You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1458 lines
37 KiB

/*
* (C) Copyright 2017 Rockchip Electronics Co., Ltd
* Author: Andy Yan <andy.yan@rock-chips.com>
* (C) Copyright 2017 Theobroma Systems Design und Consulting GmbH
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <dt-structs.h>
#include <errno.h>
#include <mapmem.h>
#include <syscon.h>
#include <bitfield.h>
#include <asm/arch/clock.h>
#include <asm/arch/cru_rk3368.h>
#include <asm/arch/hardware.h>
#include <asm/io.h>
#include <dm/lists.h>
#include <dt-bindings/clock/rk3368-cru.h>
DECLARE_GLOBAL_DATA_PTR;
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3368_clk_plat {
struct dtd_rockchip_rk3368_cru dtd;
};
#endif
struct pll_div {
ulong rate;
u32 nr;
u32 nf;
u32 no;
u32 nb;
};
#define RK3368_PLL_RATE(_rate, _nr, _nf, _no, _nb) \
{ \
.rate = _rate##U, \
.nr = _nr, \
.nf = _nf, \
.no = _no, \
.nb = _nb, \
}
static struct pll_div rk3368_pll_rates[] = {
/* _mhz, _nr, _nf, _no, _nb */
RK3368_PLL_RATE(594000000, 1, 99, 4, 16),
RK3368_PLL_RATE(424200000, 5, 707, 8, 0),
RK3368_PLL_RATE(410000000, 3, 205, 4, 16),
};
#define OSC_HZ (24 * 1000 * 1000)
#define APLL_L_HZ (800 * 1000 * 1000)
#define APLL_B_HZ (816 * 1000 * 1000)
#define GPLL_HZ (576 * 1000 * 1000)
#define CPLL_HZ (400 * 1000 * 1000)
#define NPLL_HZ (594 * 1000 * 1000)
#define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
#if !defined(CONFIG_SPL_BUILD)
#define RK3368_CLK_DUMP(_id, _name, _iscru) \
{ \
.id = _id, \
.name = _name, \
.is_cru = _iscru, \
}
static const struct rk3368_clk_info clks_dump[] = {
RK3368_CLK_DUMP(PLL_APLLB, "apllb", true),
RK3368_CLK_DUMP(PLL_APLLL, "aplll", true),
RK3368_CLK_DUMP(PLL_DPLL, "dpll", true),
RK3368_CLK_DUMP(PLL_CPLL, "cpll", true),
RK3368_CLK_DUMP(PLL_GPLL, "gpll", true),
RK3368_CLK_DUMP(PLL_NPLL, "npll", true),
RK3368_CLK_DUMP(ARMCLKB, "armclkb", true),
RK3368_CLK_DUMP(ARMCLKL, "armclkl", true),
RK3368_CLK_DUMP(ACLK_BUS, "aclk_bus", true),
RK3368_CLK_DUMP(HCLK_BUS, "hclk_bus", true),
RK3368_CLK_DUMP(PCLK_BUS, "pclk_Bus", true),
RK3368_CLK_DUMP(ACLK_PERI, "aclk_peri", true),
RK3368_CLK_DUMP(HCLK_PERI, "hclk_peri", true),
RK3368_CLK_DUMP(PCLK_PERI, "pclk_peri", true),
};
#endif
#define RK3368_CPUCLK_RATE(_rate, _aclk_div, _pclk_div) \
{ \
.rate = _rate##U, \
.aclk_div = _aclk_div, \
.pclk_div = _pclk_div, \
}
static struct rockchip_cpu_rate_table rk3368_cpu_rates[] = {
#if !defined(CONFIG_SPL_BUILD)
RK3368_CPUCLK_RATE(1200000000, 1, 5),
RK3368_CPUCLK_RATE(1008000000, 1, 5),
#endif
RK3368_CPUCLK_RATE(816000000, 1, 3),
RK3368_CPUCLK_RATE(600000000, 1, 3),
};
#define PLL_DIVISORS(hz, _nr, _no) { \
.nr = _nr, .nf = (u32)((u64)hz * _nr * _no / OSC_HZ), .no = _no}; \
_Static_assert(((u64)hz * _nr * _no / OSC_HZ) * OSC_HZ /\
(_nr * _no) == hz, #hz "Hz cannot be hit with PLL " \
"divisors on line " __stringify(__LINE__));
#if IS_ENABLED(CONFIG_SPL_BUILD) || IS_ENABLED(CONFIG_TPL_BUILD)
static const struct pll_div apll_l_init_cfg = PLL_DIVISORS(APLL_L_HZ, 12, 2);
static const struct pll_div apll_b_init_cfg = PLL_DIVISORS(APLL_B_HZ, 1, 2);
#if !defined(CONFIG_TPL_BUILD)
static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 1, 2);
static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 6);
#endif
#endif
static ulong rk3368_clk_get_rate(struct clk *clk);
#define VCO_MAX_KHZ 2200000
#define VCO_MIN_KHZ 440000
#define FREF_MAX_KHZ 2200000
#define FREF_MIN_KHZ 269
#define PLL_LIMIT_FREQ 400000000
struct pll_div *rkclk_get_pll_config(ulong freq_hz)
{
unsigned int rate_count = ARRAY_SIZE(rk3368_pll_rates);
int i;
for (i = 0; i < rate_count; i++) {
if (freq_hz == rk3368_pll_rates[i].rate)
return &rk3368_pll_rates[i];
}
return NULL;
}
static int pll_para_config(ulong freq_hz, struct pll_div *div, uint *ext_div)
{
struct pll_div *best_div = NULL;
uint ref_khz = OSC_HZ / 1000, nr, nf = 0;
uint fref_khz;
uint diff_khz, best_diff_khz;
const uint max_nr = 1 << 6, max_nf = 1 << 12, max_no = 1 << 4;
uint vco_khz;
uint no = 1;
uint freq_khz = freq_hz / 1000;
if (!freq_hz) {
printf("%s: the frequency can not be 0 Hz\n", __func__);
return -EINVAL;
}
no = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz);
if (ext_div) {
*ext_div = DIV_ROUND_UP(PLL_LIMIT_FREQ, freq_hz);
no = DIV_ROUND_UP(no, *ext_div);
}
best_div = rkclk_get_pll_config(freq_hz * (*ext_div));
