You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3532 lines
90 KiB

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2015-2017 Google, Inc
*
* USB Power Delivery protocol stack.
*/
#include <asm/io.h>
#include <common.h>
#include <dm.h>
#include <asm/gpio.h>
#include <irq-generic.h>
#include <rk_timer_irq.h>
#include <power/power_delivery/tcpm.h>
#include <power/power_delivery/pd_vdo.h>
#define FOREACH_STATE(S) \
S(INVALID_STATE), \
S(TOGGLING), \
S(SRC_UNATTACHED), \
S(SRC_ATTACH_WAIT), \
S(SRC_ATTACHED), \
S(SRC_STARTUP), \
S(SRC_SEND_CAPABILITIES), \
S(SRC_SEND_CAPABILITIES_TIMEOUT), \
S(SRC_NEGOTIATE_CAPABILITIES), \
S(SRC_TRANSITION_SUPPLY), \
S(SRC_READY), \
S(SRC_WAIT_NEW_CAPABILITIES), \
\
S(SNK_UNATTACHED), \
S(SNK_ATTACH_WAIT), \
S(SNK_DEBOUNCED), \
S(SNK_ATTACHED), \
S(SNK_STARTUP), \
S(SNK_DISCOVERY), \
S(SNK_DISCOVERY_DEBOUNCE), \
S(SNK_DISCOVERY_DEBOUNCE_DONE), \
S(SNK_WAIT_CAPABILITIES), \
S(SNK_NEGOTIATE_CAPABILITIES), \
S(SNK_NEGOTIATE_PPS_CAPABILITIES), \
S(SNK_TRANSITION_SINK), \
S(SNK_TRANSITION_SINK_VBUS), \
S(SNK_READY), \
\
S(ACC_UNATTACHED), \
S(DEBUG_ACC_ATTACHED), \
S(AUDIO_ACC_ATTACHED), \
S(AUDIO_ACC_DEBOUNCE), \
\
S(HARD_RESET_SEND), \
S(HARD_RESET_START), \
S(SRC_HARD_RESET_VBUS_OFF), \
S(SRC_HARD_RESET_VBUS_ON), \
S(SNK_HARD_RESET_SINK_OFF), \
S(SNK_HARD_RESET_WAIT_VBUS), \
S(SNK_HARD_RESET_SINK_ON), \
\
S(SOFT_RESET), \
S(SRC_SOFT_RESET_WAIT_SNK_TX), \
S(SNK_SOFT_RESET), \
S(SOFT_RESET_SEND), \
\
S(DR_SWAP_ACCEPT), \
S(DR_SWAP_SEND), \
S(DR_SWAP_SEND_TIMEOUT), \
S(DR_SWAP_CANCEL), \
S(DR_SWAP_CHANGE_DR), \
\
S(PR_SWAP_ACCEPT), \
S(PR_SWAP_SEND), \
S(PR_SWAP_SEND_TIMEOUT), \
S(PR_SWAP_CANCEL), \
S(PR_SWAP_START), \
S(PR_SWAP_SRC_SNK_TRANSITION_OFF), \
S(PR_SWAP_SRC_SNK_SOURCE_OFF), \
S(PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED), \
S(PR_SWAP_SRC_SNK_SINK_ON), \
S(PR_SWAP_SNK_SRC_SINK_OFF), \
S(PR_SWAP_SNK_SRC_SOURCE_ON), \
S(PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP), \
\
S(VCONN_SWAP_ACCEPT), \
S(VCONN_SWAP_SEND), \
S(VCONN_SWAP_SEND_TIMEOUT), \
S(VCONN_SWAP_CANCEL), \
S(VCONN_SWAP_START), \
S(VCONN_SWAP_WAIT_FOR_VCONN), \
S(VCONN_SWAP_TURN_ON_VCONN), \
S(VCONN_SWAP_TURN_OFF_VCONN), \
\
S(FR_SWAP_SEND), \
S(FR_SWAP_SEND_TIMEOUT), \
S(FR_SWAP_SNK_SRC_TRANSITION_TO_OFF), \
S(FR_SWAP_SNK_SRC_NEW_SINK_READY), \
S(FR_SWAP_SNK_SRC_SOURCE_VBUS_APPLIED), \
S(FR_SWAP_CANCEL), \
\
S(SNK_TRY), \
S(SNK_TRY_WAIT), \
S(SNK_TRY_WAIT_DEBOUNCE), \
S(SNK_TRY_WAIT_DEBOUNCE_CHECK_VBUS), \
S(SRC_TRYWAIT), \
S(SRC_TRYWAIT_DEBOUNCE), \
S(SRC_TRYWAIT_UNATTACHED), \
\
S(SRC_TRY), \
S(SRC_TRY_WAIT), \
S(SRC_TRY_DEBOUNCE), \
S(SNK_TRYWAIT), \
S(SNK_TRYWAIT_DEBOUNCE), \
S(SNK_TRYWAIT_VBUS), \
S(BIST_RX), \
\
S(GET_STATUS_SEND), \
S(GET_STATUS_SEND_TIMEOUT), \
S(GET_PPS_STATUS_SEND), \
S(GET_PPS_STATUS_SEND_TIMEOUT), \
\
S(GET_SINK_CAP), \
S(GET_SINK_CAP_TIMEOUT), \
\
S(ERROR_RECOVERY), \
S(PORT_RESET), \
S(PORT_RESET_WAIT_OFF), \
\
S(AMS_START), \
S(CHUNK_NOT_SUPP)
#define FOREACH_AMS(S) \
S(NONE_AMS), \
S(POWER_NEGOTIATION), \
S(GOTOMIN), \
S(SOFT_RESET_AMS), \
S(HARD_RESET), \
S(CABLE_RESET), \
S(GET_SOURCE_CAPABILITIES), \
S(GET_SINK_CAPABILITIES), \
S(POWER_ROLE_SWAP), \
S(FAST_ROLE_SWAP), \
S(DATA_ROLE_SWAP), \
S(VCONN_SWAP), \
S(SOURCE_ALERT), \
S(GETTING_SOURCE_EXTENDED_CAPABILITIES),\
S(GETTING_SOURCE_SINK_STATUS), \
S(GETTING_BATTERY_CAPABILITIES), \
S(GETTING_BATTERY_STATUS), \
S(GETTING_MANUFACTURER_INFORMATION), \
S(SECURITY), \
S(FIRMWARE_UPDATE), \
S(DISCOVER_IDENTITY), \
S(SOURCE_STARTUP_CABLE_PLUG_DISCOVER_IDENTITY), \
S(DISCOVER_SVIDS), \
S(DISCOVER_MODES), \
S(DFP_TO_UFP_ENTER_MODE), \
S(DFP_TO_UFP_EXIT_MODE), \
S(DFP_TO_CABLE_PLUG_ENTER_MODE), \
S(DFP_TO_CABLE_PLUG_EXIT_MODE), \
S(ATTENTION), \
S(BIST), \
S(UNSTRUCTURED_VDMS), \
S(STRUCTURED_VDMS), \
S(COUNTRY_INFO), \
S(COUNTRY_CODES)
#define GENERATE_ENUM(e) e
#define GENERATE_STRING(s) #s
#define TCPM_POLL_EVENT_TIME_OUT 2000
enum tcpm_state {
FOREACH_STATE(GENERATE_ENUM)
};
static const char * const tcpm_states[] = {
FOREACH_STATE(GENERATE_STRING)
};
enum tcpm_ams {
FOREACH_AMS(GENERATE_ENUM)
};
static const char * const tcpm_ams_str[] = {
FOREACH_AMS(GENERATE_STRING)
};
enum vdm_states {
VDM_STATE_ERR_BUSY = -3,
VDM_STATE_ERR_SEND = -2,
VDM_STATE_ERR_TMOUT = -1,
VDM_STATE_DONE = 0,
/* Anything >0 represents an active state */
VDM_STATE_READY = 1,
VDM_STATE_BUSY = 2,
VDM_STATE_WAIT_RSP_BUSY = 3,
VDM_STATE_SEND_MESSAGE = 4,
};
enum pd_msg_request {
PD_MSG_NONE = 0,
PD_MSG_CTRL_REJECT,
PD_MSG_CTRL_WAIT,
PD_MSG_CTRL_NOT_SUPP,
PD_MSG_DATA_SINK_CAP,
PD_MSG_DATA_SOURCE_CAP,
};
enum adev_actions {
ADEV_NONE = 0,
ADEV_NOTIFY_USB_AND_QUEUE_VDM,
ADEV_QUEUE_VDM,
ADEV_QUEUE_VDM_SEND_EXIT_MODE_ON_FAIL,
ADEV_ATTENTION,
};
/*
* Initial current capability of the new source when vSafe5V is applied during PD3.0 Fast Role Swap.
