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't * support Rev 1.0 so just do nothing in that scenario. */ if (rev == PD_REV10) { break; } if (rev < PD_MAX_REV) port->negotiated_rev = rev; if ((pdo_type(port->source_caps[0]) == PDO_TYPE_FIXED) && (port->source_caps[0] & PDO_FIXED_DUAL_ROLE) && (port->source_caps[0] & PDO_FIXED_DATA_SWAP)) { /* Dual role power and data, eg: self-powered Type-C */ port->wait_dr_swap_Message = true; } else { /* Non-Dual role power, eg: adapter */ port->wait_dr_swap_Message = false; } /* * This message may be received even if VBUS is not * present. This is quite unexpected; see USB PD * specification, sections 8.3.3.6.3.1 and 8.3.3.6.3.2. * However, at the same time, we must be ready to * receive this message and respond to it 15ms after * receiving PS_RDY during power swap operations, no matter * if VBUS is available or not (USB PD specification, * section 6.5.9.2). * So we need to accept the message either way, * but be prepared to keep waiting for VBUS after it was * handled. */ tcpm_set_state(port, SNK_NEGOTIATE_CAPABILITIES, 0); break; case PD_DATA_REQUEST: /* * Adjust revision in subsequent message headers, as required, * to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't * support Rev 1.0 so just reject in that scenario. */ if (rev == PD_REV10) { tcpm_queue_message(port, PD_MSG_CTRL_REJECT); break; } if (rev < PD_MAX_REV) port->negotiated_rev = rev; port->sink_request = le32_to_cpu(msg->payload[0]); tcpm_set_state(port, SRC_NEGOTIATE_CAPABILITIES, 0); break; case PD_DATA_SINK_CAP: /* We don't do anything with this at the moment... */ for (i = 0; i < cnt; i++) port->sink_caps[i] = le32_to_cpu(msg->payload[i]); port->nr_sink_caps = cnt; break; default: break; } } static void tcpm_pd_ctrl_request(struct tcpm_port *port, const struct pd_message *msg) { enum pd_ctrl_msg_type type = pd_header_type_le(msg->header); enum tcpm_state next_state; switch (type) { case PD_CTRL_GOOD_CRC: case PD_CTRL_PING: break; case PD_CTRL_GET_SOURCE_CAP: switch (port->state) { case SRC_READY: case SNK_READY: tcpm_queue_message(port, PD_MSG_DATA_SOURCE_CAP); break; default: tcpm_queue_message(port, PD_MSG_CTRL_REJECT); break; } break; case PD_CTRL_GET_SINK_CAP: switch (port->state) { case SRC_READY: case SNK_READY: tcpm_queue_message(port, PD_MSG_DATA_SINK_CAP); break; default: tcpm_queue_message(port, PD_MSG_CTRL_REJECT); break; } break; case PD_CTRL_GOTO_MIN: break; case PD_CTRL_PS_RDY: switch (port->state) { case SNK_TRANSITION_SINK: if (port->vbus_present) { tcpm_set_current_limit(port, port->req_current_limit, port->req_supply_voltage); port->explicit_contract = true; tcpm_set_state(port, SNK_READY, 0); } else { /* * Seen after power swap. Keep waiting for VBUS * in a transitional state. */ tcpm_set_state(port, SNK_TRANSITION_SINK_VBUS, 0); } break; default: break; } break; case PD_CTRL_REJECT: case PD_CTRL_WAIT: case PD_CTRL_NOT_SUPP: switch (port->state) { case SNK_NEGOTIATE_CAPABILITIES: /* USB PD specification, Figure 8-43 */ if (port->explicit_contract) next_state = SNK_READY; else next_state = SNK_WAIT_CAPABILITIES; tcpm_set_state(port, next_state, 0); break; case SNK_NEGOTIATE_PPS_CAPABILITIES: /* Revert data back from any requested PPS updates */ port->pps_data.req_out_volt = port->supply_voltage; port->pps_data.req_op_curr = port->current_limit; port->pps_status = (type == PD_CTRL_WAIT ? -EAGAIN : -EOPNOTSUPP); tcpm_set_state(port, SNK_READY, 0); break; default: break; } break; case PD_CTRL_ACCEPT: switch (port->state) { case SNK_NEGOTIATE_CAPABILITIES: port->pps_data.active = false; tcpm_set_state(port, SNK_TRANSITION_SINK, 0); break; case SNK_NEGOTIATE_PPS_CAPABILITIES: port->pps_data.active = true; /* ???? */ port->pps_data.min_volt = port->pps_data.req_min_volt; port->pps_data.max_volt = port->pps_data.req_max_volt; port->pps_data.max_curr = port->pps_data.req_max_curr; port->req_supply_voltage = port->pps_data.req_out_volt; port->req_current_limit = port->pps_data.req_op_curr; tcpm_set_state(port, SNK_TRANSITION_SINK, 0); break; case SOFT_RESET_SEND: port->message_id = 0; port->rx_msgid = -1; if (port->pwr_role == TYPEC_SOURCE) next_state = SRC_SEND_CAPABILITIES; else next_state = SNK_WAIT_CAPABILITIES; tcpm_set_state(port, next_state, 0); break; default: break; } break; case PD_CTRL_SOFT_RESET: tcpm_set_state(port, SOFT_RESET, 0); break; case PD_CTRL_DR_SWAP: if (port->port_type != TYPEC_PORT_DRP) { tcpm_queue_message(port, PD_MSG_CTRL_REJECT); break; } /* * XXX * 6.3.9: If an alternate mode is active, a request to swap * alternate modes shall trigger a port reset. */ switch (port->state) { case SRC_READY: case SNK_READY: #if 0 if (port->vdm_sm_running) { tcpm_queue_message(port, PD_MSG_CTRL_WAIT); break; } #endif tcpm_set_state(port, DR_SWAP_ACCEPT, 0); break; default: tcpm_queue_message(port, PD_MSG_CTRL_WAIT); break; } break; case PD_CTRL_PR_SWAP: case PD_CTRL_VCONN_SWAP: case PD_CTRL_GET_SOURCE_CAP_EXT: case PD_CTRL_GET_STATUS: case PD_CTRL_FR_SWAP: case PD_CTRL_GET_PPS_STATUS: case PD_CTRL_GET_COUNTRY_CODES: /* Currently not supported */ printf("Currently not supported type %#x \n", type); tcpm_queue_message(port, PD_MSG_CTRL_NOT_SUPP); break; default: printf("Unrecognized ctrl message type %#x\n", type); break; } } #if 0 static void tcpm_pd_ext_msg_request(struct tcpm_port *port, const struct pd_message *msg) { enum pd_ext_msg_type type = pd_header_type_le(msg->header); unsigned int data_size = pd_ext_header_data_size_le(msg->ext_msg.header); if (!(le16_to_cpu(msg->ext_msg.header) & PD_EXT_HDR_CHUNKED)) { tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS); printf("Unchunked extended messages unsupported\n"); return; } if (data_size > PD_EXT_MAX_CHUNK_DATA) { tcpm_pd_handle_state(port, CHUNK_NOT_SUPP, NONE_AMS, PD_T_CHUNK_NOT_SUPP); printf("Chunk handling not yet supported\n"); return; } switch (type) { case PD_EXT_STATUS: case PD_EXT_PPS_STATUS: tcpm_set_state(port, ready_state(port), 0); } break; case PD_EXT_SOURCE_CAP_EXT: case PD_EXT_GET_BATT_CAP: case PD_EXT_GET_BATT_STATUS: case PD_EXT_BATT_CAP: case PD_EXT_GET_MANUFACTURER_INFO: case PD_EXT_MANUFACTURER_INFO: case PD_EXT_SECURITY_REQUEST: case PD_EXT_SECURITY_RESPONSE: case PD_EXT_FW_UPDATE_REQUEST: case PD_EXT_FW_UPDATE_RESPONSE: case PD_EXT_COUNTRY_INFO: case PD_EXT_COUNTRY_CODES: tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS); break; default: tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS); printf("Unrecognized extended message type %#x\n", type); break; } } #endif static void tcpm_pd_rx_handler(struct tcpm_port *port, struct pd_rx_event *event) { const struct pd_message *msg = &event->msg; unsigned int cnt = pd_header_cnt_le(msg->header); debug("PD RX, header: %#x [%d]\n", le16_to_cpu(msg->header), port->attached); if (port->attached) { enum pd_ctrl_msg_type type = pd_header_type_le(msg->header); unsigned int msgid = pd_header_msgid_le(msg->header); /* * USB PD standard, 6.6.1.2: * "... if MessageID value in a received Message is the * same as the stored value, the receiver shall return a * GoodCRC Message with that MessageID value and drop * the Message (this is a retry of an already received * Message). Note: this shall not apply to the Soft_Reset * Message which always has a MessageID value of zero." */ if (msgid == port->rx_msgid && type != PD_CTRL_SOFT_RESET) goto done; port->rx_msgid = msgid; /* * If both ends believe to be DFP/host, we have a data role * mismatch. */ if (!!