You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

304 lines
6.6 KiB

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019 Fuzhou Rockchip Electronics Co., Ltd
*/
#include <crypto.h>
static const u8 null_hash_sha1_value[] = {
0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
0xaf, 0xd8, 0x07, 0x09
};
static const u8 null_hash_md5_value[] = {
0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04,
0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e
};
static const u8 null_hash_sha256_value[] = {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
};
static const u8 null_hash_sha512_value[] = {
0xcf, 0x83, 0xe1, 0x35, 0x7e, 0xef, 0xb8, 0xbd,
0xf1, 0x54, 0x28, 0x50, 0xd6, 0x6d, 0x80, 0x07,
0xd6, 0x20, 0xe4, 0x05, 0x0b, 0x57, 0x15, 0xdc,
0x83, 0xf4, 0xa9, 0x21, 0xd3, 0x6c, 0xe9, 0xce,
0x47, 0xd0, 0xd1, 0x3c, 0x5d, 0x85, 0xf2, 0xb0,
0xff, 0x83, 0x18, 0xd2, 0x87, 0x7e, 0xec, 0x2f,
0x63, 0xb9, 0x31, 0xbd, 0x47, 0x41, 0x7a, 0x81,
0xa5, 0x38, 0x32, 0x7a, 0xf9, 0x27, 0xda, 0x3e
};
const static u8 null_hash_sm3_value[] = {
0x1a, 0xb2, 0x1d, 0x83, 0x55, 0xcf, 0xa1, 0x7f,
0x8e, 0x61, 0x19, 0x48, 0x31, 0xe8, 0x1a, 0x8f,
0x22, 0xbe, 0xc8, 0xc7, 0x28, 0xfe, 0xfb, 0x74,
0x7e, 0xd0, 0x35, 0xeb, 0x50, 0x82, 0xaa, 0x2b
};
u32 crypto_algo_nbits(u32 algo)
{
switch (algo) {
case CRYPTO_MD5:
case CRYPTO_HMAC_MD5:
return 128;
case CRYPTO_SHA1:
case CRYPTO_HMAC_SHA1:
return 160;
case CRYPTO_SHA256:
case CRYPTO_HMAC_SHA256:
return 256;
case CRYPTO_SHA512:
case CRYPTO_HMAC_SHA512:
return 512;
case CRYPTO_SM3:
case CRYPTO_HMAC_SM3:
return 256;
case CRYPTO_RSA512:
return 512;
case CRYPTO_RSA1024:
return 1024;
case CRYPTO_RSA2048:
return 2048;
case CRYPTO_RSA3072:
return 3072;
case CRYPTO_RSA4096:
return 4096;
}
printf("Unknown crypto algorithm: 0x%x\n", algo);
return 0;
}
struct udevice *crypto_get_device(u32 capability)
{
const struct dm_crypto_ops *ops;
struct udevice *dev;
struct uclass *uc;
int ret;
u32 cap;
ret = uclass_get(UCLASS_CRYPTO, &uc);
if (ret)
return NULL;
for (uclass_first_device(UCLASS_CRYPTO, &dev);
dev;
uclass_next_device(&dev)) {
ops = device_get_ops(dev);
if (!ops || !ops->capability)
continue;
cap = ops->capability(dev);
if ((cap & capability) == capability)
return dev;
}
return NULL;
}
int crypto_sha_init(struct udevice *dev, sha_context *ctx)
{
const struct dm_crypto_ops *ops = device_get_ops(dev);
if (ctx && !ctx->length)
return 0;
if (!ops || !ops->sha_init)
return -ENOSYS;
return ops->sha_init(dev, ctx);
}
int crypto_sha_update(struct udevice *dev, u32 *input, u32 len)
{
const struct dm_crypto_ops *ops = device_get_ops(dev);
if (!len)
return 0;
if (!ops || !ops->sha_update)
return -ENOSYS;
return ops->sha_update(dev, input, len);
}
int crypto_sha_final(struct udevice *dev, sha_context *ctx, u8 *output)
{
const struct dm_crypto_ops *ops = device_get_ops(dev);
const u8 *null_hash = NULL;
u32 hash_size = 0;
if (ctx && !ctx->length && output) {
switch (ctx->algo) {
case CRYPTO_MD5:
null_hash = null_hash_md5_value;
hash_size = sizeof(null_hash_md5_value);
break;
case CRYPTO_SHA1:
null_hash = null_hash_sha1_value;
hash_size = sizeof(null_hash_sha1_value);
break;