* Based on "Table 6-14 Fixed Supply PDO - Sink" of "USB Power Delivery Specification Revision 3.0,
* Version 1.2"
*/
enum frs_typec_current {
FRS_NOT_SUPPORTED,
FRS_DEFAULT_POWER,
FRS_5V_1P5A,
FRS_5V_3A,
};
/* Events from low level driver */
#define TCPM_CC_EVENT BIT(0)
#define TCPM_VBUS_EVENT BIT(1)
#define TCPM_RESET_EVENT BIT(2)
#define TCPM_FRS_EVENT BIT(3)
#define TCPM_SOURCING_VBUS BIT(4)
#define LOG_BUFFER_ENTRIES 1024
#define LOG_BUFFER_ENTRY_SIZE 128
/* Alternate mode support */
#define SVID_DISCOVERY_MAX 16
#define ALTMODE_DISCOVERY_MAX (SVID_DISCOVERY_MAX * MODE_DISCOVERY_MAX)
#define GET_SINK_CAP_RETRY_MS 100
#define SEND_DISCOVER_RETRY_MS 100
/*
* @min_volt: Actual min voltage at the local port
* @req_min_volt: Requested min voltage to the port partner
* @max_volt: Actual max voltage at the local port
* @req_max_volt: Requested max voltage to the port partner
* @max_curr: Actual max current at the local port
* @req_max_curr: Requested max current of the port partner
* @req_out_volt: Requested output voltage to the port partner
* @req_op_curr: Requested operating current to the port partner
* @supported: Parter has atleast one APDO hence supports PPS
* @active: PPS mode is active
*/
struct pd_pps_data {
u32 min_volt;
u32 req_min_volt;
u32 max_volt;
u32 req_max_volt;
u32 max_curr;
u32 req_max_curr;
u32 req_out_volt;
u32 req_op_curr;
bool supported;
bool active;
};
enum power_supply_usb_type {
POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */
POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */
POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */
POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */
POWER_SUPPLY_USB_TYPE_C, /* Type C Port */
POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */
POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */
POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */
POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
};
struct tcpm_port {
struct udevice *dev;
struct typec_capability typec_caps;
struct tcpc_dev *tcpc;
enum typec_role vconn_role;
enum typec_role pwr_role;
enum typec_data_role data_role;
enum typec_pwr_opmode pwr_opmode;
struct usb_pd_identity partner_ident;
struct typec_partner_desc partner_desc;
struct typec_partner *partner;
enum typec_cc_status cc_req;
enum typec_cc_status cc1;
enum typec_cc_status cc2;
enum typec_cc_polarity polarity;
bool attached;
bool connected;
int poll_event_cnt;
enum typec_port_type port_type;
/*
* Set to true when vbus is greater than VSAFE5V min.
* Set to false when vbus falls below vSinkDisconnect max threshold.
*/
bool vbus_present;
/*
* Set to true when vbus is less than VSAFE0V max.
* Set to false when vbus is greater than VSAFE0V max.
*/
bool vbus_vsafe0v;
bool vbus_never_low;
bool vbus_source;
bool vbus_charge;
/* Set to true when Discover_Identity Command is expected to be sent in Ready states. */
bool send_discover;
bool op_vsafe5v;
int try_role;
int try_snk_count;
int try_src_count;
enum pd_msg_request queued_message;
enum tcpm_state enter_state;
enum tcpm_state prev_state;
enum tcpm_state state;
enum tcpm_state delayed_state;
unsigned long delay_ms;
spinlock_t pd_event_lock;
u32 pd_events;
bool state_machine_running;
/* Set to true when VDM State Machine has following actions. */
bool vdm_sm_running;
bool tx_complete;
enum tcpm_transmit_status tx_status;
struct mutex swap_lock; /* swap command lock */
bool swap_pending;
bool non_pd_role_swap;
int swap_status;
unsigned int negotiated_rev;
unsigned int message_id;
unsigned int caps_count;
unsigned int hard_reset_count;
bool pd_capable;
bool explicit_contract;
unsigned int rx_msgid;
/* Partner capabilities/requests */
u32 sink_request;
u32 source_caps[PDO_MAX_OBJECTS];
unsigned int nr_source_caps;
u32 sink_caps[PDO_MAX_OBJECTS];
unsigned int nr_sink_caps;
/*
* whether to wait for the Type-C device to send the DR_SWAP Message flag
* For Type-C device with Dual-Role Power and Dual-Role Data, the port side
* is used as sink + ufp, then the tcpm framework needs to wait for Type-C
* device to initiate DR_swap Message.
*/
bool wait_dr_swap_Message;
/* Local capabilities */
u32 src_pdo[PDO_MAX_OBJECTS];
unsigned int nr_src_pdo;
u32 snk_pdo[PDO_MAX_OBJECTS];
unsigned int nr_snk_pdo;
u32 snk_vdo_v1[VDO_MAX_OBJECTS];
unsigned int nr_snk_vdo_v1;
u32 snk_vdo[VDO_MAX_OBJECTS];
unsigned int nr_snk_vdo;
unsigned int operating_snk_mw;
bool update_sink_caps;
/* Requested current / voltage to the port partner */
u32 req_current_limit;
u32 req_supply_voltage;
/* Actual current / voltage limit of the local port */
u32 current_limit;
u32 supply_voltage;
enum power_supply_usb_type usb_type;
u32 bist_request;
/* PD state for Vendor Defined Messages */
enum vdm_states vdm_state;
u32 vdm_retries;
/* next Vendor Defined Message to send */
u32 vdo_data[VDO_MAX_SIZE];
u8 vdo_count;
/* VDO to retry if UFP responder replied busy */
u32 vdo_retry;
/* PPS */
struct pd_pps_data pps_data;
bool pps_pending;
int pps_status;
/* Deadline in jiffies to exit src_try_wait state */
unsigned long max_wait;
/* port belongs to a self powered device */
bool self_powered;
/* Sink FRS */
enum frs_typec_current new_source_frs_current;
/* Sink caps have been queried */
bool sink_cap_done;
/* Port is still in tCCDebounce */
bool debouncing;
/* Collision Avoidance and Atomic Message Sequence */
enum tcpm_state upcoming_state;
enum tcpm_ams ams;
enum tcpm_ams next_ams;
bool in_ams;
/* Auto vbus discharge status */
bool auto_vbus_discharge_enabled;
/*
* When set, port requests PD_P_SNK_STDBY_MW upon entering SNK_DISCOVERY and
* the actual currrent limit after RX of PD_CTRL_PSRDY for PD link,
* SNK_READY for non-pd link.