(le16_to_cpu(msg->header) & PD_HEADER_DATA_ROLE) == (port->data_role == TYPEC_HOST)) { printf("Data role mismatch, initiating error recovery\n"); tcpm_set_state(port, ERROR_RECOVERY, 0); } else { if (cnt) tcpm_pd_data_request(port, msg); else tcpm_pd_ctrl_request(port, msg); } } done: kfree(event); } void tcpm_pd_receive(struct tcpm_port *port, const struct pd_message *msg) { struct pd_rx_event *event; port->poll_event_cnt = 0; event = kzalloc(sizeof(*event), GFP_ATOMIC); if (!event) return; event->port = port; memcpy(&event->msg, msg, sizeof(*msg)); tcpm_pd_rx_handler(port, event); } EXPORT_SYMBOL_GPL(tcpm_pd_receive); static int tcpm_pd_send_control(struct tcpm_port *port, enum pd_ctrl_msg_type type) { struct pd_message msg; memset(&msg, 0, sizeof(msg)); msg.header = PD_HEADER_LE(type, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 0); return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg); } /* * Send queued message without affecting state. * Return true if state machine should go back to sleep, * false otherwise. */ static bool tcpm_send_queued_message(struct tcpm_port *port) { enum pd_msg_request queued_message; do { queued_message = port->queued_message; port->queued_message = PD_MSG_NONE; switch (queued_message) { case PD_MSG_CTRL_WAIT: tcpm_pd_send_control(port, PD_CTRL_WAIT); break; case PD_MSG_CTRL_REJECT: tcpm_pd_send_control(port, PD_CTRL_REJECT); break; case PD_MSG_CTRL_NOT_SUPP: tcpm_pd_send_control(port, PD_CTRL_NOT_SUPP); break; case PD_MSG_DATA_SINK_CAP: tcpm_pd_send_sink_caps(port); break; case PD_MSG_DATA_SOURCE_CAP: tcpm_pd_send_source_caps(port); break; default: break; } } while (port->queued_message != PD_MSG_NONE); #if 0 /* ??? */ if (port->delayed_state != INVALID_STATE) { if (ktime_after(port->delayed_runtime, ktime_get())) { mod_tcpm_delayed_work(port, ktime_to_ms(ktime_sub(port->delayed_runtime, ktime_get()))); return true; } port->delayed_state = INVALID_STATE; } #endif return false; } static int tcpm_pd_check_request(struct tcpm_port *port) { u32 pdo, rdo = port->sink_request; unsigned int max, op, pdo_max, index; enum pd_pdo_type type; index = rdo_index(rdo); if (!index || index > port->nr_src_pdo) return -EINVAL; pdo = port->src_pdo[index - 1]; type = pdo_type(pdo); switch (type) { case PDO_TYPE_FIXED: case PDO_TYPE_VAR: max = rdo_max_current(rdo); op = rdo_op_current(rdo); pdo_max = pdo_max_current(pdo); if (op > pdo_max) return -EINVAL; if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH)) return -EINVAL; if (type == PDO_TYPE_FIXED) debug("Requested %u mV, %u mA for %u / %u mA\n", pdo_fixed_voltage(pdo), pdo_max, op, max); else debug("Requested %u -> %u mV, %u mA for %u / %u mA\n", pdo_min_voltage(pdo), pdo_max_voltage(pdo), pdo_max, op, max); break; case PDO_TYPE_BATT: max = rdo_max_power(rdo); op = rdo_op_power(rdo); pdo_max = pdo_max_power(pdo); if (op > pdo_max) return -EINVAL; if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH)) return -EINVAL; printf("Requested %u -> %u mV, %u mW for %u / %u mW\n", pdo_min_voltage(pdo), pdo_max_voltage(pdo), pdo_max, op, max); break; default: return -EINVAL; } port->op_vsafe5v = index == 1; return 0; } #define min_power(x, y) min(pdo_max_power(x), pdo_max_power(y)) #define min_current(x, y) min(pdo_max_current(x), pdo_max_current(y)) static int tcpm_pd_select_pdo(struct tcpm_port *port, int *sink_pdo, int *src_pdo) { unsigned int i, j, max_src_mv = 0, min_src_mv = 0, max_mw = 0, max_mv = 0, src_mw = 0, src_ma = 0, max_snk_mv = 0, min_snk_mv = 0; int ret = -EINVAL; port->pps_data.supported = false; port->usb_type = POWER_SUPPLY_USB_TYPE_PD; /* * Select the source PDO providing the most power which has a * matchig sink cap. */ for (i = 0; i < port->nr_source_caps; i++) { u32 pdo = port->source_caps[i]; enum pd_pdo_type type = pdo_type(pdo); switch (type) { case PDO_TYPE_FIXED: max_src_mv = pdo_fixed_voltage(pdo); min_src_mv = max_src_mv; break; case PDO_TYPE_BATT: case PDO_TYPE_VAR: max_src_mv = pdo_max_voltage(pdo); min_src_mv = pdo_min_voltage(pdo); break; case PDO_TYPE_APDO: if (pdo_apdo_type(pdo) == APDO_TYPE_PPS) { port->pps_data.supported = true; port->usb_type = POWER_SUPPLY_USB_TYPE_PD_PPS; } continue; default: printf("Invalid source PDO type, ignoring\n"); continue; } switch (type) { case PDO_TYPE_FIXED: case PDO_TYPE_VAR: src_ma = pdo_max_current(pdo); src_mw = src_ma * min_src_mv / 1000; break; case PDO_TYPE_BATT: src_mw = pdo_max_power(pdo); break; case PDO_TYPE_APDO: continue; default: printf("Invalid source PDO type, ignoring\n"); continue; } for (j = 0; j < port->nr_snk_pdo; j++) { pdo = port->snk_pdo[j]; switch (pdo_type(pdo)) { case PDO_TYPE_FIXED: max_snk_mv = pdo_fixed_voltage(pdo); min_snk_mv = max_snk_mv; break; case PDO_TYPE_BATT: case PDO_TYPE_VAR: max_snk_mv = pdo_max_voltage(pdo); min_snk_mv = pdo_min_voltage(pdo); break; case PDO_TYPE_APDO: continue; default: printf("Invalid sink PDO type, ignoring\n"); continue; } if (max_src_mv <= max_snk_mv && min_src_mv >= min_snk_mv) { /* Prefer higher voltages if available */ if ((src_mw == max_mw && min_src_mv > max_mv) || src_mw > max_mw) { *src_pdo = i; *sink_pdo = j; max_mw = src_mw; max_mv = min_src_mv; ret = 0; } } } } return ret; } #define min_pps_apdo_current(x, y) \ min(pdo_pps_apdo_max_current(x), pdo_pps_apdo_max_current(y)) static unsigned int tcpm_pd_select_pps_apdo(struct tcpm_port *port) { unsigned int i, j, max_mw = 0, max_mv = 0; unsigned int min_src_mv, max_src_mv, src_ma, src_mw; unsigned int min_snk_mv, max_snk_mv; unsigned int max_op_mv; u32 pdo, src, snk; unsigned int src_pdo = 0, snk_pdo = 0; /* * Select the source PPS APDO providing the most power while staying * within the board's limits. We skip the first PDO as this is always * 5V 3A. */ for (i = 1; i < port->nr_source_caps; ++i) { pdo = port->source_caps[i]; switch (pdo_type(pdo)) { case PDO_TYPE_APDO: if (pdo_apdo_type(pdo) != APDO_TYPE_PPS) { printf("Not PPS APDO (source), ignoring\n"); continue; } min_src_mv = pdo_pps_apdo_min_voltage(pdo); max_src_mv = pdo_pps_apdo_max_voltage(pdo); src_ma = pdo_pps_apdo_max_current(pdo); src_mw = (src_ma * max_src_mv) / 1000; /* * Now search through the sink PDOs to find a matching * PPS APDO. Again skip the first sink PDO as this will * always be 5V 3A. */ for (j = 1; j < port->nr_snk_pdo; j++) { pdo = port->snk_pdo[j]; switch (pdo_type(pdo)) { case PDO_TYPE_APDO: if (pdo_apdo_type(pdo) != APDO_TYPE_PPS) { printf("Not PPS APDO (sink), ignoring\n"); continue; } min_snk_mv = pdo_pps_apdo_min_voltage(pdo); max_snk_mv = pdo_pps_apdo_max_voltage(pdo); break; default: printf("Not APDO type (sink), ignoring\n"); continue; } if (min_src_mv <= max_snk_mv && max_src_mv >= min_snk_mv) { max_op_mv = min(max_src_mv, max_snk_mv); src_mw = (max_op_mv * src_ma) / 1000; /* Prefer higher voltages if available */ if ((src_mw == max_mw && max_op_mv > max_mv) || src_mw > max_mw) { src_pdo = i; snk_pdo = j; max_mw = src_mw; max_mv = max_op_mv; } } } break; default: printf("Not APDO type (source), ignoring\n"); continue; } } if (src_pdo) { src = port->source_caps[src_pdo]; snk = port->snk_pdo[snk_pdo]; port->pps_data.req_min_volt = max(pdo_pps_apdo_min_voltage(src), pdo_pps_apdo_min_voltage(snk)); port->pps_data.req_max_volt = min(pdo_pps_apdo_max_voltage(src), pdo_pps_apdo_max_voltage(snk)); port->pps_data.req_max_curr = min_pps_apdo_current(src, snk); port->pps_data.req_out_volt = min(port->pps_data.req_max_volt, max(port->pps_data.req_min_volt, port->pps_data.req_out_volt)); port->pps_data.req_op_curr = min(port->pps_data.req_max_curr, port->pps_data.req_op_curr); } return src_pdo; } static int tcpm_pd_build_request(struct tcpm_port *port, u32 *rdo) { unsigned int mv, ma, mw, flags; unsigned int max_ma, max_mw; enum pd_pdo_type type; u32 pdo, matching_snk_pdo; int src_pdo_index = 0; int snk_pdo_index = 0; int ret; ret = tcpm_pd_select_pdo(port, &snk_pdo_index, &src_pdo_index); if (ret < 0) return ret; pdo = port->source_caps[src_pdo_index]; matching_snk_pdo = port->snk_pdo[snk_pdo_index]; type = pdo_type(pdo); switch (type) { case PDO_TYPE_FIXED: mv = pdo_fixed_voltage(pdo); break; case PDO_TYPE_BATT: case PDO_TYPE_VAR: mv = pdo_min_voltage(pdo); break; default: printf("Invalid PDO selected!