if (best_div) {
div->nr = best_div->nr;
div->nf = best_div->nf;
div->no = best_div->no;
div->nb = best_div->nb;
return 0;
}
/* only even divisors (and 1) are supported */
if (no > 1)
no = DIV_ROUND_UP(no, 2) * 2;
vco_khz = freq_khz * no;
if (ext_div)
vco_khz *= *ext_div;
if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ || no > max_no) {
printf("%s: Cannot find out VCO for Frequency (%luHz).\n",
__func__, freq_hz);
return -1;
}
div->no = no;
best_diff_khz = vco_khz;
for (nr = 1; nr < max_nr && best_diff_khz; nr++) {
fref_khz = ref_khz / nr;
if (fref_khz < FREF_MIN_KHZ)
break;
if (fref_khz > FREF_MAX_KHZ)
continue;
nf = vco_khz / fref_khz;
if (nf >= max_nf)
continue;
diff_khz = vco_khz - nf * fref_khz;
if (nf + 1 < max_nf && diff_khz > fref_khz / 2) {
nf++;
diff_khz = fref_khz - diff_khz;
}
if (diff_khz >= best_diff_khz)
continue;
best_diff_khz = diff_khz;
div->nr = nr;
div->nf = nf;
}
if (best_diff_khz > 4 * 1000) {
printf("%s:Fail to match output freq %lu,best_is %u Hz\n",
__func__, freq_hz, best_diff_khz * 1000);
return -EINVAL;
}
return 0;
}
/* Get pll rate by id */
static uint32_t rkclk_pll_get_rate(struct rk3368_cru *cru,
enum rk3368_pll_id pll_id)
{
uint32_t nr, no, nf;
uint32_t con;
struct rk3368_pll *pll = &cru->pll[pll_id];
con = readl(&pll->con3);
switch ((con & PLL_MODE_MASK) >> PLL_MODE_SHIFT) {
case PLL_MODE_SLOW:
return OSC_HZ;
case PLL_MODE_NORMAL:
con = readl(&pll->con0);
no = ((con & PLL_OD_MASK) >> PLL_OD_SHIFT) + 1;
nr = ((con & PLL_NR_MASK) >> PLL_NR_SHIFT) + 1;
con = readl(&pll->con1);
nf = ((con & PLL_NF_MASK) >> PLL_NF_SHIFT) + 1;
return (24 * nf / (nr * no)) * 1000000;
case PLL_MODE_DEEP_SLOW:
default:
return 32768;
}
}
static int rkclk_set_pll(struct rk3368_cru *cru, enum rk3368_pll_id pll_id,
const struct pll_div *div)
{
struct rk3368_pll *pll = &cru->pll[pll_id];
/* All PLLs have same VCO and output frequency range restrictions*/
uint vco_hz = OSC_HZ / 1000 * div->nf / div->nr * 1000;
uint output_hz = vco_hz / div->no;
debug("PLL at %p: nf=%d, nr=%d, no=%d, vco=%u Hz, output=%u Hz\n",
pll, div->nf, div->nr, div->no, vco_hz, output_hz);
/* enter slow mode and reset pll */
rk_clrsetreg(&pll->con3, PLL_MODE_MASK | PLL_RESET_MASK,
PLL_RESET << PLL_RESET_SHIFT);
rk_clrsetreg(&pll->con0, PLL_NR_MASK | PLL_OD_MASK,
((div->nr - 1) << PLL_NR_SHIFT) |
((div->no - 1) << PLL_OD_SHIFT));
writel((div->nf - 1) << PLL_NF_SHIFT, &pll->con1);
/*
* BWADJ should be set to NF / 2 to ensure the nominal bandwidth.
* Compare the RK3368 TRM, section "3.6.4 PLL Bandwidth Adjustment".
*/
if (div->nb)
clrsetbits_le32(&pll->con2, PLL_BWADJ_MASK, div->nb - 1);
else
clrsetbits_le32(&pll->con2, PLL_BWADJ_MASK, (div->nf >> 1) - 1);
udelay(10);
/* return from reset */
rk_clrreg(&pll->con3, PLL_RESET_MASK);
/* waiting for pll lock */
while (!(readl(&pll->con1) & PLL_LOCK_STA))
udelay(1);
rk_clrsetreg(&pll->con3, PLL_MODE_MASK,
PLL_MODE_NORMAL << PLL_MODE_SHIFT);
return 0;
}
#if !IS_ENABLED(CONFIG_SPL_BUILD) || CONFIG_IS_ENABLED(MMC_SUPPORT)
static ulong rk3368_mmc_get_clk(struct rk3368_cru *cru, uint clk_id)
{
u32 div, con, con_id, rate;
u32 pll_rate;
switch (clk_id) {
case HCLK_SDMMC:
con_id = 50;
break;
case HCLK_EMMC:
con_id = 51;
break;
case SCLK_SDIO0:
con_id = 48;
break;
default:
return -EINVAL;
}
con = readl(&cru->clksel_con[con_id]);
switch (con & MMC_PLL_SEL_MASK) {
case MMC_PLL_SEL_GPLL:
pll_rate = rkclk_pll_get_rate(cru, GPLL);
break;
case MMC_PLL_SEL_24M:
pll_rate = OSC_HZ;
break;
case MMC_PLL_SEL_CPLL:
pll_rate = rkclk_pll_get_rate(cru, CPLL);
break;
case MMC_PLL_SEL_USBPHY_480M:
default:
return -EINVAL;
}
div = (con & MMC_CLK_DIV_MASK) >> MMC_CLK_DIV_SHIFT;
rate = DIV_TO_RATE(pll_rate, div);
debug("%s: raw rate %d (post-divide by 2)\n", __func__, rate);
return rate >> 1;
}
static ulong rk3368_mmc_find_best_rate_and_parent(struct clk *clk,
ulong rate,
u32 *best_mux,
u32 *best_div)
{
int i;
ulong best_rate = 0;
const ulong MHz = 1000000;
const struct {
u32 mux;
ulong rate;
} parents[] = {
{ .mux = MMC_PLL_SEL_CPLL, .rate = CPLL_HZ },
{ .mux = MMC_PLL_SEL_GPLL, .rate = GPLL_HZ },
{ .mux = MMC_PLL_SEL_24M, .rate = 24 * MHz }
};
debug("%s: target rate %ld\n", __func__, rate);
for (i = 0; i < ARRAY_SIZE(parents); ++i) {
/*
* Find the largest rate no larger than the target-rate for
* the current parent.