*/
bool slow_charger_loop;
#ifdef CONFIG_DEBUG_FS
struct dentry *dentry;
struct mutex logbuffer_lock; /* log buffer access lock */
int logbuffer_head;
int logbuffer_tail;
u8 *logbuffer[LOG_BUFFER_ENTRIES];
#endif
};
struct pd_rx_event {
struct tcpm_port *port;
struct pd_message msg;
};
static const char * const pd_rev[] = {
[PD_REV10] = "rev1",
[PD_REV20] = "rev2",
[PD_REV30] = "rev3",
};
#define tcpm_cc_is_sink(cc) \
((cc) == TYPEC_CC_RP_DEF || (cc) == TYPEC_CC_RP_1_5 || \
(cc) == TYPEC_CC_RP_3_0)
#define tcpm_port_is_sink(port) \
((tcpm_cc_is_sink((port)->cc1) && !tcpm_cc_is_sink((port)->cc2)) || \
(tcpm_cc_is_sink((port)->cc2) && !tcpm_cc_is_sink((port)->cc1)))
#define tcpm_cc_is_source(cc) ((cc) == TYPEC_CC_RD)
#define tcpm_cc_is_audio(cc) ((cc) == TYPEC_CC_RA)
#define tcpm_cc_is_open(cc) ((cc) == TYPEC_CC_OPEN)
#define tcpm_port_is_source(port) \
((tcpm_cc_is_source((port)->cc1) && \
!tcpm_cc_is_source((port)->cc2)) || \
(tcpm_cc_is_source((port)->cc2) && \
!tcpm_cc_is_source((port)->cc1)))
#define tcpm_port_is_debug(port) \
(tcpm_cc_is_source((port)->cc1) && tcpm_cc_is_source((port)->cc2))
#define tcpm_port_is_audio(port) \
(tcpm_cc_is_audio((port)->cc1) && tcpm_cc_is_audio((port)->cc2))
#define tcpm_port_is_audio_detached(port) \
((tcpm_cc_is_audio((port)->cc1) && tcpm_cc_is_open((port)->cc2)) || \
(tcpm_cc_is_audio((port)->cc2) && tcpm_cc_is_open((port)->cc1)))
#define tcpm_try_snk(port) \
((port)->try_snk_count == 0 && (port)->try_role == TYPEC_SINK && \
(port)->port_type == TYPEC_PORT_DRP)
#define tcpm_try_src(port) \
((port)->try_src_count == 0 && (port)->try_role == TYPEC_SOURCE && \
(port)->port_type == TYPEC_PORT_DRP)
#define tcpm_data_role_for_source(port) \
((port)->typec_caps.data == TYPEC_PORT_UFP ? \
TYPEC_DEVICE : TYPEC_HOST)
#define tcpm_data_role_for_sink(port) \
((port)->typec_caps.data == TYPEC_PORT_DFP ? \
TYPEC_HOST : TYPEC_DEVICE)
static enum tcpm_state tcpm_default_state(struct tcpm_port *port)
{
if (port->port_type == TYPEC_PORT_DRP) {
if (port->try_role == TYPEC_SINK)
return SNK_UNATTACHED;
else if (port->try_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
/* Fall through to return SRC_UNATTACHED */
} else if (port->port_type == TYPEC_PORT_SNK) {
return SNK_UNATTACHED;
}
return SRC_UNATTACHED;
}
static bool tcpm_port_is_disconnected(struct tcpm_port *port)
{
return (!port->attached && port->cc1 == TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN) ||
(port->attached && ((port->polarity == TYPEC_POLARITY_CC1 &&
port->cc1 == TYPEC_CC_OPEN) ||
(port->polarity == TYPEC_POLARITY_CC2 &&
port->cc2 == TYPEC_CC_OPEN)));
}
static void tcpm_set_cc(struct tcpm_port *port, enum typec_cc_status cc)
{
debug("%s: cc = %d", __func__, cc);
port->cc_req = cc;
port->tcpc->set_cc(port->tcpc, cc);
}
/*
* Determine RP value to set based on maximum current supported
* by a port if configured as source.
* Returns CC value to report to link partner.
*/
static enum typec_cc_status tcpm_rp_cc(struct tcpm_port *port)
{
const u32 *src_pdo = port->src_pdo;
int nr_pdo = port->nr_src_pdo;
int i;
/*
* Search for first entry with matching voltage.
* It should report the maximum supported current.
*/
for (i = 0; i < nr_pdo; i++) {
const u32 pdo = src_pdo[i];
if (pdo_type(pdo) == PDO_TYPE_FIXED &&
pdo_fixed_voltage(pdo) == 5000) {
unsigned int curr = pdo_max_current(pdo);
if (curr >= 3000)
return TYPEC_CC_RP_3_0;
else if (curr >= 1500)
return TYPEC_CC_RP_1_5;
return TYPEC_CC_RP_DEF;
}
}
return TYPEC_CC_RP_DEF;
}
static int tcpm_pd_transmit(struct tcpm_port *port,
enum tcpm_transmit_type type,
const struct pd_message *msg)
{
int ret;
int timeout = PD_T_TCPC_TX_TIMEOUT;
if (msg)
debug("PD TX, header: %#x\n", le16_to_cpu(msg->header));
else
debug("PD TX, type: %#x\n", type);
port->tx_complete = false;
ret = port->tcpc->pd_transmit(port->tcpc, type, msg, port->negotiated_rev);
if (ret < 0)
return ret;
while ((timeout > 0) && (!port->tx_complete)) {
port->tcpc->poll_event(port->tcpc);
udelay(1000);
timeout--;
}
if (!timeout) {
printf("%s: pd transmit data timeout\n", __func__);
return -ETIMEDOUT;
}
switch (port->tx_status) {
case TCPC_TX_SUCCESS:
port->message_id = (port->message_id + 1) & PD_HEADER_ID_MASK;
break;
case TCPC_TX_DISCARDED:
ret = -EAGAIN;
break;
case TCPC_TX_FAILED:
default:
ret = -EIO;
break;
}
return ret;
}
void tcpm_pd_transmit_complete(struct tcpm_port *port,
enum tcpm_transmit_status status)
{
debug("%s: PD TX complete, status: %u\n", __func__, status);
port->poll_event_cnt = 0;
port->tx_status = status;
port->tx_complete = true;
}
EXPORT_SYMBOL_GPL(tcpm_pd_transmit_complete);
static int tcpm_set_polarity(struct tcpm_port *port,
enum typec_cc_polarity polarity)
{
int ret;
debug("%s: polarity %d\n", __func__, polarity);
ret = port->tcpc->set_polarity(port->tcpc, polarity);
if (ret < 0)
return ret;
port->polarity = polarity;
return 0;
}
static int tcpm_set_vconn(struct tcpm_port *port, bool enable)
{
int ret;
debug("%s: vconn = %d\n", __func__, enable);
ret = port->tcpc->set_vconn(port->tcpc, enable);
if (!ret)
port->vconn_role = enable ? TYPEC_SOURCE : TYPEC_SINK;
return ret;
}
static u32 tcpm_get_current_limit(struct tcpm_port *port)
{
enum typec_cc_status cc;
u32 limit;
cc = port->polarity ? port->cc2 : port->cc1;
switch (cc) {
case TYPEC_CC_RP_1_5:
limit = 1500;
break;
case TYPEC_CC_RP_3_0:
limit = 3000;
break;
case TYPEC_CC_RP_DEF:
default:
if (port->tcpc->get_current_limit)
limit = port->tcpc->get_current_limit(port->tcpc);
else
limit = 0;
break;
}
return limit;
}
static int tcpm_set_current_limit(struct tcpm_port *port, u32 max_ma, u32 mv)
{
int ret = -EOPNOTSUPP;
debug("Setting voltage/current limit %u mV %u mA\n", mv, max_ma);
port->supply_voltage = mv;
port->current_limit = max_ma;
if (port->tcpc->set_current_limit)
ret = port->tcpc->set_current_limit(port->tcpc, max_ma, mv);
return ret;
}
static int tcpm_set_attached_state(struct tcpm_port *port, bool attached)
{
return port->tcpc->set_roles(port->tcpc, attached, port->pwr_role,
port->data_role);
}
static int tcpm_set_roles(struct tcpm_port *port, bool attached,
enum typec_role role, enum typec_data_role data)
{
#if 0
enum typec_orientation orientation;
enum usb_role usb_role;
#endif
int ret;
#if 0
if (port->polarity == TYPEC_POLARITY_CC1)
orientation = TYPEC_ORIENTATION_NORMAL;