case CRYPTO_SHA256:
null_hash = null_hash_sha256_value;
hash_size = sizeof(null_hash_sha256_value);
break;
case CRYPTO_SHA512:
null_hash = null_hash_sha512_value;
hash_size = sizeof(null_hash_sha512_value);
break;
case CRYPTO_SM3:
null_hash = null_hash_sm3_value;
hash_size = sizeof(null_hash_sm3_value);
break;
default:
return -EINVAL;
}
memcpy(output, null_hash, hash_size);
return 0;
}
if (!ops || !ops->sha_final)
return -ENOSYS;
return ops->sha_final(dev, ctx, output);
}
int crypto_hmac_init(struct udevice *dev, sha_context *ctx,
u8 *key, u32 key_len)
{
const struct dm_crypto_ops *ops = device_get_ops(dev);
if (ctx && !ctx->length)
return -EINVAL;
if (!ops || !ops->hmac_init)
return -ENOSYS;
return ops->hmac_init(dev, ctx, key, key_len);
}
int crypto_hmac_update(struct udevice *dev, u32 *input, u32 len)
{
const struct dm_crypto_ops *ops = device_get_ops(dev);
if (!len)
return 0;
if (!ops || !ops->hmac_update)
return -ENOSYS;
return ops->hmac_update(dev, input, len);
}
int crypto_hmac_final(struct udevice *dev, sha_context *ctx, u8 *output)
{
const struct dm_crypto_ops *ops = device_get_ops(dev);
if (!ops || !ops->hmac_final)
return -ENOSYS;
return ops->hmac_final(dev, ctx, output);
}
int crypto_sha_csum(struct udevice *dev, sha_context *ctx,
char *input, u32 input_len, u8 *output)
{
int ret;
ret = crypto_sha_init(dev, ctx);
if (ret)
return ret;
ret = crypto_sha_update(dev, (u32 *)input, input_len);
if (ret)
return ret;
ret = crypto_sha_final(dev, ctx, output);
return ret;
}
int crypto_sha_regions_csum(struct udevice *dev, sha_context *ctx,
const struct image_region region[],
int region_count, u8 *output)
{
int i, ret;
ctx->length = 0;
for (i = 0; i < region_count; i++)
ctx->length += region[i].size;
ret = crypto_sha_init(dev, ctx);
if (ret)
return ret;
for (i = 0; i < region_count; i++) {
ret = crypto_sha_update(dev, (void *)region[i].data,
region[i].size);
if (ret)
return ret;
}
return crypto_sha_final(dev, ctx, output);
}
int crypto_rsa_verify(struct udevice *dev, rsa_key *ctx, u8 *sign, u8 *output)
{
const struct dm_crypto_ops *ops = device_get_ops(dev);
if (!ops || !ops->rsa_verify)
return -ENOSYS;
if (!ctx || !ctx->n || !ctx->e || !sign || !output)
return -EINVAL;
return ops->rsa_verify(dev, ctx, sign, output);
}
int crypto_cipher(struct udevice *dev, cipher_context *ctx,
const u8 *in, u8 *out, u32 len, bool enc)
{
const struct dm_crypto_ops *ops = device_get_ops(dev);
if (!ops || !ops->cipher_crypt)
return -ENOSYS;
return ops->cipher_crypt(dev, ctx, in, out, len, enc);
}
int crypto_mac(struct udevice *dev, cipher_context *ctx,
const u8 *in, u32 len, u8 *tag)
{
const struct dm_crypto_ops *ops = device_get_ops(dev);
if (!ops || !ops->cipher_mac)
return -ENOSYS;
return ops->cipher_mac(dev, ctx, in, len, tag);
}
int crypto_ae(struct udevice *dev, cipher_context *ctx,
const u8 *in, u32 len, const u8 *aad, u32 aad_len,
u8 *out, u8 *tag)
{
const struct dm_crypto_ops *ops = device_get_ops(dev);
if (!ops || !ops->cipher_ae)
return -ENOSYS;
return ops->cipher_ae(dev, ctx, in, len, aad, aad_len, out, tag);
}
UCLASS_DRIVER(crypto) = {
.id = UCLASS_CRYPTO,
.name = "crypto",
};