*/
ulong parent_rate = parents[i].rate;
u32 div = DIV_ROUND_UP(parent_rate, rate);
u32 adj_div = div;
ulong new_rate = parent_rate / adj_div;
debug("%s: rate %ld, parent-mux %d, parent-rate %ld, div %d\n",
__func__, rate, parents[i].mux, parents[i].rate, div);
/* Skip, if not representable */
if ((div - 1) > MMC_CLK_DIV_MASK)
continue;
/* Skip, if we already have a better (or equal) solution */
if (new_rate <= best_rate)
continue;
/* This is our new best rate. */
best_rate = new_rate;
*best_mux = parents[i].mux;
*best_div = div - 1;
}
debug("%s: best_mux = %x, best_div = %d, best_rate = %ld\n",
__func__, *best_mux, *best_div, best_rate);
return best_rate;
}
static ulong rk3368_mmc_set_clk(struct clk *clk, ulong rate)
{
struct rk3368_clk_priv *priv = dev_get_priv(clk->dev);
struct rk3368_cru *cru = priv->cru;
ulong clk_id = clk->id;
u32 con_id, mux = 0, div = 0;
/* Find the best parent and rate */
rk3368_mmc_find_best_rate_and_parent(clk, rate << 1, &mux, &div);
switch (clk_id) {
case HCLK_SDMMC:
con_id = 50;
break;
case HCLK_EMMC:
con_id = 51;
break;
case SCLK_SDIO0:
con_id = 48;
break;
default:
return -EINVAL;
}
rk_clrsetreg(&cru->clksel_con[con_id],
MMC_PLL_SEL_MASK | MMC_CLK_DIV_MASK,
mux | div);
return rk3368_mmc_get_clk(cru, clk_id);
}
#endif
#if IS_ENABLED(CONFIG_TPL_BUILD)
static ulong rk3368_ddr_set_clk(struct rk3368_cru *cru, ulong set_rate)
{
const struct pll_div *dpll_cfg = NULL;
const ulong MHz = 1000000;
/* Fout = ((Fin /NR) * NF )/ NO */
static const struct pll_div dpll_1200 = PLL_DIVISORS(1200 * MHz, 1, 1);
static const struct pll_div dpll_1332 = PLL_DIVISORS(1332 * MHz, 2, 1);
static const struct pll_div dpll_1600 = PLL_DIVISORS(1600 * MHz, 3, 2);
switch (set_rate) {
case 1200*MHz:
dpll_cfg = &dpll_1200;
break;
case 1332*MHz:
dpll_cfg = &dpll_1332;
break;
case 1600*MHz:
dpll_cfg = &dpll_1600;
break;
default:
pr_err("Unsupported SDRAM frequency!,%ld\n", set_rate);
}
rkclk_set_pll(cru, DPLL, dpll_cfg);
return set_rate;
}
#endif
#if CONFIG_IS_ENABLED(GMAC_ROCKCHIP)
static ulong rk3368_gmac_set_clk(struct rk3368_cru *cru, ulong set_rate)
{
ulong ret;
/*
* The gmac clock can be derived either from an external clock
* or can be generated from internally by a divider from SCLK_MAC.
*/
if (readl(&cru->clksel_con[43]) & GMAC_MUX_SEL_EXTCLK) {
/* An external clock will always generate the right rate... */
ret = set_rate;
} else {
u32 con = readl(&cru->clksel_con[43]);
ulong pll_rate;
u8 div;
if (((con >> GMAC_PLL_SHIFT) & GMAC_PLL_MASK) ==
GMAC_PLL_SELECT_GENERAL)
pll_rate = GPLL_HZ;
else if (((con >> GMAC_PLL_SHIFT) & GMAC_PLL_MASK) ==
GMAC_PLL_SELECT_CODEC)
pll_rate = CPLL_HZ;
else
/* CPLL is not set */
return -EPERM;
div = DIV_ROUND_UP(pll_rate, set_rate) - 1;
if (div <= 0x1f)
rk_clrsetreg(&cru->clksel_con[43], GMAC_DIV_CON_MASK,
div << GMAC_DIV_CON_SHIFT);
else
debug("Unsupported div for gmac:%d\n", div);
return DIV_TO_RATE(pll_rate, div);
}
return ret;
}
#endif
/*
* RK3368 SPI clocks have a common divider-width (7 bits) and a single bit
* to select either CPLL or GPLL as the clock-parent. The location within
* the enclosing CLKSEL_CON (i.e. div_shift and sel_shift) are variable.
*/
struct spi_clkreg {
uint8_t reg; /* CLKSEL_CON[reg] register in CRU */
uint8_t div_shift;
uint8_t sel_shift;
};
/*
* The entries are numbered relative to their offset from SCLK_SPI0.
*/
static const struct spi_clkreg spi_clkregs[] = {
[0] = { .reg = 45, .div_shift = 0, .sel_shift = 7, },
[1] = { .reg = 45, .div_shift = 8, .sel_shift = 15, },
[2] = { .reg = 46, .div_shift = 8, .sel_shift = 15, },
};
static inline u32 extract_bits(u32 val, unsigned width, unsigned shift)
{
return (val >> shift) & ((1 << width) - 1);
}
static ulong rk3368_spi_get_clk(struct rk3368_cru *cru, ulong clk_id)
{
const struct spi_clkreg *spiclk = NULL;
u32 div, val;
switch (clk_id) {
case SCLK_SPI0 ... SCLK_SPI2:
spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
break;
default:
pr_err("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
return -EINVAL;
}
val = readl(&cru->clksel_con[spiclk->reg]);
div = extract_bits(val, 7, spiclk->div_shift);
debug("%s: div 0x%x\n", __func__, div);
return DIV_TO_RATE(GPLL_HZ, div);
}
static ulong rk3368_spi_set_clk(struct rk3368_cru *cru, ulong clk_id, uint hz)
{
const struct spi_clkreg *spiclk = NULL;
int src_clk_div;
src_clk_div = DIV_ROUND_UP(GPLL_HZ, hz);
assert(src_clk_div < 127);
switch (clk_id) {
case SCLK_SPI0 ... SCLK_SPI2:
spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
break;
default:
pr_err("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
return -EINVAL;
}
rk_clrsetreg(&cru->clksel_con[spiclk->reg],
((0x7f << spiclk->div_shift) |
(0x1 << spiclk->sel_shift)),
((src_clk_div << spiclk->div_shift) |
(1 << spiclk->sel_shift)));
return rk3368_spi_get_clk(cru, clk_id);
}
static ulong rk3368_saradc_get_clk(struct rk3368_cru *cru)
{
u32 div, val;
val = readl(&cru->clksel_con[25]);
div = bitfield_extract(val, CLK_SARADC_DIV_CON_SHIFT,
CLK_SARADC_DIV_CON_WIDTH);
return DIV_TO_RATE(OSC_HZ, div);
}
static ulong rk3368_saradc_set_clk(struct rk3368_cru *cru, uint hz)
{
int src_clk_div;
src_clk_div = DIV_ROUND_UP(OSC_HZ, hz) - 1;
assert(src_clk_div < 128);
rk_clrsetreg(&cru->clksel_con[25],
CLK_SARADC_DIV_CON_MASK,
src_clk_div << CLK_SARADC_DIV_CON_SHIFT);
return rk3368_saradc_get_clk(cru);
}
static ulong rk3368_bus_get_clk(struct rk3368_cru *cru, ulong clk_id)
{
u32 div, con, parent;
switch (clk_id) {
case ACLK_BUS:
con = readl(&cru->clksel_con[8]);
div = (con & ACLK_BUS_DIV_CON_MASK) >> ACLK_BUS_DIV_CON_SHIFT;
parent = rkclk_pll_get_rate(cru, GPLL);
break;
case HCLK_BUS:
con = readl(&cru->clksel_con[8]);
div = (con & HCLK_BUS_DIV_CON_MASK) >> HCLK_BUS_DIV_CON_SHIFT;
parent = rk3368_bus_get_clk(cru, ACLK_BUS);
break;
case PCLK_BUS:
case PCLK_PWM0:
case PCLK_PWM1:
case PCLK_I2C0:
case PCLK_I2C1:
con = readl(&cru->clksel_con[8]);
div = (con & PCLK_BUS_DIV_CON_MASK) >> PCLK_BUS_DIV_CON_SHIFT;
parent = rk3368_bus_get_clk(cru, ACLK_BUS);
break;
default:
return -ENOENT;
}
return DIV_TO_RATE(parent, div);
}
static ulong rk3368_bus_set_clk(struct rk3368_cru *cru,
ulong clk_id, ulong hz)
{
int src_clk_div;
/*
* select gpll as pd_bus bus clock source and
* set up dependent divisors for PCLK/HCLK and ACLK clocks.