else
orientation = TYPEC_ORIENTATION_REVERSE;
if (data == TYPEC_HOST)
usb_role = USB_ROLE_HOST;
else
usb_role = USB_ROLE_DEVICE;
ret = tcpm_mux_set(port, TYPEC_STATE_USB, usb_role, orientation);
if (ret < 0)
return ret;
#endif
ret = port->tcpc->set_roles(port->tcpc, attached, role, data);
if (ret < 0)
return ret;
port->pwr_role = role;
port->data_role = data;
#if 0
typec_set_data_role(port->typec_port, data);
typec_set_pwr_role(port->typec_port, role);
#endif
return 0;
}
static int tcpm_pd_send_source_caps(struct tcpm_port *port)
{
struct pd_message msg;
int i;
memset(&msg, 0, sizeof(msg));
if (!port->nr_src_pdo) {
/* No source capabilities defined, sink only */
msg.header = PD_HEADER_LE(PD_CTRL_REJECT,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
} else {
msg.header = PD_HEADER_LE(PD_DATA_SOURCE_CAP,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id,
port->nr_src_pdo);
}
for (i = 0; i < port->nr_src_pdo; i++)
msg.payload[i] = cpu_to_le32(port->src_pdo[i]);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static int tcpm_pd_send_sink_caps(struct tcpm_port *port)
{
struct pd_message msg;
unsigned int i;
memset(&msg, 0, sizeof(msg));
if (!port->nr_snk_pdo) {
/* No sink capabilities defined, source only */
msg.header = PD_HEADER_LE(PD_CTRL_REJECT,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
} else {
msg.header = PD_HEADER_LE(PD_DATA_SINK_CAP,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id,
port->nr_snk_pdo);
}
for (i = 0; i < port->nr_snk_pdo; i++)
msg.payload[i] = cpu_to_le32(port->snk_pdo[i]);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static void tcpm_state_machine(struct tcpm_port *port);
static void tcpm_timer_uninit(struct tcpm_port *port);
static void tcpm_timer_irq(int irq, void *data)
{
struct tcpm_port *port = data;
writel(TIMER_CLR_INT, TIMER_BASE + TIMER_INTSTATUS);
tcpm_timer_uninit(port);
tcpm_state_machine(port);
}
static void tcpm_timer_init(struct tcpm_port *port, uint32_t ms)
{
uint64_t period = 24000ULL * ms;
/* Disable before conifg */
writel(0, TIMER_BASE + TIMER_CTRL);
/* Config */
writel((uint32_t)period, TIMER_BASE + TIMER_LOAD_COUNT0);
writel((uint32_t)(period >> 32), TIMER_BASE + TIMER_LOAD_COUNT1);
writel(TIMER_CLR_INT, TIMER_BASE + TIMER_INTSTATUS);
writel(TIMER_EN | TIMER_INT_EN, TIMER_BASE + TIMER_CTRL);
/* IRQ */
irq_install_handler(TIMER_IRQ,
(interrupt_handler_t *)tcpm_timer_irq, port);
irq_handler_enable(TIMER_IRQ);
}
static void tcpm_timer_uninit(struct tcpm_port *port)
{
writel(0, TIMER_BASE + TIMER_CTRL);
irq_handler_disable(TIMER_IRQ);
irq_free_handler(TIMER_IRQ);
}
static void mod_tcpm_delayed_work(struct tcpm_port *port, unsigned int delay_ms)
{
if (delay_ms) {
tcpm_timer_init(port, delay_ms);
} else {
tcpm_timer_uninit(port);
tcpm_state_machine(port);
}
}
static void tcpm_set_state(struct tcpm_port *port, enum tcpm_state state,
unsigned int delay_ms)
{
debug("%s: line = %d, delay_ms = %d, set state = %s\n",
__func__, __LINE__, delay_ms, tcpm_states[state]);
if (delay_ms) {
debug("pending state change %s -> %s @ %u ms [%s]\n",
tcpm_states[port->state], tcpm_states[state], delay_ms,
pd_rev[port->negotiated_rev]);
port->delayed_state = state;
mod_tcpm_delayed_work(port, delay_ms);
port->delay_ms = delay_ms;
} else {
debug("state change %s -> %s\n",
tcpm_states[port->state], tcpm_states[state]);
port->delayed_state = INVALID_STATE;
port->prev_state = port->state;
port->state = state;
/*
* Don't re-queue the state machine work item if we're currently
* in the state machine and we're immediately changing states.
* tcpm_state_machine_work() will continue running the state
* machine.
*/
if (!port->state_machine_running)
mod_tcpm_delayed_work(port, 0);
}
}
static void tcpm_set_state_cond(struct tcpm_port *port, enum tcpm_state state,
unsigned int delay_ms)
{
if (port->enter_state == port->state)
tcpm_set_state(port, state, delay_ms);
else
debug("skipped %sstate change %s -> %s [%u ms], context state %s [%s %s]\n",
delay_ms ? "delayed " : "",
tcpm_states[port->state], tcpm_states[state],
delay_ms, tcpm_states[port->enter_state],
pd_rev[port->negotiated_rev], tcpm_ams_str[port->ams]);
}
static void tcpm_queue_message(struct tcpm_port *port,
enum pd_msg_request message)
{
port->queued_message = message;
mod_tcpm_delayed_work(port, 0);
}
#if 0
static void tcpm_pd_handle_msg(struct tcpm_port *port,
enum pd_msg_request message,
enum tcpm_ams ams);
#endif
enum pdo_err {
PDO_NO_ERR,
PDO_ERR_NO_VSAFE5V,
PDO_ERR_VSAFE5V_NOT_FIRST,
PDO_ERR_PDO_TYPE_NOT_IN_ORDER,
PDO_ERR_FIXED_NOT_SORTED,
PDO_ERR_VARIABLE_BATT_NOT_SORTED,
PDO_ERR_DUPE_PDO,
PDO_ERR_PPS_APDO_NOT_SORTED,
PDO_ERR_DUPE_PPS_APDO,
};
static const char * const pdo_err_msg[] = {
[PDO_ERR_NO_VSAFE5V] =
" err: source/sink caps should atleast have vSafe5V",
[PDO_ERR_VSAFE5V_NOT_FIRST] =
" err: vSafe5V Fixed Supply Object Shall always be the first object",
[PDO_ERR_PDO_TYPE_NOT_IN_ORDER] =
" err: PDOs should be in the following order: Fixed; Battery; Variable",
[PDO_ERR_FIXED_NOT_SORTED] =
" err: Fixed supply pdos should be in increasing order of their fixed voltage",
[PDO_ERR_VARIABLE_BATT_NOT_SORTED] =
" err: Variable/Battery supply pdos should be in increasing order of their minimum voltage",
[PDO_ERR_DUPE_PDO] =
" err: Variable/Batt supply pdos cannot have same min/max voltage",
[PDO_ERR_PPS_APDO_NOT_SORTED] =
" err: Programmable power supply apdos should be in increasing order of their maximum voltage",
[PDO_ERR_DUPE_PPS_APDO] =
" err: Programmable power supply apdos cannot have same min/max voltage and max current",
};
static enum pdo_err tcpm_caps_err(struct tcpm_port *port, const u32 *pdo,
unsigned int nr_pdo)
{
unsigned int i;
/* Should at least contain vSafe5v */
if (nr_pdo < 1)
return PDO_ERR_NO_VSAFE5V;
/* The vSafe5V Fixed Supply Object Shall always be the first object */
if (pdo_type(pdo[0]) != PDO_TYPE_FIXED ||
pdo_fixed_voltage(pdo[0]) != VSAFE5V)
return PDO_ERR_VSAFE5V_NOT_FIRST;
for (i = 1; i < nr_pdo; i++) {
if (pdo_type(pdo[i]) < pdo_type(pdo[i - 1])) {
return PDO_ERR_PDO_TYPE_NOT_IN_ORDER;
} else if (pdo_type(pdo[i]) == pdo_type(pdo[i - 1])) {
enum pd_pdo_type type = pdo_type(pdo[i]);
switch (type) {
/*
* The remaining Fixed Supply Objects, if
* present, shall be sent in voltage order;
* lowest to highest.