\n"); return -EINVAL; } /* Select maximum available current within the sink pdo's limit */ if (type == PDO_TYPE_BATT) { mw = min_power(pdo, matching_snk_pdo); ma = 1000 * mw / mv; } else { ma = min_current(pdo, matching_snk_pdo); mw = ma * mv / 1000; } flags = RDO_USB_COMM | RDO_NO_SUSPEND; /* Set mismatch bit if offered power is less than operating power */ max_ma = ma; max_mw = mw; if (mw < port->operating_snk_mw) { flags |= RDO_CAP_MISMATCH; if (type == PDO_TYPE_BATT && (pdo_max_power(matching_snk_pdo) > pdo_max_power(pdo))) max_mw = pdo_max_power(matching_snk_pdo); else if (pdo_max_current(matching_snk_pdo) > pdo_max_current(pdo)) max_ma = pdo_max_current(matching_snk_pdo); } debug("cc=%d cc1=%d cc2=%d vbus=%d vconn=%s polarity=%d\n", port->cc_req, port->cc1, port->cc2, port->vbus_source, port->vconn_role == TYPEC_SOURCE ? "source" : "sink", port->polarity); if (type == PDO_TYPE_BATT) { *rdo = RDO_BATT(src_pdo_index + 1, mw, max_mw, flags); printf("Requesting PDO %d: %u mV, %u mW%s\n", src_pdo_index, mv, mw, flags & RDO_CAP_MISMATCH ? " [mismatch]" : ""); } else { *rdo = RDO_FIXED(src_pdo_index + 1, ma, max_ma, flags); printf("Requesting PDO %d: %u mV, %u mA%s\n", src_pdo_index, mv, ma, flags & RDO_CAP_MISMATCH ? " [mismatch]" : ""); } port->req_current_limit = ma; port->req_supply_voltage = mv; return 0; } static int tcpm_pd_send_request(struct tcpm_port *port) { struct pd_message msg; int ret; u32 rdo; ret = tcpm_pd_build_request(port, &rdo); if (ret < 0) return ret; memset(&msg, 0, sizeof(msg)); msg.header = PD_HEADER_LE(PD_DATA_REQUEST, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 1); msg.payload[0] = cpu_to_le32(rdo); return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg); } static int tcpm_pd_build_pps_request(struct tcpm_port *port, u32 *rdo) { unsigned int out_mv, op_ma, op_mw, max_mv, max_ma, flags; enum pd_pdo_type type; unsigned int src_pdo_index; u32 pdo; src_pdo_index = tcpm_pd_select_pps_apdo(port); if (!src_pdo_index) return -EOPNOTSUPP; pdo = port->source_caps[src_pdo_index]; type = pdo_type(pdo); switch (type) { case PDO_TYPE_APDO: if (pdo_apdo_type(pdo) != APDO_TYPE_PPS) { printf("Invalid APDO selected!\n"); return -EINVAL; } max_mv = port->pps_data.req_max_volt; max_ma = port->pps_data.req_max_curr; out_mv = port->pps_data.req_out_volt; op_ma = port->pps_data.req_op_curr; break; default: printf("Invalid PDO selected!\n"); return -EINVAL; } flags = RDO_USB_COMM | RDO_NO_SUSPEND; op_mw = (op_ma * out_mv) / 1000; if (op_mw < port->operating_snk_mw) { /* * Try raising current to meet power needs. If that's not enough * then try upping the voltage. If that's still not enough * then we've obviously chosen a PPS APDO which really isn't * suitable so abandon ship. */ op_ma = (port->operating_snk_mw * 1000) / out_mv; if ((port->operating_snk_mw * 1000) % out_mv) ++op_ma; op_ma += RDO_PROG_CURR_MA_STEP - (op_ma % RDO_PROG_CURR_MA_STEP); if (op_ma > max_ma) { op_ma = max_ma; out_mv = (port->operating_snk_mw * 1000) / op_ma; if ((port->operating_snk_mw * 1000) % op_ma) ++out_mv; out_mv += RDO_PROG_VOLT_MV_STEP - (out_mv % RDO_PROG_VOLT_MV_STEP); if (out_mv > max_mv) { printf("Invalid PPS APDO selected!\n"); return -EINVAL; } } } debug("cc=%d cc1=%d cc2=%d vbus=%d vconn=%s polarity=%d\n", port->cc_req, port->cc1, port->cc2, port->vbus_source, port->vconn_role == TYPEC_SOURCE ? "source" : "sink", port->polarity); *rdo = RDO_PROG(src_pdo_index + 1, out_mv, op_ma, flags); printf("Requesting APDO %d: %u mV, %u mA\n", src_pdo_index, out_mv, op_ma); port->pps_data.req_op_curr = op_ma; port->pps_data.req_out_volt = out_mv; return 0; } static int tcpm_pd_send_pps_request(struct tcpm_port *port) { struct pd_message msg; int ret; u32 rdo; ret = tcpm_pd_build_pps_request(port, &rdo); if (ret < 0) return ret; memset(&msg, 0, sizeof(msg)); msg.header = PD_HEADER_LE(PD_DATA_REQUEST, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 1); msg.payload[0] = cpu_to_le32(rdo); return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg); } static int tcpm_set_vbus(struct tcpm_port *port, bool enable) { int ret; if (enable && port->vbus_charge) return -EINVAL; debug("vbus = %d charge = %d\n", enable, port->vbus_charge); ret = port->tcpc->set_vbus(port->tcpc, enable, port->vbus_charge); if (ret < 0) return ret; port->vbus_source = enable; return 0; } static int tcpm_set_charge(struct tcpm_port *port, bool charge) { int ret; if (charge && port->vbus_source) return -EINVAL; if (charge != port->vbus_charge) { debug("vbus = %d charge = %d\n", port->vbus_source, charge); ret = port->tcpc->set_vbus(port->tcpc, port->vbus_source, charge); if (ret < 0) return ret; } port->vbus_charge = charge; return 0; } static bool tcpm_start_toggling(struct tcpm_port *port, enum typec_cc_status cc) { int ret; if (!port->tcpc->start_toggling) return false; printf("Start toggling\n"); ret = port->tcpc->start_toggling(port->tcpc, port->port_type, cc); return ret == 0; } static int tcpm_init_vbus(struct tcpm_port *port) { int ret; ret = port->tcpc->set_vbus(port->tcpc, false, false); port->vbus_source = false; port->vbus_charge = false; return ret; } static int tcpm_init_vconn(struct tcpm_port *port) { int ret; ret = port->tcpc->set_vconn(port->tcpc, false); port->vconn_role = TYPEC_SINK; return ret; } static void tcpm_typec_connect(struct tcpm_port *port) { if (!port->connected) { port->connected = true; } } static int tcpm_src_attach(struct tcpm_port *port) { enum typec_cc_polarity polarity = port->cc2 == TYPEC_CC_RD ? TYPEC_POLARITY_CC2 : TYPEC_POLARITY_CC1; int ret; if (port->attached) return 0; ret = tcpm_set_polarity(port, polarity); if (ret < 0) return ret; ret = tcpm_set_roles(port, true, TYPEC_SOURCE, TYPEC_HOST); if (ret < 0) return ret; ret = port->tcpc->set_pd_rx(port->tcpc, true); if (ret < 0) goto out_disable_mux; /* * USB Type-C specification, version 1.2, * chapter 4.5.2.2.8.1 (Attached.SRC Requirements) * Enable VCONN only if the non-RD port is set to RA. */ if ((polarity == TYPEC_POLARITY_CC1 && port->cc2 == TYPEC_CC_RA) || (polarity == TYPEC_POLARITY_CC2 && port->cc1 == TYPEC_CC_RA)) { ret = tcpm_set_vconn(port, true); if (ret < 0) goto out_disable_pd; } ret = tcpm_set_vbus(port, true); if (ret < 0) goto out_disable_vconn; port->pd_capable = false; port->partner = NULL; port->attached = true; port->debouncing = false; //port->send_discover = true; return 0; out_disable_vconn: tcpm_set_vconn(port, false); out_disable_pd: port->tcpc->set_pd_rx(port->tcpc, false); out_disable_mux: printf("CC connected in %s as DFP\n", polarity ? "CC2" : "CC1"); return 0; } static void tcpm_typec_disconnect(struct tcpm_port *port) { if (port->connected) { port->partner = NULL; port->connected = false; } } static void tcpm_reset_port(struct tcpm_port *port) { tcpm_timer_uninit(port); tcpm_typec_disconnect(port); port->poll_event_cnt = 0; port->wait_dr_swap_Message = false; port->attached = false; port->pd_capable = false; port->pps_data.supported = false; /* * First Rx ID should be 0; set this to a sentinel of -1 so that * we can check tcpm_pd_rx_handler() if we had seen it before. */ port->rx_msgid = -1; port->tcpc->set_pd_rx(port->tcpc, false); tcpm_init_vbus(port); /* also disables charging */ tcpm_init_vconn(port); tcpm_set_current_limit(port, 0, 0); tcpm_set_polarity(port, TYPEC_POLARITY_CC1); tcpm_set_attached_state(port, false); port->usb_type = POWER_SUPPLY_USB_TYPE_C; port->nr_sink_caps = 0; port->sink_cap_done = false; } static void tcpm_detach(struct tcpm_port *port) { if (tcpm_port_is_disconnected(port)) port->hard_reset_count = 0; if (!port->attached) return; tcpm_reset_port(port); } static void tcpm_src_detach(struct tcpm_port *port) { tcpm_detach(port); } static int tcpm_snk_attach(struct tcpm_port *port) { int ret; if (port->attached) return 0; ret = tcpm_set_polarity(port, port->cc2 != TYPEC_CC_OPEN ? TYPEC_POLARITY_CC2 : TYPEC_POLARITY_CC1); if (ret < 0) return ret; ret = tcpm_set_roles(port, true, TYPEC_SINK, TYPEC_DEVICE); if (ret < 0) return ret; port->pd_capable = false; port->partner = NULL; port->attached = true; port->debouncing = false; printf("CC connected in %s as UFP\n", port->cc1 != TYPEC_CC_OPEN ? "CC1" : "CC2"); return 0; } static void tcpm_snk_detach(struct tcpm_port *port) { tcpm_detach(port); } static int tcpm_acc_attach(struct tcpm_port *port) { int ret; if (port->attached) return 0; ret = tcpm_set_roles(port, true, TYPEC_SOURCE, TYPEC_HOST); if (ret < 0) return ret; port->partner = NULL; tcpm_typec_connect(port); port->attached = true; dev_info(port->dev, "CC connected as Audio Accessory\n"); return 0; } static void tcpm_acc_detach(struct tcpm_port *port) { tcpm_detach(port); } static inline enum tcpm_state hard_reset_state(struct tcpm_port *port) { if (port->hard_reset_count < PD_N_HARD_RESET_COUNT) return HARD_RESET_SEND; if (port->pd_capable) return ERROR_RECOVERY; if (port->pwr_role == TYPEC_SOURCE) return SRC_UNATTACHED; if (port->state == SNK_WAIT_CAPABILITIES) return SNK_READY; return SNK_UNATTACHED; } static inline enum tcpm_state unattached_state(struct tcpm_port *port) { if (port->port_type == TYPEC_PORT_DRP) { if (port->pwr_role == TYPEC_SOURCE) return SRC_UNATTACHED; else return SNK_UNATTACHED; } else if (port->port_type == TYPEC_PORT_SRC) { return SRC_UNATTACHED; } return SNK_UNATTACHED; } bool tcpm_is_toggling(struct tcpm_port *port) { if (port->port_type == TYPEC_PORT_DRP) return port->state == SRC_UNATTACHED || port->state == SNK_UNATTACHED || port->state == TOGGLING; return false; } EXPORT_SYMBOL_GPL(tcpm_is_toggling); static void run_state_machine(struct tcpm_port *port) { int ret; port->enter_state = port->state; switch (port->state) { case TOGGLING: break; /* SRC states */ case SRC_UNATTACHED: tcpm_src_detach(port); if (tcpm_start_toggling(port, tcpm_rp_cc(port))) { tcpm_set_state(port, TOGGLING, 0); break; } tcpm_set_cc(port, tcpm_rp_cc(port)); if (port->port_type == TYPEC_PORT_DRP) tcpm_set_state(port, SNK_UNATTACHED, PD_T_DRP_SNK); break; case SRC_ATTACH_WAIT: if (tcpm_port_is_debug(port)) tcpm_set_state(port, DEBUG_ACC_ATTACHED, PD_T_CC_DEBOUNCE); else if (tcpm_port_is_audio(port)) tcpm_set_state(port, AUDIO_ACC_ATTACHED, PD_T_CC_DEBOUNCE); else if (tcpm_port_is_source(port)) tcpm_set_state(port, SRC_ATTACHED, PD_T_CC_DEBOUNCE); break; case SRC_ATTACHED: ret = tcpm_src_attach(port); /* * Currently, vbus control is not implemented, * and the SRC detection process cannot be fully implemented. */ tcpm_set_state(port, SRC_READY, 0); #if 0 tcpm_set_state(port, SRC_UNATTACHED, ret < 0 ? 0 : PD_T_PS_SOURCE_ON); #endif break; case SRC_STARTUP: port->caps_count = 0; port->negotiated_rev = PD_MAX_REV; port->message_id = 0; port->rx_msgid = -1; port->explicit_contract = false; tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0); break; case SRC_SEND_CAPABILITIES: port->caps_count++; if (port->caps_count > PD_N_CAPS_COUNT) { tcpm_set_state(port, SRC_READY, 0); break; } ret = tcpm_pd_send_source_caps(port); if (ret < 0) { tcpm_set_state(port, SRC_SEND_CAPABILITIES, PD_T_SEND_SOURCE_CAP); } else { /* * Per standard, we should clear the reset counter here. * However, that can result in state machine hang-ups. * Reset it only in READY state to improve stability. */ /* port->hard_reset_count = 0; */ port->caps_count = 0; port->pd_capable = true; tcpm_set_state_cond(port, SRC_SEND_CAPABILITIES_TIMEOUT, PD_T_SEND_SOURCE_CAP); } break; case SRC_SEND_CAPABILITIES_TIMEOUT: /* * Error recovery for a PD_DATA_SOURCE_CAP reply timeout. * * PD 2.0 sinks are supposed to accept src-capabilities with a * 3.0 header and simply ignore any src PDOs which the sink does * not understand such as PPS but some 2.0 sinks instead ignore * the entire PD_DATA_SOURCE_CAP message, causing contract * negotiation to fail. * * After PD_N_HARD_RESET_COUNT hard-reset attempts, we try * sending src-capabilities with a lower PD revision to * make these broken sinks work. */ if (port->hard_reset_count < PD_N_HARD_RESET_COUNT) { tcpm_set_state(port, HARD_RESET_SEND, 0); } else if (port->negotiated_rev > PD_REV20) { port->negotiated_rev--; port->hard_reset_count = 0; tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0); } else { tcpm_set_state(port, hard_reset_state(port), 0); } break; case SRC_NEGOTIATE_CAPABILITIES: ret = tcpm_pd_check_request(port); if (ret < 0) { tcpm_pd_send_control(port, PD_CTRL_REJECT); if (!port->explicit_contract) { tcpm_set_state(port, SRC_WAIT_NEW_CAPABILITIES, 0); } else { tcpm_set_state(port, SRC_READY, 0); } } else { tcpm_pd_send_control(port, PD_CTRL_ACCEPT); tcpm_set_state(port, SRC_TRANSITION_SUPPLY, PD_T_SRC_TRANSITION); } break; case SRC_TRANSITION_SUPPLY: /* XXX: regulator_set_voltage(vbus, ...) */ tcpm_pd_send_control(port, PD_CTRL_PS_RDY); port->explicit_contract = true; tcpm_set_state_cond(port, SRC_READY, 0); break; case SRC_READY: #if 1 port->hard_reset_count = 0; #endif port->try_src_count = 0; tcpm_typec_connect(port); break; case SRC_WAIT_NEW_CAPABILITIES: /* Nothing to do... */ break; /* SNK states */ case SNK_UNATTACHED: tcpm_snk_detach(port); if (tcpm_start_toggling(port, TYPEC_CC_RD)) { tcpm_set_state(port, TOGGLING, 0); break; } tcpm_set_cc(port, TYPEC_CC_RD); if (port->port_type == TYPEC_PORT_DRP) tcpm_set_state(port, SRC_UNATTACHED, PD_T_DRP_SRC); break; case SNK_ATTACH_WAIT: if ((port->cc1 == TYPEC_CC_OPEN && port->cc2 != TYPEC_CC_OPEN) || (port->cc1 != TYPEC_CC_OPEN && port->cc2 == TYPEC_CC_OPEN)) tcpm_set_state(port, SNK_DEBOUNCED, PD_T_CC_DEBOUNCE); else if (tcpm_port_is_disconnected(port)) tcpm_set_state(port, SNK_UNATTACHED, PD_T_CC_DEBOUNCE); break; case SNK_DEBOUNCED: if (tcpm_port_is_disconnected(port)) { tcpm_set_state(port, SNK_UNATTACHED, PD_T_PD_DEBOUNCE); } else if (port->vbus_present) tcpm_set_state(port, SNK_ATTACHED, 0); else /* Wait for VBUS, but not forever */ tcpm_set_state(port, PORT_RESET, PD_T_PS_SOURCE_ON); break; case SNK_ATTACHED: ret = tcpm_snk_attach(port); if (ret < 0) tcpm_set_state(port, SNK_UNATTACHED, 0); else tcpm_set_state(port, SNK_STARTUP, 0); break; case SNK_STARTUP: port->negotiated_rev = PD_MAX_REV; port->message_id = 0; port->rx_msgid = -1; port->explicit_contract = false; tcpm_set_state(port, SNK_DISCOVERY, 0); break; case SNK_DISCOVERY: if (port->vbus_present) { tcpm_set_current_limit(port, tcpm_get_current_limit(port), 5000); tcpm_set_charge(port, true); tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0); break; } /* * For DRP, timeouts differ. Also, handling is supposed to be * different and much more complex (dead battery detection; * see USB power delivery specification, section 8.3.3.6.1.5.1). */ tcpm_set_state(port, hard_reset_state(port), port->port_type == TYPEC_PORT_DRP ? PD_T_DB_DETECT : PD_T_NO_RESPONSE); break; case SNK_DISCOVERY_DEBOUNCE: tcpm_set_state(port, SNK_DISCOVERY_DEBOUNCE_DONE, PD_T_CC_DEBOUNCE); break; case SNK_DISCOVERY_DEBOUNCE_DONE: #if 0 if (!tcpm_port_is_disconnected(port) && tcpm_port_is_sink(port) && ktime_after(port->delayed_runtime, ktime_get())) { tcpm_set_state(port, SNK_DISCOVERY, ktime_to_ms(ktime_sub(port->delayed_runtime, ktime_get()))); break; } #endif tcpm_set_state(port, unattached_state(port), 0); break; case SNK_WAIT_CAPABILITIES: ret = port->tcpc->set_pd_rx(port->tcpc, true); if (ret < 0) { tcpm_set_state(port, SNK_READY, 0); break; } /* * If VBUS has never been low, and we time out waiting * for source cap, try a soft reset first, in case we * were already in a stable contract before this boot. * Do this only once. */ if (port->vbus_never_low) { port->vbus_never_low = false; tcpm_set_state(port, SOFT_RESET_SEND, PD_T_SINK_WAIT_CAP); } else { tcpm_set_state(port, hard_reset_state(port), PD_T_SINK_WAIT_CAP); } break; case SNK_NEGOTIATE_CAPABILITIES: port->pd_capable = true; port->hard_reset_count = 0; ret = tcpm_pd_send_request(port); if (ret < 0) { /* Let the Source send capabilities again. */ tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0); } else { tcpm_set_state_cond(port, hard_reset_state(port), PD_T_SENDER_RESPONSE); } break; case SNK_NEGOTIATE_PPS_CAPABILITIES: ret = tcpm_pd_send_pps_request(port); if (ret < 0) { port->pps_status = ret; /* * If this was called due to updates to sink * capabilities, and pps is no longer valid, we should * safely fall back to a standard PDO. */ if (port->update_sink_caps) tcpm_set_state(port, SNK_NEGOTIATE_CAPABILITIES, 0); else tcpm_set_state(port, SNK_READY, 0); } else { tcpm_set_state_cond(port, hard_reset_state(port), PD_T_SENDER_RESPONSE); } break; case SNK_TRANSITION_SINK: case SNK_TRANSITION_SINK_VBUS: tcpm_set_state(port, hard_reset_state(port), PD_T_PS_TRANSITION); break; case SNK_READY: port->try_snk_count = 0; port->update_sink_caps = false; tcpm_typec_connect(port); /* * Here poll_event_cnt is cleared, waiting for self-powered Type-C devices * to send DR_swap Messge until 1s (TCPM_POLL_EVENT_TIME_OUT * 500us)timeout */ if (port->wait_dr_swap_Message) port->poll_event_cnt = 0; break; /* Accessory states */ case ACC_UNATTACHED: tcpm_acc_detach(port); tcpm_set_state(port, SRC_UNATTACHED, 0); break; case DEBUG_ACC_ATTACHED: case AUDIO_ACC_ATTACHED: ret = tcpm_acc_attach(port); if (ret < 0) tcpm_set_state(port, ACC_UNATTACHED, 0); break; case AUDIO_ACC_DEBOUNCE: tcpm_set_state(port, ACC_UNATTACHED, PD_T_CC_DEBOUNCE); break; /* Hard_Reset states */ case HARD_RESET_SEND: tcpm_pd_transmit(port, TCPC_TX_HARD_RESET, NULL); tcpm_set_state(port, HARD_RESET_START, 0); port->wait_dr_swap_Message = false; break; case HARD_RESET_START: port->hard_reset_count++; port->tcpc->set_pd_rx(port->tcpc, false); port->nr_sink_caps = 0; port->send_discover = true; if (port->pwr_role == TYPEC_SOURCE) tcpm_set_state(port, SRC_HARD_RESET_VBUS_OFF, PD_T_PS_HARD_RESET); else tcpm_set_state(port, SNK_HARD_RESET_SINK_OFF, 0); break; case SRC_HARD_RESET_VBUS_OFF: tcpm_set_vconn(port, true); tcpm_set_vbus(port, false); tcpm_set_roles(port, port->self_powered, TYPEC_SOURCE, TYPEC_HOST); tcpm_set_state(port, SRC_HARD_RESET_VBUS_ON, PD_T_SRC_RECOVER); break; case SRC_HARD_RESET_VBUS_ON: tcpm_set_vconn(port, true); tcpm_set_vbus(port, true); port->tcpc->set_pd_rx(port->tcpc, true); tcpm_set_attached_state(port, true); tcpm_set_state(port, SRC_UNATTACHED, PD_T_PS_SOURCE_ON); break; case SNK_HARD_RESET_SINK_OFF: memset(&port->pps_data, 0, sizeof(port->pps_data)); tcpm_set_vconn(port, false); if (port->pd_capable) tcpm_set_charge(port, false); tcpm_set_roles(port, port->self_powered, TYPEC_SINK, TYPEC_DEVICE); /* * VBUS may or may not toggle, depending on the adapter. * If it doesn't toggle, transition to SNK_HARD_RESET_SINK_ON * directly after timeout. */ tcpm_set_state(port, SNK_HARD_RESET_SINK_ON, PD_T_SAFE_0V); break; case SNK_HARD_RESET_WAIT_VBUS: /* Assume we're disconnected if VBUS doesn't come back. */ tcpm_set_state(port, SNK_UNATTACHED, PD_T_SRC_RECOVER_MAX + PD_T_SRC_TURN_ON); break; case SNK_HARD_RESET_SINK_ON: /* Note: There is no guarantee that VBUS is on in this state */ /* * XXX: * The specification suggests that dual mode ports in sink * mode should transition to state PE_SRC_Transition_to_default. * See USB power delivery specification chapter 8.3.3.6.1.3. * This would mean to to * - turn off VCONN, reset power supply * - request hardware reset * - turn on VCONN * - Transition to state PE_Src_Startup * SNK only ports shall transition to state Snk_Startup * (see chapter 8.3.3.3.8). * Similar, dual-mode ports in source mode should transition * to PE_SNK_Transition_to_default. */ if (port->pd_capable) { tcpm_set_current_limit(port, tcpm_get_current_limit(port), 5000); tcpm_set_charge(port, true); } tcpm_set_attached_state(port, true); tcpm_set_state(port, SNK_STARTUP, 0); break; /* Soft_Reset states */ case SOFT_RESET: port->message_id = 0; port->rx_msgid = -1; tcpm_pd_send_control(port, PD_CTRL_ACCEPT); if (port->pwr_role == TYPEC_SOURCE) { tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0); } else { tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0); } break; case SOFT_RESET_SEND: port->message_id = 0; port->rx_msgid = -1; if (tcpm_pd_send_control(port, PD_CTRL_SOFT_RESET)) tcpm_set_state_cond(port, hard_reset_state(port), 0); else tcpm_set_state_cond(port, hard_reset_state(port), PD_T_SENDER_RESPONSE); break; /* DR_Swap states */ case DR_SWAP_SEND: tcpm_pd_send_control(port, PD_CTRL_DR_SWAP); tcpm_set_state_cond(port, DR_SWAP_SEND_TIMEOUT, PD_T_SENDER_RESPONSE); break; case DR_SWAP_ACCEPT: tcpm_pd_send_control(port, PD_CTRL_ACCEPT); #if 0 /* Set VDM state machine running flag ASAP */ if (port->data_role == TYPEC_DEVICE && port->send_discover) port->vdm_sm_running = true; #endif tcpm_set_state_cond(port, DR_SWAP_CHANGE_DR, 0); break; case DR_SWAP_SEND_TIMEOUT: //tcpm_swap_complete(port, -ETIMEDOUT); tcpm_set_state(port, ready_state(port), 0); break; case DR_SWAP_CHANGE_DR: if (port->data_role == TYPEC_HOST) { //tcpm_unregister_altmodes(port); tcpm_set_roles(port, true, port->pwr_role, TYPEC_DEVICE); } else { tcpm_set_roles(port, true, port->pwr_role, TYPEC_HOST); //port->send_discover = true; } /* DR_swap process complete, wait_dr_swap_Message is cleared */ port->wait_dr_swap_Message = false; tcpm_set_state(port, ready_state(port), 0); break; #if 0 /* PR_Swap states */ case PR_SWAP_ACCEPT: tcpm_pd_send_control(port, PD_CTRL_ACCEPT); tcpm_set_state(port, PR_SWAP_START, 0); break; case PR_SWAP_SEND: tcpm_pd_send_control(port, PD_CTRL_PR_SWAP); tcpm_set_state_cond(port, PR_SWAP_SEND_TIMEOUT, PD_T_SENDER_RESPONSE); break; case PR_SWAP_SEND_TIMEOUT: tcpm_set_state(port, ready_state(port), 0); break; case PR_SWAP_START: tcpm_apply_rc(port); if (port->pwr_role == TYPEC_SOURCE) tcpm_set_state(port, PR_SWAP_SRC_SNK_TRANSITION_OFF, PD_T_SRC_TRANSITION); else tcpm_set_state(port, PR_SWAP_SNK_SRC_SINK_OFF, 0); break; case PR_SWAP_SRC_SNK_TRANSITION_OFF: /* * Prevent vbus discharge circuit from turning on during PR_SWAP * as this is not a disconnect. */ tcpm_set_vbus(port, false); port->explicit_contract = false; /* allow time for Vbus discharge, must be < tSrcSwapStdby */ tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF, PD_T_SRCSWAPSTDBY); break; case PR_SWAP_SRC_SNK_SOURCE_OFF: timer_val_msecs = PD_T_CC_DEBOUNCE; trace_android_vh_typec_tcpm_get_timer(tcpm_states[PR_SWAP_SRC_SNK_SOURCE_OFF], CC_DEBOUNCE, &timer_val_msecs); tcpm_set_cc(port, TYPEC_CC_RD); /* allow CC debounce */ tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED, timer_val_msecs); break; case PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED: /* * USB-PD standard, 6.2.1.4, Port Power Role: * "During the Power Role Swap Sequence, for the initial Source * Port, the Port Power Role field shall be set to Sink in the * PS_RDY Message indicating that the initial Source’s power * supply is turned off" */ tcpm_set_pwr_role(port, TYPEC_SINK); if (tcpm_pd_send_control(port, PD_CTRL_PS_RDY)) { tcpm_set_state(port, ERROR_RECOVERY, 0); break; } tcpm_set_state(port, ERROR_RECOVERY, PD_T_PS_SOURCE_ON_PRS); break; case PR_SWAP_SRC_SNK_SINK_ON: tcpm_enable_auto_vbus_discharge(port, true); /* Set the vbus disconnect threshold for implicit contract */ tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_USB, false, VSAFE5V); tcpm_set_state(port, SNK_STARTUP, 0); break; case PR_SWAP_SNK_SRC_SINK_OFF: timer_val_msecs = PD_T_PS_SOURCE_OFF; trace_android_vh_typec_tcpm_get_timer(tcpm_states[PR_SWAP_SNK_SRC_SINK_OFF], SOURCE_OFF, &timer_val_msecs); /* * Prevent vbus discharge circuit from turning on during PR_SWAP * as this is not a disconnect. */ tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_USB, port->pps_data.active, 0); tcpm_set_charge(port, false); tcpm_set_state(port, hard_reset_state(port), timer_val_msecs); break; case PR_SWAP_SNK_SRC_SOURCE_ON: tcpm_enable_auto_vbus_discharge(port, true); tcpm_set_cc(port, tcpm_rp_cc(port)); tcpm_set_vbus(port, true); /* * allow time VBUS ramp-up, must be < tNewSrc * Also, this window overlaps with CC debounce as well. * So, Wait for the max of two which is PD_T_NEWSRC */ tcpm_set_state(port, PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP, PD_T_NEWSRC); break; case PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP: /* * USB PD standard, 6.2.1.4: * "Subsequent Messages initiated by the Policy Engine, * such as the PS_RDY Message sent to indicate that Vbus * is ready, will have the Port Power Role field set to * Source." */ tcpm_set_pwr_role(port, TYPEC_SOURCE); tcpm_pd_send_control(port, PD_CTRL_PS_RDY); tcpm_set_state(port, SRC_STARTUP, PD_T_SWAP_SRC_START); break; #endif case GET_STATUS_SEND: tcpm_pd_send_control(port, PD_CTRL_GET_STATUS); tcpm_set_state(port, GET_STATUS_SEND_TIMEOUT, PD_T_SENDER_RESPONSE); break; case GET_STATUS_SEND_TIMEOUT: tcpm_set_state(port, ready_state(port), 0); break; case GET_PPS_STATUS_SEND: tcpm_pd_send_control(port, PD_CTRL_GET_PPS_STATUS); tcpm_set_state(port, GET_PPS_STATUS_SEND_TIMEOUT, PD_T_SENDER_RESPONSE); break; case GET_PPS_STATUS_SEND_TIMEOUT: tcpm_set_state(port, ready_state(port), 0); break; case GET_SINK_CAP: tcpm_pd_send_control(port, PD_CTRL_GET_SINK_CAP); tcpm_set_state(port, GET_SINK_CAP_TIMEOUT, PD_T_SENDER_RESPONSE); break; case GET_SINK_CAP_TIMEOUT: tcpm_set_state(port, ready_state(port), 0); break; case ERROR_RECOVERY: tcpm_set_state(port, PORT_RESET, 0); break; case PORT_RESET: tcpm_reset_port(port); tcpm_set_cc(port, TYPEC_CC_OPEN); tcpm_set_state(port, PORT_RESET_WAIT_OFF, PD_T_ERROR_RECOVERY); break; case PORT_RESET_WAIT_OFF: tcpm_set_state(port, tcpm_default_state(port), port->vbus_present ? PD_T_PS_SOURCE_OFF : 0); break; default: printf("Unexpected port state %d\n", port->state); break; } } static void tcpm_state_machine(struct tcpm_port *port) { enum tcpm_state prev_state; mutex_lock(&port->lock); port->state_machine_running = true; if (port->queued_message && tcpm_send_queued_message(port)) goto done; /* If we were queued due to a delayed state change, update it now */ if (port->delayed_state) { debug("state change %s -> %s [delayed %ld ms]\n", tcpm_states[port->state], tcpm_states[port->delayed_state], port->delay_ms); port->prev_state = port->state; port->state = port->delayed_state; port->delayed_state = INVALID_STATE; } /* * Continue running as long as we have (non-delayed) state changes * to make. */ do { prev_state = port->state; run_state_machine(port); if (port->queued_message) tcpm_send_queued_message(port); } while (port->state != prev_state && !port->delayed_state); done: port->state_machine_running = false; mutex_unlock(&port->lock); } static void _tcpm_cc_change(struct tcpm_port *port, enum typec_cc_status cc1, enum typec_cc_status cc2) { enum typec_cc_status old_cc1, old_cc2; enum tcpm_state new_state; old_cc1 = port->cc1; old_cc2 = port->cc2; port->cc1 = cc1; port->cc2 = cc2; debug("CC1: %u -> %u, CC2: %u -> %u [state %s, polarity %d, %s]\n", old_cc1, cc1, old_cc2, cc2, tcpm_states[port->state], port->polarity, tcpm_port_is_disconnected(port) ? "disconnected" : "connected"); switch (port->state) { case TOGGLING: if (tcpm_port_is_debug(port) || tcpm_port_is_audio(port) || tcpm_port_is_source(port)) tcpm_set_state(port, SRC_ATTACH_WAIT, 0); else if (tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_ATTACH_WAIT, 0); break; case SRC_UNATTACHED: case ACC_UNATTACHED: if (tcpm_port_is_debug(port) || tcpm_port_is_audio(port) || tcpm_port_is_source(port)) tcpm_set_state(port, SRC_ATTACH_WAIT, 0); break; case SRC_ATTACH_WAIT: if (tcpm_port_is_disconnected(port) || tcpm_port_is_audio_detached(port)) tcpm_set_state(port, SRC_UNATTACHED, 0); else if (cc1 != old_cc1 || cc2 != old_cc2) tcpm_set_state(port, SRC_ATTACH_WAIT, 0); break; case SRC_ATTACHED: case SRC_SEND_CAPABILITIES: case SRC_READY: if (tcpm_port_is_disconnected(port) || !tcpm_port_is_source(port)) tcpm_set_state(port, SRC_UNATTACHED, 0); break; case SNK_UNATTACHED: if (tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_ATTACH_WAIT, 0); break; case SNK_ATTACH_WAIT: if ((port->cc1 == TYPEC_CC_OPEN && port->cc2 != TYPEC_CC_OPEN) || (port->cc1 != TYPEC_CC_OPEN && port->cc2 == TYPEC_CC_OPEN)) new_state = SNK_DEBOUNCED; else if (tcpm_port_is_disconnected(port)) new_state = SNK_UNATTACHED; else break; if (new_state != port->delayed_state) tcpm_set_state(port, SNK_ATTACH_WAIT, 0); break; case SNK_DEBOUNCED: if (tcpm_port_is_disconnected(port)) new_state = SNK_UNATTACHED; else if (port->vbus_present) new_state = tcpm_try_src(port) ? SRC_TRY : SNK_ATTACHED; else new_state = SNK_UNATTACHED; if (new_state != port->delayed_state) tcpm_set_state(port, SNK_DEBOUNCED, 0); break; case SNK_READY: if (tcpm_port_is_disconnected(port)) tcpm_set_state(port, unattached_state(port), 0); else if (!port->pd_capable && (cc1 != old_cc1 || cc2 != old_cc2)) tcpm_set_current_limit(port, tcpm_get_current_limit(port), 5000); break; case AUDIO_ACC_ATTACHED: if (cc1 == TYPEC_CC_OPEN || cc2 == TYPEC_CC_OPEN) tcpm_set_state(port, AUDIO_ACC_DEBOUNCE, 0); break; case AUDIO_ACC_DEBOUNCE: if (tcpm_port_is_audio(port)) tcpm_set_state(port, AUDIO_ACC_ATTACHED, 0); break; case DEBUG_ACC_ATTACHED: if (cc1 == TYPEC_CC_OPEN || cc2 == TYPEC_CC_OPEN) tcpm_set_state(port, ACC_UNATTACHED, 