*/
switch (clk_id) {
case ACLK_BUS:
src_clk_div = DIV_ROUND_UP(rkclk_pll_get_rate(cru, GPLL), hz);
assert(src_clk_div - 1 < 31);
rk_clrsetreg(&cru->clksel_con[8],
CLK_BUS_PLL_SEL_MASK | ACLK_BUS_DIV_CON_MASK,
CLK_BUS_PLL_SEL_GPLL << CLK_BUS_PLL_SEL_SHIFT |
(src_clk_div - 1) << ACLK_BUS_DIV_CON_SHIFT);
break;
case HCLK_BUS:
src_clk_div = DIV_ROUND_UP(rk3368_bus_get_clk(cru,
ACLK_BUS),
hz);
assert(src_clk_div - 1 < 3);
rk_clrsetreg(&cru->clksel_con[8],
HCLK_BUS_DIV_CON_MASK,
(src_clk_div - 1) << HCLK_BUS_DIV_CON_SHIFT);
break;
case PCLK_BUS:
src_clk_div = DIV_ROUND_UP(rk3368_bus_get_clk(cru,
ACLK_BUS),
hz);
assert(src_clk_div - 1 < 3);
rk_clrsetreg(&cru->clksel_con[8],
PCLK_BUS_DIV_CON_MASK,
(src_clk_div - 1) << PCLK_BUS_DIV_CON_SHIFT);
break;
default:
printf("do not support this bus freq\n");
return -EINVAL;
}
return rk3368_bus_get_clk(cru, clk_id);
}
static ulong rk3368_peri_get_clk(struct rk3368_cru *cru, ulong clk_id)
{
u32 div, con, parent;
switch (clk_id) {
case ACLK_PERI:
con = readl(&cru->clksel_con[9]);
div = (con & ACLK_PERI_DIV_CON_MASK) >> ACLK_PERI_DIV_CON_SHIFT;
parent = rkclk_pll_get_rate(cru, GPLL);
break;
case HCLK_PERI:
con = readl(&cru->clksel_con[9]);
div = (con & HCLK_PERI_DIV_CON_MASK) >> HCLK_PERI_DIV_CON_SHIFT;
parent = rk3368_peri_get_clk(cru, ACLK_PERI);
break;
case PCLK_PERI:
case PCLK_I2C2:
case PCLK_I2C3:
case PCLK_I2C4:
case PCLK_I2C5:
con = readl(&cru->clksel_con[9]);
div = (con & PCLK_PERI_DIV_CON_MASK) >> PCLK_PERI_DIV_CON_SHIFT;
parent = rk3368_peri_get_clk(cru, ACLK_PERI);
break;
default:
return -ENOENT;
}
return DIV_TO_RATE(parent, div);
}
static ulong rk3368_peri_set_clk(struct rk3368_cru *cru,
ulong clk_id, ulong hz)
{
int src_clk_div;
/*
* select gpll as pd_bus bus clock source and
* set up dependent divisors for PCLK/HCLK and ACLK clocks.