*/
case PDO_TYPE_FIXED:
if (pdo_fixed_voltage(pdo[i]) <=
pdo_fixed_voltage(pdo[i - 1]))
return PDO_ERR_FIXED_NOT_SORTED;
break;
/*
* The Battery Supply Objects and Variable
* supply, if present shall be sent in Minimum
* Voltage order; lowest to highest.
*/
case PDO_TYPE_VAR:
case PDO_TYPE_BATT:
if (pdo_min_voltage(pdo[i]) <
pdo_min_voltage(pdo[i - 1]))
return PDO_ERR_VARIABLE_BATT_NOT_SORTED;
else if ((pdo_min_voltage(pdo[i]) ==
pdo_min_voltage(pdo[i - 1])) &&
(pdo_max_voltage(pdo[i]) ==
pdo_max_voltage(pdo[i - 1])))
return PDO_ERR_DUPE_PDO;
break;
/*
* The Programmable Power Supply APDOs, if present,
* shall be sent in Maximum Voltage order;
* lowest to highest.
*/
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo[i]) != APDO_TYPE_PPS)
break;
if (pdo_pps_apdo_max_voltage(pdo[i]) <
pdo_pps_apdo_max_voltage(pdo[i - 1]))
return PDO_ERR_PPS_APDO_NOT_SORTED;
else if (pdo_pps_apdo_min_voltage(pdo[i]) ==
pdo_pps_apdo_min_voltage(pdo[i - 1]) &&
pdo_pps_apdo_max_voltage(pdo[i]) ==
pdo_pps_apdo_max_voltage(pdo[i - 1]) &&
pdo_pps_apdo_max_current(pdo[i]) ==
pdo_pps_apdo_max_current(pdo[i - 1]))
return PDO_ERR_DUPE_PPS_APDO;
break;
default:
printf("%s: Unknown pdo type\n", __func__);
}
}
}
return PDO_NO_ERR;
}
static int tcpm_validate_caps(struct tcpm_port *port, const u32 *pdo,
unsigned int nr_pdo)
{
enum pdo_err err_index = tcpm_caps_err(port, pdo, nr_pdo);
if (err_index != PDO_NO_ERR) {
printf("%s", pdo_err_msg[err_index]);
return -EINVAL;
}
return 0;
}
/*
* PD (data, control) command handling functions
*/
static inline enum tcpm_state ready_state(struct tcpm_port *port)
{
if (port->pwr_role == TYPEC_SOURCE)
return SRC_READY;
else
return SNK_READY;
}
static int tcpm_pd_send_control(struct tcpm_port *port,
enum pd_ctrl_msg_type type);
#if 0
static void tcpm_pd_handle_msg(struct tcpm_port *port,
enum pd_msg_request message,
enum tcpm_ams ams)
{
switch (port->state) {
case SRC_READY:
case SNK_READY:
port->ams = ams;
tcpm_queue_message(port, message);
break;
/* PD 3.0 Spec 8.3.3.4.1.1 and 6.8.1 */
case SNK_TRANSITION_SINK:
case SNK_TRANSITION_SINK_VBUS:
case SRC_TRANSITION_SUPPLY:
tcpm_set_state(port, HARD_RESET_SEND, 0);
break;
default:
if (!tcpm_ams_interruptible(port)) {
tcpm_set_state(port, port->pwr_role == TYPEC_SOURCE ?
SRC_SOFT_RESET_WAIT_SNK_TX :
SNK_SOFT_RESET,
0);
} else {
port->next_ams = ams;
tcpm_set_state(port, ready_state(port), 0);
/* 6.8.1 process the Message */
tcpm_queue_message(port, message);
}
break;
}
}
#endif
static void tcpm_pd_data_request(struct tcpm_port *port,
const struct pd_message *msg)
{
enum pd_data_msg_type type = pd_header_type_le(msg->header);
unsigned int cnt = pd_header_cnt_le(msg->header);
unsigned int rev = pd_header_rev_le(msg->header);
unsigned int i;
switch (type) {
case PD_DATA_SOURCE_CAP:
for (i = 0; i < cnt; i++)
port->source_caps[i] = le32_to_cpu(msg->payload[i]);
port->nr_source_caps = cnt;
tcpm_validate_caps(port, port->source_caps,
port->nr_source_caps);
/*
* Adjust revision in subsequent message headers, as required,
* to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't
* support Rev 1.0 so just do nothing in that scenario.
*/
if (rev == PD_REV10) {
break;
}
if (rev < PD_MAX_REV)
port->negotiated_rev = rev;
if ((pdo_type(port->source_caps[0]) == PDO_TYPE_FIXED) &&
(port->source_caps[0] & PDO_FIXED_DUAL_ROLE) &&
(port->source_caps[0] & PDO_FIXED_DATA_SWAP)) {
/* Dual role power and data, eg: self-powered Type-C */
port->wait_dr_swap_Message = true;
} else {
/* Non-Dual role power, eg: adapter */
port->wait_dr_swap_Message = false;
}
/*
* This message may be received even if VBUS is not
* present. This is quite unexpected; see USB PD
* specification, sections 8.3.3.6.3.1 and 8.3.3.6.3.2.
* However, at the same time, we must be ready to
* receive this message and respond to it 15ms after
* receiving PS_RDY during power swap operations, no matter
* if VBUS is available or not (USB PD specification,
* section 6.5.9.2).
* So we need to accept the message either way,
* but be prepared to keep waiting for VBUS after it was
* handled.
*/
tcpm_set_state(port, SNK_NEGOTIATE_CAPABILITIES, 0);
break;
case PD_DATA_REQUEST:
/*
* Adjust revision in subsequent message headers, as required,
* to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't
* support Rev 1.0 so just reject in that scenario.
*/
if (rev == PD_REV10) {
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
if (rev < PD_MAX_REV)
port->negotiated_rev = rev;
port->sink_request = le32_to_cpu(msg->payload[0]);
tcpm_set_state(port, SRC_NEGOTIATE_CAPABILITIES, 0);
break;
case PD_DATA_SINK_CAP:
/* We don't do anything with this at the moment... */
for (i = 0; i < cnt; i++)
port->sink_caps[i] = le32_to_cpu(msg->payload[i]);
port->nr_sink_caps = cnt;
break;
default:
break;
}
}
static void tcpm_pd_ctrl_request(struct tcpm_port *port,
const struct pd_message *msg)
{
enum pd_ctrl_msg_type type = pd_header_type_le(msg->header);
enum tcpm_state next_state;
switch (type) {
case PD_CTRL_GOOD_CRC:
case PD_CTRL_PING:
break;
case PD_CTRL_GET_SOURCE_CAP:
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_queue_message(port, PD_MSG_DATA_SOURCE_CAP);
break;
default:
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
break;
case PD_CTRL_GET_SINK_CAP:
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_queue_message(port, PD_MSG_DATA_SINK_CAP);
break;
default:
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
break;
case PD_CTRL_GOTO_MIN:
break;
case PD_CTRL_PS_RDY:
switch (port->state) {
case SNK_TRANSITION_SINK:
if (port->vbus_present) {
tcpm_set_current_limit(port,
port->req_current_limit,
port->req_supply_voltage);
port->explicit_contract = true;
tcpm_set_state(port, SNK_READY, 0);
} else {
/*
* Seen after power swap. Keep waiting for VBUS
* in a transitional state.