0); break; case SNK_TRY: /* Do nothing, waiting for timeout */ break; case SNK_DISCOVERY: /* CC line is unstable, wait for debounce */ if (tcpm_port_is_disconnected(port)) tcpm_set_state(port, SNK_DISCOVERY_DEBOUNCE, 0); break; case SNK_DISCOVERY_DEBOUNCE: break; case SRC_TRYWAIT: /* Hand over to state machine if needed */ if (!port->vbus_present && tcpm_port_is_source(port)) tcpm_set_state(port, SRC_TRYWAIT_DEBOUNCE, 0); break; case SRC_TRYWAIT_DEBOUNCE: if (port->vbus_present || !tcpm_port_is_source(port)) tcpm_set_state(port, SRC_TRYWAIT, 0); break; case SNK_TRY_WAIT_DEBOUNCE: if (!tcpm_port_is_sink(port)) { port->max_wait = 0; tcpm_set_state(port, SRC_TRYWAIT, 0); } break; case SRC_TRY_WAIT: if (tcpm_port_is_source(port)) tcpm_set_state(port, SRC_TRY_DEBOUNCE, 0); break; case SRC_TRY_DEBOUNCE: tcpm_set_state(port, SRC_TRY_WAIT, 0); break; case SNK_TRYWAIT_DEBOUNCE: if (tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_TRYWAIT_VBUS, 0); break; case SNK_TRYWAIT_VBUS: if (!tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_TRYWAIT_DEBOUNCE, 0); break; case SNK_TRYWAIT: /* Do nothing, waiting for tCCDebounce */ break; case PR_SWAP_SNK_SRC_SINK_OFF: case PR_SWAP_SRC_SNK_TRANSITION_OFF: case PR_SWAP_SRC_SNK_SOURCE_OFF: case PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED: case PR_SWAP_SNK_SRC_SOURCE_ON: /* * CC state change is expected in PR_SWAP * Ignore it. */ break; case PORT_RESET: case PORT_RESET_WAIT_OFF: /* * State set back to default mode once the timer completes. * Ignore CC changes here. */ break; default: /* * While acting as sink and auto vbus discharge is enabled, Allow disconnect * to be driven by vbus disconnect. */ if (tcpm_port_is_disconnected(port)) tcpm_set_state(port, unattached_state(port), 0); break; } } static void _tcpm_pd_vbus_on(struct tcpm_port *port) { debug("%s: VBUS on\n", __func__); port->vbus_present = true; /* * When vbus_present is true i.e. Voltage at VBUS is greater than VSAFE5V implicitly * states that vbus is not at VSAFE0V, hence clear the vbus_vsafe0v flag here. */ port->vbus_vsafe0v = false; switch (port->state) { case SNK_TRANSITION_SINK_VBUS: port->explicit_contract = true; tcpm_set_state(port, SNK_READY, 0); break; case SNK_DISCOVERY: tcpm_set_state(port, SNK_DISCOVERY, 0); break; case SNK_DEBOUNCED: tcpm_set_state(port, SNK_ATTACHED, 0); break; case SNK_HARD_RESET_WAIT_VBUS: tcpm_set_state(port, SNK_HARD_RESET_SINK_ON, 0); break; case SRC_ATTACHED: tcpm_set_state(port, SRC_STARTUP, 0); break; case SRC_HARD_RESET_VBUS_ON: tcpm_set_state(port, SRC_STARTUP, 0); break; case SNK_TRY: /* Do nothing, waiting for timeout */ break; case SRC_TRYWAIT: /* Do nothing, Waiting for Rd to be detected */ break; case SRC_TRYWAIT_DEBOUNCE: tcpm_set_state(port, SRC_TRYWAIT, 0); break; case SNK_TRY_WAIT_DEBOUNCE: /* Do nothing, waiting for PD_DEBOUNCE to do be done */ break; case SNK_TRYWAIT: /* Do nothing, waiting for tCCDebounce */ break; case SNK_TRYWAIT_VBUS: if (tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_ATTACHED, 0); break; case SNK_TRYWAIT_DEBOUNCE: /* Do nothing, waiting for Rp */ break; case SRC_TRY_WAIT: case SRC_TRY_DEBOUNCE: /* Do nothing, waiting for sink detection */ break; case PORT_RESET: case PORT_RESET_WAIT_OFF: /* * State set back to default mode once the timer completes. * Ignore vbus changes here. */ break; default: break; } } static void _tcpm_pd_vbus_off(struct tcpm_port *port) { debug("%s: VBUS off\n", __func__); port->vbus_present = false; port->vbus_never_low = false; switch (port->state) { case SNK_HARD_RESET_SINK_OFF: tcpm_set_state(port, SNK_HARD_RESET_WAIT_VBUS, 0); break; case HARD_RESET_SEND: break; case SNK_TRY: /* Do nothing, waiting for timeout */ break; case SRC_TRYWAIT: /* Hand over to state machine if needed */ if (tcpm_port_is_source(port)) tcpm_set_state(port, SRC_TRYWAIT_DEBOUNCE, 0); break; case SNK_TRY_WAIT_DEBOUNCE: /* Do nothing, waiting for PD_DEBOUNCE to do be done */ break; case SNK_TRYWAIT: case SNK_TRYWAIT_VBUS: case SNK_TRYWAIT_DEBOUNCE: break; case SNK_ATTACH_WAIT: port->debouncing = false; tcpm_set_state(port, SNK_UNATTACHED, 0); break; case SNK_NEGOTIATE_CAPABILITIES: break; case PR_SWAP_SRC_SNK_TRANSITION_OFF: tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF, 0); break; case PR_SWAP_SNK_SRC_SINK_OFF: /* Do nothing, expected */ break; case PR_SWAP_SNK_SRC_SOURCE_ON: /* * Do nothing when vbus off notification is received. * TCPM can wait for PD_T_NEWSRC in PR_SWAP_SNK_SRC_SOURCE_ON * for the vbus source to ramp up. */ break; case PORT_RESET_WAIT_OFF: tcpm_set_state(port, tcpm_default_state(port), 0); break; case SRC_TRY_WAIT: case SRC_TRY_DEBOUNCE: /* Do nothing, waiting for sink detection */ break; case PORT_RESET: /* * State set back to default mode once the timer completes. * Ignore vbus changes here. */ break; default: if (port->pwr_role == TYPEC_SINK && port->attached) tcpm_set_state(port, SNK_UNATTACHED, 0); break; } } static void _tcpm_pd_hard_reset(struct tcpm_port *port) { debug("Received hard reset\n"); port->poll_event_cnt = 0; /* If a hard reset message is received during the port reset process, * we should ignore it, that is, do not set port->state to HARD_RESET_START. */ if (port->state == PORT_RESET || port->state == PORT_RESET_WAIT_OFF) return ; /* * If we keep receiving hard reset requests, executing the hard reset * must have failed. Revert to error recovery if that happens. */ tcpm_set_state(port, port->hard_reset_count < PD_N_HARD_RESET_COUNT ? HARD_RESET_START : ERROR_RECOVERY, 0); } #if 0 static void tcpm_pd_event_handler(struct tcpm_port *port) { u32 events; while (port->pd_events) { events = port->pd_events; port->pd_events = 0; if (events & TCPM_RESET_EVENT) _tcpm_pd_hard_reset(port); if (events & TCPM_VBUS_EVENT) { bool vbus; vbus = port->tcpc->get_vbus(port->tcpc); if (vbus) { _tcpm_pd_vbus_on(port); } else { _tcpm_pd_vbus_off(port); /* * When TCPC does not support detecting vsafe0v voltage level, * treat vbus absent as vsafe0v. Else invoke is_vbus_vsafe0v * to see if vbus has discharge to VSAFE0V. */ if (!port->tcpc->is_vbus_vsafe0v || port->tcpc->is_vbus_vsafe0v(port->tcpc)) _tcpm_pd_vbus_vsafe0v(port); } } if (events & TCPM_CC_EVENT) { enum typec_cc_status cc1, cc2; if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0) _tcpm_cc_change(port, cc1, cc2); } if (events & TCPM_FRS_EVENT) { if (port->state == SNK_READY) { int ret; port->upcoming_state = FR_SWAP_SEND; ret = tcpm_ams_start(port, FAST_ROLE_SWAP); if (ret == -EAGAIN) port->upcoming_state = INVALID_STATE; } else { tcpm_log(port, "Discarding FRS_SIGNAL! Not in sink ready"); } } if (events & TCPM_SOURCING_VBUS) { tcpm_log(port, "sourcing vbus"); /* * In fast role swap case TCPC autonomously sources vbus. Set vbus_source * true as TCPM wouldn't have called tcpm_set_vbus. * * When vbus is sourced on the command on TCPM i.e. TCPM called * tcpm_set_vbus to source vbus, vbus_source would already be true. */ port->vbus_source = true; _tcpm_pd_vbus_on(port); } } } #endif void tcpm_cc_change(struct tcpm_port *port) { enum typec_cc_status cc1, cc2; port->poll_event_cnt = 0; if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0) _tcpm_cc_change(port, cc1, cc2); } EXPORT_SYMBOL_GPL(tcpm_cc_change); void tcpm_vbus_change(struct tcpm_port *port) { bool vbus; port->poll_event_cnt = 0; vbus = port->tcpc->get_vbus(port->tcpc); if (vbus) _tcpm_pd_vbus_on(port); else _tcpm_pd_vbus_off(port); } EXPORT_SYMBOL_GPL(tcpm_vbus_change); void tcpm_pd_hard_reset(struct tcpm_port *port) { port->poll_event_cnt = 0; _tcpm_pd_hard_reset(port); } EXPORT_SYMBOL_GPL(tcpm_pd_hard_reset); static void tcpm_init(struct tcpm_port *port) { enum typec_cc_status cc1, cc2; port->tcpc->init(port->tcpc); tcpm_reset_port(port); /* * XXX * Should possibly wait for VBUS to settle if it was enabled locally * since tcpm_reset_port() will disable VBUS. */ port->vbus_present = port->tcpc->get_vbus(port->tcpc); if (port->vbus_present) port->vbus_never_low = true; /* * 1. When vbus_present is true, voltage on VBUS is already at VSAFE5V. * So implicitly vbus_vsafe0v = false. * * 2. When vbus_present is false and TCPC does NOT support querying * vsafe0v status, then, it's best to assume vbus is at VSAFE0V i.e. * vbus_vsafe0v is true. * * 3. When vbus_present is false and TCPC does support querying vsafe0v, * then, query tcpc for vsafe0v status. */ if (port->vbus_present) port->vbus_vsafe0v = false; else if (!port->tcpc->is_vbus_vsafe0v) port->vbus_vsafe0v = true; else port->vbus_vsafe0v = port->tcpc->is_vbus_vsafe0v(port->tcpc); tcpm_set_state(port, tcpm_default_state(port), 0); if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0) _tcpm_cc_change(port, cc1, cc2); } void tcpm_tcpc_reset(struct tcpm_port *port) { mutex_lock(&port->lock); /* XXX: Maintain PD connection if possible? */ tcpm_init(port); mutex_unlock(&port->lock); } EXPORT_SYMBOL_GPL(tcpm_tcpc_reset); static int tcpm_fw_get_caps(struct tcpm_port *port) { const char *cap_str; ofnode node = port->tcpc->connector_node; int ret; u32 mw, frs_current; #if 0 /* USB data support is optional */ cap_str = ofnode_read_string(node, "data-role"); if (cap_str) { ret = typec_find_port_data_role(cap_str); if (ret < 0) return ret; port->typec_caps.data = ret; } #endif cap_str = ofnode_read_string(node, "power-role"); if (!cap_str) { return -EINVAL; } else { if (!strcmp("dual", cap_str)) port->typec_caps.type = TYPEC_PORT_DRP; else if (!strcmp("source", cap_str)) port->typec_caps.type = TYPEC_PORT_SRC; else if (!strcmp("sink", cap_str)) port->typec_caps.type = TYPEC_PORT_SNK; else return EINVAL; } port->port_type = port->typec_caps.type; port->slow_charger_loop = ofnode_read_bool(node, "slow-charger-loop"); if (port->port_type == TYPEC_PORT_SNK) goto sink; /* Get source pdos */ ret = ofnode_read_size(node, "source-pdos") / sizeof(u32); if (ret <= 0) return -EINVAL; port->nr_src_pdo = min(ret, PDO_MAX_OBJECTS); ret = ofnode_read_u32_array(node, "source-pdos", port->src_pdo, port->nr_src_pdo); if (ret || tcpm_validate_caps(port, port->src_pdo, port->nr_src_pdo)) return -EINVAL; if (port->port_type == TYPEC_PORT_SRC) return 0; /* Get the preferred power role for DRP */ cap_str = ofnode_read_string(node, "try-power-role"); if (!cap_str) { return -EINVAL; } else { if (!strcmp("sink", cap_str)) port->typec_caps.prefer_role = TYPEC_SINK; else if (!strcmp("source", cap_str)) port->typec_caps.prefer_role = TYPEC_SOURCE; else return -EINVAL; } if (port->typec_caps.prefer_role < 0) return -EINVAL; sink: /* Get sink pdos */ ret = ofnode_read_size(node, "sink-pdos") / sizeof(u32); if (ret <= 0) return -EINVAL; port->nr_snk_pdo = min(ret, PDO_MAX_OBJECTS); ret = ofnode_read_u32_array(node, "sink-pdos", port->snk_pdo, port->nr_snk_pdo); if (ret || tcpm_validate_caps(port, port->snk_pdo, port->nr_snk_pdo)) return -EINVAL; if (ofnode_read_u32_array(node, "op-sink-microwatt", &mw, 1)) return -EINVAL; port->operating_snk_mw = mw / 1000; port->self_powered = ofnode_read_bool(node, "self-powered"); /* FRS can only be supported by DRP ports */ if (port->port_type == TYPEC_PORT_DRP) { ret = ofnode_read_u32_array(node, "new-source-frs-typec-current", &frs_current, 1); if (ret >= 0 && frs_current <= FRS_5V_3A) port->new_source_frs_current = frs_current; } /* sink-vdos is optional */ ret = ofnode_read_size(node, "sink-vdos") / sizeof(u32); if (ret < 0) ret = 0; port->nr_snk_vdo = min(ret, VDO_MAX_OBJECTS); if (port->nr_snk_vdo) { ret = ofnode_read_u32_array(node, "sink-vdos", port->snk_vdo, port->nr_snk_vdo); if (ret) return ret; } /* If sink-vdos is found, sink-vdos-v1 is expected for backward compatibility. */ if (port->nr_snk_vdo) { ret = ofnode_read_size(node, "sink-vdos-v1") / sizeof(u32); if (ret < 0) return ret; else if (ret == 0) return -ENODATA; port->nr_snk_vdo_v1 = min(ret, VDO_MAX_OBJECTS); ret = ofnode_read_u32_array(node, "sink-vdos-v1", port->snk_vdo_v1, port->nr_snk_vdo_v1); if (ret) return ret; } return 0; } struct tcpm_port *tcpm_port_init(struct udevice *dev, struct tcpc_dev *tcpc) { struct tcpm_port *port; int err; if (!dev || !tcpc || !tcpc->get_vbus || !tcpc->set_cc || !tcpc->get_cc || !tcpc->set_polarity || !tcpc->set_vconn || !tcpc->set_vbus || !tcpc->set_pd_rx || !tcpc->set_roles || !tcpc->pd_transmit) return ERR_PTR(-EINVAL); port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL); if (!port) return ERR_PTR(-ENOMEM); port->dev = dev; port->tcpc = tcpc; err = tcpm_fw_get_caps(port); if (err < 0) { printf("%s: please check the dts config of %s node(%d)\n", __func__, dev_read_name(dev), err); return ERR_PTR(err); } port->try_role = port->typec_caps.prefer_role; port->typec_caps.revision = 0x0120; /* Type-C spec release 1.2 */ port->typec_caps.pd_revision = 0x0300; /* USB-PD spec release 3.0 */ port->typec_caps.svdm_version = SVDM_VER_2_0; port->typec_caps.driver_data = port; port->typec_caps.orientation_aware = 1; port->port_type = port->typec_caps.type; tcpm_init(port); printf("%s: init finished\n", dev_read_name(dev)); return port; } EXPORT_SYMBOL_GPL(tcpm_port_init); void tcpm_poll_event(struct tcpm_port *port) { if (!port->tcpc->get_vbus(port->tcpc)) return ; while (port->poll_event_cnt < TCPM_POLL_EVENT_TIME_OUT) { if (!port->wait_dr_swap_Message && ((port->state == SNK_READY) || (port->state == SRC_READY) || (port->state == DEBUG_ACC_ATTACHED) || (port->state == AUDIO_ACC_ATTACHED))) break; port->tcpc->poll_event(port->tcpc); port->poll_event_cnt++; udelay(500); } /* * At this time, call the callback function of the respective pd chip * to enter the low-power mode. In order to reduce the time spent on * the PD chip driver as much as possible, the tcpm framework does not * fully process the communication initiated by the device,so it should * be noted that we can disable the internal oscillator, etc., but do * not turn off the power of the transceiver module, otherwise the * self-powered Type-C device will initiate a Message(eg: self-powered * Type-C hub initiates a SINK capability request(PD_CTRL_GET_SINK_CAP)) * and the pd chip cannot reply to GoodCRC, causing the self-powered Type-C * device to switch vbus to vSafe5v, or even turn off vbus. */ if (port->tcpc->enter_low_power_mode) { if (port->tcpc->enter_low_power_mode(port->tcpc, port->attached, port->pd_capable)) printf("failed to enter low power\n"); else printf("PD chip enter low power mode\n"); } } EXPORT_SYMBOL_GPL(tcpm_poll_event); int tcpm_get_voltage(struct tcpm_port *port) { return port->supply_voltage * 1000; } EXPORT_SYMBOL_GPL(tcpm_get_voltage); int tcpm_get_current(struct tcpm_port *port) { return port->current_limit * 1000; } EXPORT_SYMBOL_GPL(tcpm_get_voltage); int tcpm_get_online(struct tcpm_port *port) { if (port->state == SNK_READY) return 1; else return 0; } EXPORT_SYMBOL_GPL(tcpm_get_online); void tcpm_uninit_port(struct tcpm_port *port) { tcpm_reset_port(port); } EXPORT_SYMBOL_GPL(tcpm_unregister_port);