*/
switch (clk_id) {
case ACLK_PERI:
src_clk_div = DIV_ROUND_UP(rkclk_pll_get_rate(cru, GPLL), hz);
assert(src_clk_div - 1 < 31);
rk_clrsetreg(&cru->clksel_con[9],
CLK_PERI_PLL_SEL_MASK | ACLK_PERI_DIV_CON_MASK,
CLK_PERI_PLL_SEL_GPLL << CLK_PERI_PLL_SEL_SHIFT |
(src_clk_div - 1) << ACLK_PERI_DIV_CON_SHIFT);
break;
case HCLK_PERI:
src_clk_div = DIV_ROUND_UP(rk3368_peri_get_clk(cru,
ACLK_PERI),
hz);
assert(src_clk_div - 1 < 3);
rk_clrsetreg(&cru->clksel_con[9],
HCLK_PERI_DIV_CON_MASK,
(src_clk_div - 1) << HCLK_PERI_DIV_CON_SHIFT);
break;
case PCLK_PERI:
src_clk_div = DIV_ROUND_UP(rk3368_peri_get_clk(cru,
ACLK_PERI),
hz);
assert(src_clk_div - 1 < 3);
rk_clrsetreg(&cru->clksel_con[9],
PCLK_PERI_DIV_CON_MASK,
(src_clk_div - 1) << PCLK_PERI_DIV_CON_SHIFT);
break;
default:
printf("do not support this bus freq\n");
return -EINVAL;
}
return rk3368_peri_get_clk(cru, clk_id);
}
#if !defined(CONFIG_SPL_BUILD)
static ulong rk3368_vop_get_clk(struct rk3368_cru *cru, int clk_id)
{
u32 div, con, parent, sel;
switch (clk_id) {
case DCLK_VOP:
con = readl(&cru->clksel_con[20]);
div = con & DCLK_VOP_DIV_MASK;
parent = rkclk_pll_get_rate(cru, NPLL);
break;
case ACLK_VOP:
con = readl(&cru->clksel_con[19]);
div = con & ACLK_VOP_DIV_MASK;
sel = (con & (ACLK_VOP_PLL_SEL_MASK <<
ACLK_VOP_PLL_SEL_SHIFT)) >>
ACLK_VOP_PLL_SEL_SHIFT;
if (sel == ACLK_VOP_PLL_SEL_CPLL)
parent = rkclk_pll_get_rate(cru, CPLL);
else if (ACLK_VOP_PLL_SEL_GPLL)
parent = rkclk_pll_get_rate(cru, GPLL);
else
parent = 480000000;
break;
default:
return -EINVAL;
}
return DIV_TO_RATE(parent, div);
}
static ulong rk3368_vop_set_clk(struct rk3368_cru *cru, int clk_id, uint hz)
{
struct pll_div npll_config = {0};
u32 lcdc_div;
int ret;
switch (clk_id) {
case DCLK_VOP:
if (!(NPLL_HZ % hz)) {
rkclk_set_pll(cru, NPLL, rkclk_get_pll_config(NPLL_HZ));
lcdc_div = NPLL_HZ / hz;
} else {
ret = pll_para_config(hz, &npll_config, &lcdc_div);
if (ret)
return ret;
rkclk_set_pll(cru, NPLL, &npll_config);
}
/* vop dclk source clk: npll,dclk_div: 1 */
rk_clrsetreg(&cru->clksel_con[20],
(DCLK_VOP_PLL_SEL_MASK << DCLK_VOP_PLL_SEL_SHIFT) |
(DCLK_VOP_DIV_MASK << DCLK_VOP_DIV_SHIFT),
(DCLK_VOP_PLL_SEL_NPLL << DCLK_VOP_PLL_SEL_SHIFT) |
(lcdc_div - 1) << DCLK_VOP_DIV_SHIFT);
break;
case ACLK_VOP:
if ((rkclk_pll_get_rate(cru, CPLL) % hz) == 0) {
lcdc_div = rkclk_pll_get_rate(cru, CPLL) / hz;
rk_clrsetreg(&cru->clksel_con[19],
(ACLK_VOP_PLL_SEL_MASK <<
ACLK_VOP_PLL_SEL_SHIFT) |
(ACLK_VOP_DIV_MASK <<
ACLK_VOP_DIV_SHIFT),
(ACLK_VOP_PLL_SEL_CPLL <<
ACLK_VOP_PLL_SEL_SHIFT) |
(lcdc_div - 1) <<
ACLK_VOP_DIV_SHIFT);
} else {
lcdc_div = rkclk_pll_get_rate(cru, GPLL) / hz;
rk_clrsetreg(&cru->clksel_con[19],
(ACLK_VOP_PLL_SEL_MASK <<
ACLK_VOP_PLL_SEL_SHIFT) |
(ACLK_VOP_DIV_MASK <<
ACLK_VOP_DIV_SHIFT),
(ACLK_VOP_PLL_SEL_GPLL <<
ACLK_VOP_PLL_SEL_SHIFT) |
(lcdc_div - 1) <<
ACLK_VOP_DIV_SHIFT);
}
break;
default:
return -EINVAL;
}
return 0;
}
static ulong rk3368_alive_get_clk(struct rk3368_clk_priv *priv)
{
struct rk3368_cru *cru = priv->cru;
u32 div, con, parent;
con = readl(&cru->clksel_con[10]);
div = (con & PCLK_ALIVE_DIV_CON_MASK) >>
PCLK_ALIVE_DIV_CON_SHIFT;
parent = GPLL_HZ;
return DIV_TO_RATE(parent, div);
}
static ulong rk3368_crypto_get_rate(struct rk3368_clk_priv *priv)
{
struct rk3368_cru *cru = priv->cru;
u32 div, val;
val = readl(&cru->clksel_con[10]);
div = (val & CLK_CRYPTO_DIV_CON_MASK) >> CLK_CRYPTO_DIV_CON_SHIFT;
return DIV_TO_RATE(rk3368_bus_get_clk(priv->cru, ACLK_BUS), div);
}
static ulong rk3368_crypto_set_rate(struct rk3368_clk_priv *priv,
uint hz)
{
struct rk3368_cru *cru = priv->cru;
int src_clk_div;
uint p_rate;
p_rate = rk3368_bus_get_clk(priv->cru, ACLK_BUS);
src_clk_div = DIV_ROUND_UP(p_rate, hz) - 1;
assert(src_clk_div < 3);
rk_clrsetreg(&cru->clksel_con[10],
CLK_CRYPTO_DIV_CON_MASK,
src_clk_div << CLK_CRYPTO_DIV_CON_SHIFT);
return rk3368_crypto_get_rate(priv);
}
#endif
static ulong rk3368_armclk_set_clk(struct rk3368_clk_priv *priv,
int clk_id, ulong hz)
{
struct rk3368_cru *cru = priv->cru;
const struct rockchip_cpu_rate_table *rate;
struct pll_div pll_config = {0};
ulong old_rate;
u32 pll_div, pll_id, con_id;
int ret;
rate = rockchip_get_cpu_settings(rk3368_cpu_rates, hz);
if (!rate) {
printf("%s unsupported rate\n", __func__);
return -EINVAL;
}
/*
* select apll as cpu/core clock pll source and
* set up dependent divisors for PERI and ACLK clocks.