*/
tcpm_set_state(port,
SNK_TRANSITION_SINK_VBUS, 0);
}
break;
default:
break;
}
break;
case PD_CTRL_REJECT:
case PD_CTRL_WAIT:
case PD_CTRL_NOT_SUPP:
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
/* USB PD specification, Figure 8-43 */
if (port->explicit_contract)
next_state = SNK_READY;
else
next_state = SNK_WAIT_CAPABILITIES;
tcpm_set_state(port, next_state, 0);
break;
case SNK_NEGOTIATE_PPS_CAPABILITIES:
/* Revert data back from any requested PPS updates */
port->pps_data.req_out_volt = port->supply_voltage;
port->pps_data.req_op_curr = port->current_limit;
port->pps_status = (type == PD_CTRL_WAIT ?
-EAGAIN : -EOPNOTSUPP);
tcpm_set_state(port, SNK_READY, 0);
break;
default:
break;
}
break;
case PD_CTRL_ACCEPT:
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
port->pps_data.active = false;
tcpm_set_state(port, SNK_TRANSITION_SINK, 0);
break;
case SNK_NEGOTIATE_PPS_CAPABILITIES:
port->pps_data.active = true;
/* ???? */
port->pps_data.min_volt = port->pps_data.req_min_volt;
port->pps_data.max_volt = port->pps_data.req_max_volt;
port->pps_data.max_curr = port->pps_data.req_max_curr;
port->req_supply_voltage = port->pps_data.req_out_volt;
port->req_current_limit = port->pps_data.req_op_curr;
tcpm_set_state(port, SNK_TRANSITION_SINK, 0);
break;
case SOFT_RESET_SEND:
port->message_id = 0;
port->rx_msgid = -1;
if (port->pwr_role == TYPEC_SOURCE)
next_state = SRC_SEND_CAPABILITIES;
else
next_state = SNK_WAIT_CAPABILITIES;
tcpm_set_state(port, next_state, 0);
break;
default:
break;
}
break;
case PD_CTRL_SOFT_RESET:
tcpm_set_state(port, SOFT_RESET, 0);
break;
case PD_CTRL_DR_SWAP:
if (port->port_type != TYPEC_PORT_DRP) {
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
/*
* XXX
* 6.3.9: If an alternate mode is active, a request to swap
* alternate modes shall trigger a port reset.
*/
switch (port->state) {
case SRC_READY:
case SNK_READY:
#if 0
if (port->vdm_sm_running) {
tcpm_queue_message(port, PD_MSG_CTRL_WAIT);
break;
}
#endif
tcpm_set_state(port, DR_SWAP_ACCEPT, 0);
break;
default:
tcpm_queue_message(port, PD_MSG_CTRL_WAIT);
break;
}
break;
case PD_CTRL_PR_SWAP:
case PD_CTRL_VCONN_SWAP:
case PD_CTRL_GET_SOURCE_CAP_EXT:
case PD_CTRL_GET_STATUS:
case PD_CTRL_FR_SWAP:
case PD_CTRL_GET_PPS_STATUS:
case PD_CTRL_GET_COUNTRY_CODES:
/* Currently not supported */
printf("Currently not supported type %#x \n", type);
tcpm_queue_message(port, PD_MSG_CTRL_NOT_SUPP);
break;
default:
printf("Unrecognized ctrl message type %#x\n", type);
break;
}
}
#if 0
static void tcpm_pd_ext_msg_request(struct tcpm_port *port,
const struct pd_message *msg)
{
enum pd_ext_msg_type type = pd_header_type_le(msg->header);
unsigned int data_size = pd_ext_header_data_size_le(msg->ext_msg.header);
if (!(le16_to_cpu(msg->ext_msg.header) & PD_EXT_HDR_CHUNKED)) {
tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS);
printf("Unchunked extended messages unsupported\n");
return;
}
if (data_size > PD_EXT_MAX_CHUNK_DATA) {
tcpm_pd_handle_state(port, CHUNK_NOT_SUPP, NONE_AMS, PD_T_CHUNK_NOT_SUPP);
printf("Chunk handling not yet supported\n");
return;
}
switch (type) {
case PD_EXT_STATUS:
case PD_EXT_PPS_STATUS:
tcpm_set_state(port, ready_state(port), 0);
}
break;
case PD_EXT_SOURCE_CAP_EXT:
case PD_EXT_GET_BATT_CAP:
case PD_EXT_GET_BATT_STATUS:
case PD_EXT_BATT_CAP:
case PD_EXT_GET_MANUFACTURER_INFO:
case PD_EXT_MANUFACTURER_INFO:
case PD_EXT_SECURITY_REQUEST:
case PD_EXT_SECURITY_RESPONSE:
case PD_EXT_FW_UPDATE_REQUEST:
case PD_EXT_FW_UPDATE_RESPONSE:
case PD_EXT_COUNTRY_INFO:
case PD_EXT_COUNTRY_CODES:
tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS);
break;
default:
tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS);
printf("Unrecognized extended message type %#x\n", type);
break;
}
}
#endif
static void tcpm_pd_rx_handler(struct tcpm_port *port,
struct pd_rx_event *event)
{
const struct pd_message *msg = &event->msg;
unsigned int cnt = pd_header_cnt_le(msg->header);
debug("PD RX, header: %#x [%d]\n", le16_to_cpu(msg->header),
port->attached);
if (port->attached) {
enum pd_ctrl_msg_type type = pd_header_type_le(msg->header);
unsigned int msgid = pd_header_msgid_le(msg->header);
/*
* USB PD standard, 6.6.1.2:
* "... if MessageID value in a received Message is the
* same as the stored value, the receiver shall return a
* GoodCRC Message with that MessageID value and drop
* the Message (this is a retry of an already received
* Message). Note: this shall not apply to the Soft_Reset
* Message which always has a MessageID value of zero."
*/
if (msgid == port->rx_msgid && type != PD_CTRL_SOFT_RESET)
goto done;
port->rx_msgid = msgid;
/*
* If both ends believe to be DFP/host, we have a data role
* mismatch.
*/
if (!!(le16_to_cpu(msg->header) & PD_HEADER_DATA_ROLE) ==
(port->data_role == TYPEC_HOST)) {
printf("Data role mismatch, initiating error recovery\n");
tcpm_set_state(port, ERROR_RECOVERY, 0);
} else {
if (cnt)
tcpm_pd_data_request(port, msg);
else
tcpm_pd_ctrl_request(port, msg);
}
}
done:
kfree(event);
}
void tcpm_pd_receive(struct tcpm_port *port, const struct pd_message *msg)
{
struct pd_rx_event *event;
port->poll_event_cnt = 0;
event = kzalloc(sizeof(*event), GFP_ATOMIC);
if (!event)
return;
event->port = port;
memcpy(&event->msg, msg, sizeof(*msg));
tcpm_pd_rx_handler(port, event);
}
EXPORT_SYMBOL_GPL(tcpm_pd_receive);
static int tcpm_pd_send_control(struct tcpm_port *port,
enum pd_ctrl_msg_type type)
{
struct pd_message msg;
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(type, port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
/*
* Send queued message without affecting state.
* Return true if state machine should go back to sleep,
* false otherwise.