* core hz : apll = 1:1
*/
ret = pll_para_config(hz, &pll_config, &pll_div);
if (ret)
return ret;
if (clk_id == ARMCLKB) {
old_rate = rkclk_pll_get_rate(priv->cru, APLLB);
pll_id = APLLB;
con_id = 0;
} else {
old_rate = rkclk_pll_get_rate(priv->cru, APLLL);
pll_id = APLLL;
con_id = 2;
}
if (old_rate > hz) {
ret = rkclk_set_pll(priv->cru, pll_id, &pll_config);
rk_clrsetreg(&cru->clksel_con[con_id],
CORE_CLK_PLL_SEL_MASK | CORE_DIV_CON_MASK,
CORE_CLK_PLL_SEL_APLL << CORE_CLK_PLL_SEL_SHIFT |
0 << CORE_DIV_CON_SHIFT);
rk_clrsetreg(&cru->clksel_con[con_id + 1],
CORE_ACLK_DIV_MASK | CORE_DBG_DIV_MASK,
rate->aclk_div << CORE_ACLK_DIV_SHIFT |
rate->pclk_div << CORE_DBG_DIV_SHIFT);
} else if (old_rate < hz) {
rk_clrsetreg(&cru->clksel_con[con_id],
CORE_CLK_PLL_SEL_MASK | CORE_DIV_CON_MASK,
CORE_CLK_PLL_SEL_APLL << CORE_CLK_PLL_SEL_SHIFT |
0 << CORE_DIV_CON_SHIFT);
rk_clrsetreg(&cru->clksel_con[con_id + 1],
CORE_ACLK_DIV_MASK | CORE_DBG_DIV_MASK,
rate->aclk_div << CORE_ACLK_DIV_SHIFT |
rate->pclk_div << CORE_DBG_DIV_SHIFT);
ret = rkclk_set_pll(priv->cru, pll_id, &pll_config);
}
return rkclk_pll_get_rate(priv->cru, pll_id);
}
static ulong rk3368_clk_get_rate(struct clk *clk)
{
struct rk3368_clk_priv *priv = dev_get_priv(clk->dev);
ulong rate = 0;
debug("%s: id %ld\n", __func__, clk->id);
switch (clk->id) {
case PLL_APLLB:
case PLL_APLLL:
case PLL_DPLL:
case PLL_CPLL:
case PLL_GPLL:
case PLL_NPLL:
rate = rkclk_pll_get_rate(priv->cru, clk->id - 1);
break;
case ARMCLKB:
rate = rkclk_pll_get_rate(priv->cru, APLLB);
break;
case ARMCLKL:
rate = rkclk_pll_get_rate(priv->cru, APLLL);
break;
case SCLK_SPI0 ... SCLK_SPI2:
rate = rk3368_spi_get_clk(priv->cru, clk->id);
break;
case ACLK_BUS:
case HCLK_BUS:
case PCLK_BUS:
case PCLK_PWM0:
case PCLK_PWM1:
case PCLK_I2C0:
case PCLK_I2C1:
rate = rk3368_bus_get_clk(priv->cru, clk->id);
break;
case ACLK_PERI:
case HCLK_PERI:
case PCLK_PERI:
case PCLK_I2C2:
case PCLK_I2C3:
case PCLK_I2C4:
case PCLK_I2C5:
rate = rk3368_peri_get_clk(priv->cru, clk->id);
break;
#if !IS_ENABLED(CONFIG_SPL_BUILD) || CONFIG_IS_ENABLED(MMC_SUPPORT)
case HCLK_SDMMC:
case HCLK_EMMC:
rate = rk3368_mmc_get_clk(priv->cru, clk->id);
break;
#endif
case SCLK_SARADC:
rate = rk3368_saradc_get_clk(priv->cru);
break;
#if !defined(CONFIG_SPL_BUILD)
case ACLK_VOP:
case DCLK_VOP:
rate = rk3368_vop_get_clk(priv->cru, clk->id);
break;
case PCLK_WDT:
rate = rk3368_alive_get_clk(priv);
break;
case SCLK_CRYPTO:
rate = rk3368_crypto_get_rate(priv);
break;
#endif
default:
return -ENOENT;
}
return rate;
}
static ulong rk3368_clk_set_rate(struct clk *clk, ulong rate)
{
__maybe_unused struct rk3368_clk_priv *priv = dev_get_priv(clk->dev);
struct pll_div pll_config = {0};
u32 pll_div;
ulong ret = 0;
switch (clk->id) {
case PLL_APLLB:
case PLL_APLLL:
case PLL_CPLL:
case PLL_GPLL:
case PLL_NPLL:
ret = pll_para_config(rate, &pll_config, &pll_div);
if (ret)
return ret;
ret = rkclk_set_pll(priv->cru, clk->id - 1, &pll_config);
break;
case ARMCLKB:
if (priv->armbclk_hz)
ret = rk3368_armclk_set_clk(priv, clk->id, rate);
priv->armbclk_hz = rate;
break;
case ARMCLKL:
if (priv->armlclk_hz)
ret = rk3368_armclk_set_clk(priv, clk->id, rate);
priv->armlclk_hz = rate;
break;
case SCLK_SPI0 ... SCLK_SPI2:
ret = rk3368_spi_set_clk(priv->cru, clk->id, rate);
break;
#if IS_ENABLED(CONFIG_TPL_BUILD)
case SCLK_DDRCLK:
ret = rk3368_ddr_set_clk(priv->cru, rate);
break;
#endif
case ACLK_BUS:
case HCLK_BUS:
case PCLK_BUS:
rate = rk3368_bus_set_clk(priv->cru, clk->id, rate);
break;
case ACLK_PERI:
case HCLK_PERI:
case PCLK_PERI:
rate = rk3368_peri_set_clk(priv->cru, clk->id, rate);
break;
#if !IS_ENABLED(CONFIG_SPL_BUILD) || CONFIG_IS_ENABLED(MMC_SUPPORT)
case HCLK_SDMMC:
case HCLK_EMMC:
ret = rk3368_mmc_set_clk(clk, rate);
break;
#endif
#if CONFIG_IS_ENABLED(GMAC_ROCKCHIP)
case SCLK_MAC:
/* select the external clock */
ret = rk3368_gmac_set_clk(priv->cru, rate);
break;
#endif
case SCLK_SARADC:
ret = rk3368_saradc_set_clk(priv->cru, rate);
break;
#if !defined(CONFIG_SPL_BUILD)
case ACLK_VOP:
case DCLK_VOP:
ret = rk3368_vop_set_clk(priv->cru, clk->id, rate);
break;
case ACLK_CCI_PRE:
ret = 0;
break;
case SCLK_CRYPTO:
ret = rk3368_crypto_set_rate(priv, rate);
break;
#endif
default:
return -ENOENT;
}
return ret;
}
static int __maybe_unused rk3368_gmac_set_parent(struct clk *clk, struct clk *parent)
{
struct rk3368_clk_priv *priv = dev_get_priv(clk->dev);
struct rk3368_cru *cru = priv->cru;
const char *clock_output_name;
int ret;
/*
* If the requested parent is in the same clock-controller and
* the id is SCLK_MAC ("sclk_mac"), switch to the internal
* clock.
*/
if ((parent->dev == clk->dev) && (parent->id == SCLK_MAC)) {
debug("%s: switching GAMC to SCLK_MAC\n", __func__);
rk_clrreg(&cru->clksel_con[43], GMAC_MUX_SEL_EXTCLK);
return 0;
}
/*
* Otherwise, we need to check the clock-output-names of the
* requested parent to see if the requested id is "ext_gmac".
*/
ret = dev_read_string_index(parent->dev, "clock-output-names",
parent->id, &clock_output_name);
if (ret < 0)
return -ENODATA;
/* If this is "ext_gmac", switch to the external clock input */
if (!strcmp(clock_output_name, "ext_gmac")) {
debug("%s: switching GMAC to external clock\n", __func__);
rk_setreg(&cru->clksel_con[43], GMAC_MUX_SEL_EXTCLK);
return 0;
}
return -EINVAL;
}
static int __maybe_unused rk3368_clk_set_parent(struct clk *clk, struct clk *parent)
{
switch (clk->id) {
case SCLK_MAC:
return rk3368_gmac_set_parent(clk, parent);
}
debug("%s: unsupported clk %ld\n", __func__, clk->id);
return -ENOENT;
}
#define ROCKCHIP_MMC_DELAY_SEL BIT(10)
#define ROCKCHIP_MMC_DEGREE_MASK 0x3
#define ROCKCHIP_MMC_DELAYNUM_OFFSET 2
#define ROCKCHIP_MMC_DELAYNUM_MASK (0xff << ROCKCHIP_MMC_DELAYNUM_OFFSET)
#define PSECS_PER_SEC 1000000000000LL
/*
* Each fine delay is between 44ps-77ps. Assume each fine delay is 60ps to
* simplify calculations. So 45degs could be anywhere between 33deg and 57.8deg.
*/
#define ROCKCHIP_MMC_DELAY_ELEMENT_PSEC 60
int rk3368_mmc_get_phase(struct clk *clk)
{
struct rk3368_clk_priv *priv = dev_get_priv(clk->dev);
struct rk3368_cru *cru = priv->cru;
u32 raw_value, delay_num;
u16 degrees = 0;
ulong rate;
rate = rk3368_clk_get_rate(clk);
if (rate < 0)
return rate;
if (clk->id == SCLK_EMMC_SAMPLE)
raw_value = readl(&cru->emmc_con[1]);
else if (clk->id == SCLK_SDMMC_SAMPLE)
raw_value = readl(&cru->sdmmc_con[1]);
else
raw_value = readl(&cru->sdio0_con[1]);
raw_value >>= 1;
degrees = (raw_value & ROCKCHIP_MMC_DEGREE_MASK) * 90;
if (raw_value & ROCKCHIP_MMC_DELAY_SEL) {
/* degrees/delaynum * 10000 */
unsigned long factor = (ROCKCHIP_MMC_DELAY_ELEMENT_PSEC / 10) *
36 * (rate / 1000000);
delay_num = (raw_value & ROCKCHIP_MMC_DELAYNUM_MASK);
delay_num >>= ROCKCHIP_MMC_DELAYNUM_OFFSET;
degrees += DIV_ROUND_CLOSEST(delay_num * factor, 10000);
}
return degrees % 360;
}
int rk3368_mmc_set_phase(struct clk *clk, u32 degrees)
{
struct rk3368_clk_priv *priv = dev_get_priv(clk->dev);
struct rk3368_cru *cru = priv->cru;
u8 nineties, remainder, delay_num;
u32 raw_value, delay;
ulong rate;
rate = rk3368_clk_get_rate(clk);
if (rate < 0)
return rate;
nineties = degrees / 90;
remainder = (degrees % 90);
/*
* Convert to delay; do a little extra work to make sure we
* don't overflow 32-bit / 64-bit numbers.
*/
delay = 10000000; /* PSECS_PER_SEC / 10000 / 10 */
delay *= remainder;
delay = DIV_ROUND_CLOSEST(delay, (rate / 1000) * 36 *
(ROCKCHIP_MMC_DELAY_ELEMENT_PSEC / 10));
delay_num = (u8)min_t(u32, delay, 255);
raw_value = delay_num ? ROCKCHIP_MMC_DELAY_SEL : 0;
raw_value |= delay_num << ROCKCHIP_MMC_DELAYNUM_OFFSET;
raw_value |= nineties;
raw_value <<= 1;
if (clk->id == SCLK_EMMC_SAMPLE)
writel(raw_value | 0xffff0000, &cru->emmc_con[1]);
else if (clk->id == SCLK_SDMMC_SAMPLE)
writel(raw_value | 0xffff0000, &cru->sdmmc_con[1]);
else
writel(raw_value | 0xffff0000, &cru->sdio0_con[1]);
debug("mmc set_phase(%d) delay_nums=%u reg=%#x actual_degrees=%d\n",
degrees, delay_num, raw_value, rk3368_mmc_get_phase(clk));
return 0;
}
static int rk3368_clk_get_phase(struct clk *clk)
{
int ret;
debug("%s %ld\n", __func__, clk->id);
switch (clk->id) {
case SCLK_EMMC_SAMPLE:
case SCLK_SDMMC_SAMPLE:
case SCLK_SDIO0_SAMPLE:
ret = rk3368_mmc_get_phase(clk);
break;
default:
return -ENOENT;
}
return ret;
}
static int rk3368_clk_set_phase(struct clk *clk, int degrees)
{
int ret;
debug("%s %ld\n", __func__, clk->id);
switch (clk->id) {
case SCLK_EMMC_SAMPLE:
case SCLK_SDMMC_SAMPLE:
case SCLK_SDIO0_SAMPLE:
ret = rk3368_mmc_set_phase(clk, degrees);
break;
default:
return -ENOENT;
}
return ret;
}
static struct clk_ops rk3368_clk_ops = {
.get_rate = rk3368_clk_get_rate,
.set_rate = rk3368_clk_set_rate,
.get_phase = rk3368_clk_get_phase,
.set_phase = rk3368_clk_set_phase,
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
.set_parent = rk3368_clk_set_parent,
#endif
};
#if IS_ENABLED(CONFIG_SPL_BUILD) || IS_ENABLED(CONFIG_TPL_BUILD)
static void rkclk_init(struct rk3368_cru *cru)
{
u32 apllb, aplll, dpll, cpll, gpll;
rkclk_set_pll(cru, APLLB, &apll_b_init_cfg);
rkclk_set_pll(cru, APLLL, &apll_l_init_cfg);
#if !defined(CONFIG_TPL_BUILD)
/*
* If we plan to return to the boot ROM, we can't increase the
* GPLL rate from the SPL stage.