*/
static bool tcpm_send_queued_message(struct tcpm_port *port)
{
enum pd_msg_request queued_message;
do {
queued_message = port->queued_message;
port->queued_message = PD_MSG_NONE;
switch (queued_message) {
case PD_MSG_CTRL_WAIT:
tcpm_pd_send_control(port, PD_CTRL_WAIT);
break;
case PD_MSG_CTRL_REJECT:
tcpm_pd_send_control(port, PD_CTRL_REJECT);
break;
case PD_MSG_CTRL_NOT_SUPP:
tcpm_pd_send_control(port, PD_CTRL_NOT_SUPP);
break;
case PD_MSG_DATA_SINK_CAP:
tcpm_pd_send_sink_caps(port);
break;
case PD_MSG_DATA_SOURCE_CAP:
tcpm_pd_send_source_caps(port);
break;
default:
break;
}
} while (port->queued_message != PD_MSG_NONE);
#if 0
/* ??? */
if (port->delayed_state != INVALID_STATE) {
if (ktime_after(port->delayed_runtime, ktime_get())) {
mod_tcpm_delayed_work(port, ktime_to_ms(ktime_sub(port->delayed_runtime,
ktime_get())));
return true;
}
port->delayed_state = INVALID_STATE;
}
#endif
return false;
}
static int tcpm_pd_check_request(struct tcpm_port *port)
{
u32 pdo, rdo = port->sink_request;
unsigned int max, op, pdo_max, index;
enum pd_pdo_type type;
index = rdo_index(rdo);
if (!index || index > port->nr_src_pdo)
return -EINVAL;
pdo = port->src_pdo[index - 1];
type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
case PDO_TYPE_VAR:
max = rdo_max_current(rdo);
op = rdo_op_current(rdo);
pdo_max = pdo_max_current(pdo);
if (op > pdo_max)
return -EINVAL;
if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH))
return -EINVAL;
if (type == PDO_TYPE_FIXED)
debug("Requested %u mV, %u mA for %u / %u mA\n",
pdo_fixed_voltage(pdo), pdo_max, op, max);
else
debug("Requested %u -> %u mV, %u mA for %u / %u mA\n",
pdo_min_voltage(pdo), pdo_max_voltage(pdo),
pdo_max, op, max);
break;
case PDO_TYPE_BATT:
max = rdo_max_power(rdo);
op = rdo_op_power(rdo);
pdo_max = pdo_max_power(pdo);
if (op > pdo_max)
return -EINVAL;
if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH))
return -EINVAL;
printf("Requested %u -> %u mV, %u mW for %u / %u mW\n",
pdo_min_voltage(pdo), pdo_max_voltage(pdo),
pdo_max, op, max);
break;
default:
return -EINVAL;
}
port->op_vsafe5v = index == 1;
return 0;
}
#define min_power(x, y) min(pdo_max_power(x), pdo_max_power(y))
#define min_current(x, y) min(pdo_max_current(x), pdo_max_current(y))
static int tcpm_pd_select_pdo(struct tcpm_port *port, int *sink_pdo,
int *src_pdo)
{
unsigned int i, j, max_src_mv = 0, min_src_mv = 0, max_mw = 0,
max_mv = 0, src_mw = 0, src_ma = 0, max_snk_mv = 0,
min_snk_mv = 0;
int ret = -EINVAL;
port->pps_data.supported = false;
port->usb_type = POWER_SUPPLY_USB_TYPE_PD;
/*
* Select the source PDO providing the most power which has a
* matchig sink cap.
*/
for (i = 0; i < port->nr_source_caps; i++) {
u32 pdo = port->source_caps[i];
enum pd_pdo_type type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
max_src_mv = pdo_fixed_voltage(pdo);
min_src_mv = max_src_mv;
break;
case PDO_TYPE_BATT:
case PDO_TYPE_VAR:
max_src_mv = pdo_max_voltage(pdo);
min_src_mv = pdo_min_voltage(pdo);
break;
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo) == APDO_TYPE_PPS) {
port->pps_data.supported = true;
port->usb_type =
POWER_SUPPLY_USB_TYPE_PD_PPS;
}
continue;
default:
printf("Invalid source PDO type, ignoring\n");
continue;
}
switch (type) {
case PDO_TYPE_FIXED:
case PDO_TYPE_VAR:
src_ma = pdo_max_current(pdo);
src_mw = src_ma * min_src_mv / 1000;
break;
case PDO_TYPE_BATT:
src_mw = pdo_max_power(pdo);
break;
case PDO_TYPE_APDO:
continue;
default:
printf("Invalid source PDO type, ignoring\n");
continue;
}
for (j = 0; j < port->nr_snk_pdo; j++) {
pdo = port->snk_pdo[j];
switch (pdo_type(pdo)) {
case PDO_TYPE_FIXED:
max_snk_mv = pdo_fixed_voltage(pdo);
min_snk_mv = max_snk_mv;
break;
case PDO_TYPE_BATT:
case PDO_TYPE_VAR:
max_snk_mv = pdo_max_voltage(pdo);
min_snk_mv = pdo_min_voltage(pdo);
break;
case PDO_TYPE_APDO:
continue;
default:
printf("Invalid sink PDO type, ignoring\n");
continue;
}
if (max_src_mv <= max_snk_mv &&
min_src_mv >= min_snk_mv) {
/* Prefer higher voltages if available */
if ((src_mw == max_mw && min_src_mv > max_mv) ||
src_mw > max_mw) {
*src_pdo = i;
*sink_pdo = j;
max_mw = src_mw;
max_mv = min_src_mv;
ret = 0;
}
}
}
}
return ret;
}
#define min_pps_apdo_current(x, y) \
min(pdo_pps_apdo_max_current(x), pdo_pps_apdo_max_current(y))
static unsigned int tcpm_pd_select_pps_apdo(struct tcpm_port *port)
{
unsigned int i, j, max_mw = 0, max_mv = 0;
unsigned int min_src_mv, max_src_mv, src_ma, src_mw;
unsigned int min_snk_mv, max_snk_mv;
unsigned int max_op_mv;
u32 pdo, src, snk;
unsigned int src_pdo = 0, snk_pdo = 0;
/*
* Select the source PPS APDO providing the most power while staying
* within the board's limits. We skip the first PDO as this is always
* 5V 3A.
*/
for (i = 1; i < port->nr_source_caps; ++i) {
pdo = port->source_caps[i];
switch (pdo_type(pdo)) {
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo) != APDO_TYPE_PPS) {
printf("Not PPS APDO (source), ignoring\n");
continue;
}
min_src_mv = pdo_pps_apdo_min_voltage(pdo);
max_src_mv = pdo_pps_apdo_max_voltage(pdo);
src_ma = pdo_pps_apdo_max_current(pdo);
src_mw = (src_ma * max_src_mv) / 1000;
/*
* Now search through the sink PDOs to find a matching
* PPS APDO. Again skip the first sink PDO as this will
* always be 5V 3A.