*/
rkclk_set_pll(cru, GPLL, &gpll_init_cfg);
rkclk_set_pll(cru, CPLL, &cpll_init_cfg);
#endif
rk_clrsetreg(&cru->clksel_con[37], (1 << 8), 1 << 8);
apllb = rkclk_pll_get_rate(cru, APLLB);
aplll = rkclk_pll_get_rate(cru, APLLL);
dpll = rkclk_pll_get_rate(cru, DPLL);
cpll = rkclk_pll_get_rate(cru, CPLL);
gpll = rkclk_pll_get_rate(cru, GPLL);
debug("%s apllb(%d) apll(%d) dpll(%d) cpll(%d) gpll(%d)\n",
__func__, apllb, aplll, dpll, cpll, gpll);
}
#endif
static int rk3368_clk_probe(struct udevice *dev)
{
struct rk3368_clk_priv __maybe_unused *priv = dev_get_priv(dev);
int ret;
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3368_clk_plat *plat = dev_get_platdata(dev);
priv->cru = map_sysmem(plat->dtd.reg[0], plat->dtd.reg[1]);
#endif
priv->sync_kernel = false;
if (!priv->armlclk_enter_hz)
priv->armlclk_enter_hz = rkclk_pll_get_rate(priv->cru, APLLL);
if (!priv->armbclk_enter_hz)
priv->armbclk_enter_hz = rkclk_pll_get_rate(priv->cru, APLLB);
#if IS_ENABLED(CONFIG_SPL_BUILD) || IS_ENABLED(CONFIG_TPL_BUILD)
rkclk_init(priv->cru);
#endif
rkclk_set_pll(priv->cru, NPLL, rkclk_get_pll_config(NPLL_HZ));
if (!priv->armlclk_init_hz)
priv->armlclk_init_hz = rkclk_pll_get_rate(priv->cru, APLLL);
if (!priv->armbclk_init_hz)
priv->armbclk_init_hz = rkclk_pll_get_rate(priv->cru, APLLB);
/* Process 'assigned-{clocks/clock-parents/clock-rates}' properties */
ret = clk_set_defaults(dev);
if (ret)
debug("%s clk_set_defaults failed %d\n", __func__, ret);
else
priv->sync_kernel = true;
return 0;
}
static int rk3368_clk_ofdata_to_platdata(struct udevice *dev)
{
#if !CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3368_clk_priv *priv = dev_get_priv(dev);
priv->cru = dev_read_addr_ptr(dev);
#endif
return 0;
}
static int rk3368_clk_bind(struct udevice *dev)
{
int ret;
struct udevice *sys_child, *sf_child;
struct sysreset_reg *priv;
struct softreset_reg *sf_priv;
/* The reset driver does not have a device node, so bind it here */
ret = device_bind_driver(dev, "rockchip_sysreset", "sysreset",
&sys_child);
if (ret) {
debug("Warning: No sysreset driver: ret=%d\n", ret);
} else {
priv = malloc(sizeof(struct sysreset_reg));
priv->glb_srst_fst_value = offsetof(struct rk3368_cru,
glb_srst_fst_val);
priv->glb_srst_snd_value = offsetof(struct rk3368_cru,
glb_srst_snd_val);
sys_child->priv = priv;
}
ret = device_bind_driver_to_node(dev, "rockchip_reset", "reset",
dev_ofnode(dev), &sf_child);
if (ret) {
debug("Warning: No rockchip reset driver: ret=%d\n", ret);
} else {
sf_priv = malloc(sizeof(struct softreset_reg));
sf_priv->sf_reset_offset = offsetof(struct rk3368_cru,
softrst_con[0]);
sf_priv->sf_reset_num = 15;
sf_child->priv = sf_priv;
}
return 0;
}
static const struct udevice_id rk3368_clk_ids[] = {
{ .compatible = "rockchip,rk3368-cru" },
{ }
};
U_BOOT_DRIVER(rockchip_rk3368_cru) = {
.name = "rockchip_rk3368_cru",
.id = UCLASS_CLK,
.of_match = rk3368_clk_ids,
.priv_auto_alloc_size = sizeof(struct rk3368_clk_priv),
#if CONFIG_IS_ENABLED(OF_PLATDATA)
.platdata_auto_alloc_size = sizeof(struct rk3368_clk_plat),
#endif
.ofdata_to_platdata = rk3368_clk_ofdata_to_platdata,
.ops = &rk3368_clk_ops,
.bind = rk3368_clk_bind,
.probe = rk3368_clk_probe,
};
#if !defined(CONFIG_SPL_BUILD)
/**
* soc_clk_dump() - Print clock frequencies
* Returns zero on success
*
* Implementation for the clk dump command.
*/
int soc_clk_dump(void)
{
struct udevice *cru_dev;
struct rk3368_clk_priv *priv;
const struct rk3368_clk_info *clk_dump;
struct clk clk;
unsigned long clk_count = ARRAY_SIZE(clks_dump);
unsigned long rate;
int i, ret;
ret = uclass_get_device_by_driver(UCLASS_CLK,
DM_GET_DRIVER(rockchip_rk3368_cru),
&cru_dev);
if (ret) {
printf("%s failed to get cru device\n", __func__);
return ret;
}
priv = dev_get_priv(cru_dev);
printf("CLK: (%s. arml: enter %lu KHz, init %lu KHz, kernel %lu%s)\n",
priv->sync_kernel ? "sync kernel" : "uboot",
priv->armlclk_enter_hz / 1000,
priv->armlclk_init_hz / 1000,
priv->set_armclk_rate ? priv->armlclk_hz / 1000 : 0,
priv->set_armclk_rate ? " KHz" : "N/A");
printf("CLK: (%s. armb: enter %lu KHz, init %lu KHz, kernel %lu%s)\n",
priv->sync_kernel ? "sync kernel" : "uboot",
priv->armbclk_enter_hz / 1000,
priv->armbclk_init_hz / 1000,
priv->set_armclk_rate ? priv->armlclk_hz / 1000 : 0,
priv->set_armclk_rate ? " KHz" : "N/A");
for (i = 0; i < clk_count; i++) {
clk_dump = &clks_dump[i];
if (clk_dump->name) {
clk.id = clk_dump->id;
if (clk_dump->is_cru)
ret = clk_request(cru_dev, &clk);
if (ret < 0)
return ret;
rate = clk_get_rate(&clk);
clk_free(&clk);
if (i == 0) {
if (rate < 0)
printf(" %s %s\n", clk_dump->name,
"unknown");
else
printf(" %s %lu KHz\n", clk_dump->name,
rate / 1000);
} else {
if (rate < 0)
printf(" %s %s\n", clk_dump->name,
"unknown");
else
printf(" %s %lu KHz\n", clk_dump->name,
rate / 1000);
}
}
}
return 0;
}
#endif