*/
for (j = 1; j < port->nr_snk_pdo; j++) {
pdo = port->snk_pdo[j];
switch (pdo_type(pdo)) {
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo) != APDO_TYPE_PPS) {
printf("Not PPS APDO (sink), ignoring\n");
continue;
}
min_snk_mv =
pdo_pps_apdo_min_voltage(pdo);
max_snk_mv =
pdo_pps_apdo_max_voltage(pdo);
break;
default:
printf("Not APDO type (sink), ignoring\n");
continue;
}
if (min_src_mv <= max_snk_mv &&
max_src_mv >= min_snk_mv) {
max_op_mv = min(max_src_mv, max_snk_mv);
src_mw = (max_op_mv * src_ma) / 1000;
/* Prefer higher voltages if available */
if ((src_mw == max_mw &&
max_op_mv > max_mv) ||
src_mw > max_mw) {
src_pdo = i;
snk_pdo = j;
max_mw = src_mw;
max_mv = max_op_mv;
}
}
}
break;
default:
printf("Not APDO type (source), ignoring\n");
continue;
}
}
if (src_pdo) {
src = port->source_caps[src_pdo];
snk = port->snk_pdo[snk_pdo];
port->pps_data.req_min_volt = max(pdo_pps_apdo_min_voltage(src),
pdo_pps_apdo_min_voltage(snk));
port->pps_data.req_max_volt = min(pdo_pps_apdo_max_voltage(src),
pdo_pps_apdo_max_voltage(snk));
port->pps_data.req_max_curr = min_pps_apdo_current(src, snk);
port->pps_data.req_out_volt = min(port->pps_data.req_max_volt,
max(port->pps_data.req_min_volt,
port->pps_data.req_out_volt));
port->pps_data.req_op_curr = min(port->pps_data.req_max_curr,
port->pps_data.req_op_curr);
}
return src_pdo;
}
static int tcpm_pd_build_request(struct tcpm_port *port, u32 *rdo)
{
unsigned int mv, ma, mw, flags;
unsigned int max_ma, max_mw;
enum pd_pdo_type type;
u32 pdo, matching_snk_pdo;
int src_pdo_index = 0;
int snk_pdo_index = 0;
int ret;
ret = tcpm_pd_select_pdo(port, &snk_pdo_index, &src_pdo_index);
if (ret < 0)
return ret;
pdo = port->source_caps[src_pdo_index];
matching_snk_pdo = port->snk_pdo[snk_pdo_index];
type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
mv = pdo_fixed_voltage(pdo);
break;
case PDO_TYPE_BATT:
case PDO_TYPE_VAR:
mv = pdo_min_voltage(pdo);
break;
default:
printf("Invalid PDO selected!\n");
return -EINVAL;
}
/* Select maximum available current within the sink pdo's limit */
if (type == PDO_TYPE_BATT) {
mw = min_power(pdo, matching_snk_pdo);
ma = 1000 * mw / mv;
} else {
ma = min_current(pdo, matching_snk_pdo);
mw = ma * mv / 1000;
}
flags = RDO_USB_COMM | RDO_NO_SUSPEND;
/* Set mismatch bit if offered power is less than operating power */
max_ma = ma;
max_mw = mw;
if (mw < port->operating_snk_mw) {
flags |= RDO_CAP_MISMATCH;
if (type == PDO_TYPE_BATT &&
(pdo_max_power(matching_snk_pdo) > pdo_max_power(pdo)))
max_mw = pdo_max_power(matching_snk_pdo);
else if (pdo_max_current(matching_snk_pdo) >
pdo_max_current(pdo))
max_ma = pdo_max_current(matching_snk_pdo);
}
debug("cc=%d cc1=%d cc2=%d vbus=%d vconn=%s polarity=%d\n",
port->cc_req, port->cc1, port->cc2, port->vbus_source,
port->vconn_role == TYPEC_SOURCE ? "source" : "sink",
port->polarity);
if (type == PDO_TYPE_BATT) {
*rdo = RDO_BATT(src_pdo_index + 1, mw, max_mw, flags);
printf("Requesting PDO %d: %u mV, %u mW%s\n",
src_pdo_index, mv, mw,
flags & RDO_CAP_MISMATCH ? " [mismatch]" : "");
} else {
*rdo = RDO_FIXED(src_pdo_index + 1, ma, max_ma, flags);
printf("Requesting PDO %d: %u mV, %u mA%s\n",
src_pdo_index, mv, ma,
flags & RDO_CAP_MISMATCH ? " [mismatch]" : "");
}
port->req_current_limit = ma;
port->req_supply_voltage = mv;
return 0;
}
static int tcpm_pd_send_request(struct tcpm_port *port)
{
struct pd_message msg;
int ret;
u32 rdo;
ret = tcpm_pd_build_request(port, &rdo);
if (ret < 0)
return ret;
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(PD_DATA_REQUEST,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 1);
msg.payload[0] = cpu_to_le32(rdo);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static int tcpm_pd_build_pps_request(struct tcpm_port *port, u32 *rdo)
{
unsigned int out_mv, op_ma, op_mw, max_mv, max_ma, flags;
enum pd_pdo_type type;
unsigned int src_pdo_index;
u32 pdo;
src_pdo_index = tcpm_pd_select_pps_apdo(port);
if (!src_pdo_index)
return -EOPNOTSUPP;
pdo = port->source_caps[src_pdo_index];
type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo) != APDO_TYPE_PPS) {
printf("Invalid APDO selected!\n");
return -EINVAL;
}
max_mv = port->pps_data.req_max_volt;
max_ma = port->pps_data.req_max_curr;
out_mv = port->pps_data.req_out_volt;
op_ma = port->pps_data.req_op_curr;
break;
default:
printf("Invalid PDO selected!\n");
return -EINVAL;
}
flags = RDO_USB_COMM | RDO_NO_SUSPEND;
op_mw = (op_ma * out_mv) / 1000;
if (op_mw < port->operating_snk_mw) {
/*
* Try raising current to meet power needs. If that's not enough
* then try upping the voltage. If that's still not enough
* then we've obviously chosen a PPS APDO which really isn't
* suitable so abandon ship.
*/
op_ma = (port->operating_snk_mw * 1000) / out_mv;
if ((port->operating_snk_mw * 1000) % out_mv)
++op_ma;
op_ma += RDO_PROG_CURR_MA_STEP - (op_ma % RDO_PROG_CURR_MA_STEP);
if (op_ma > max_ma) {
op_ma = max_ma;
out_mv = (port->operating_snk_mw * 1000) / op_ma;
if ((port->operating_snk_mw * 1000) % op_ma)
++out_mv;
out_mv += RDO_PROG_VOLT_MV_STEP -
(out_mv % RDO_PROG_VOLT_MV_STEP);
if (out_mv > max_mv) {
printf("Invalid PPS APDO selected!\n");
return -EINVAL;
}
}
}
debug("cc=%d cc1=%d cc2=%d vbus=%d vconn=%s polarity=%d\n",
port->cc_req, port->cc1, port->cc2, port->vbus_source,
port->vconn_role == TYPEC_SOURCE ? "source" : "sink",
port->polarity);
*rdo = RDO_PROG(src_pdo_index + 1, out_mv, op_ma, flags);
printf("Requesting APDO %d: %u mV, %u mA\n",
src_pdo_index, out_mv, op_ma);
port->pps_data.req_op_curr = op_ma;
port->pps_data.req_out_volt = out_mv;
return 0;
}
static int tcpm_pd_send_pps_request(struct tcpm_port *port)
{
struct pd_message msg;
int ret;
u32 rdo;
ret = tcpm_pd_build_pps_request(port, &rdo);
if (ret < 0)
return ret;
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(PD_DATA_REQUEST,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 1);
msg.payload[0] = cpu_to_le32(rdo);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static int tcpm_set_vbus(struct tcpm_port *port, bool enable)
{
int ret;
if (enable && port->vbus_charge)
return -EINVAL;
debug("vbus = %d charge = %d\n", enable, port->vbus_charge);
ret = port->tcpc->set_vbus(port->tcpc, enable, port->vbus_charge);
if (ret < 0)
return ret;
port->vbus_source = enable;
return 0;
}
static int tcpm_set_charge(struct tcpm_port *port, bool charge)
{
int ret;
if (charge && port->vbus_source)
return -EINVAL;
if (charge != port->vbus_charge) {
debug("vbus = %d charge = %d\n", port->vbus_source, charge);
ret = port->tcpc->set_vbus(port->tcpc, port->vbus_source,
charge);
if (ret < 0)
return ret;
}
port->vbus_charge = charge;
return 0;
}
static bool tcpm_start_toggling(struct tcpm_port *port, enum typec_cc_status cc)
{
int ret;
if (!port->tcpc->start_toggling)
return false;
printf("Start toggling\n");
ret = port->tcpc->start_toggling(port->tcpc, port->port_type, cc);
return ret == 0;
}
static int tcpm_init_vbus(struct tcpm_port *port)
{
int ret;
ret = port->tcpc->set_vbus(port->tcpc, false, false);
port->vbus_source = false;
port->vbus_charge = false;
return ret;
}
static int tcpm_init_vconn(struct tcpm_port *port)
{
int ret;
ret = port->tcpc->set_vconn(port->tcpc, false);
port->vconn_role = TYPEC_SINK;
return ret;
}
static void tcpm_typec_connect(struct tcpm_port *port)
{
if (!port->connected) {
port->connected = true;
}
}
static int tcpm_src_attach(struct tcpm_port *port)
{
enum typec_cc_polarity polarity =
port->cc2 == TYPEC_CC_RD ? TYPEC_POLARITY_CC2
: TYPEC_POLARITY_CC1;
int ret;
if (port->attached)
return 0;
ret = tcpm_set_polarity(port, polarity);
if (ret < 0)
return ret;
ret = tcpm_set_roles(port, true, TYPEC_SOURCE, TYPEC_HOST);
if (ret < 0)
return ret;
ret = port->tcpc->set_pd_rx(port->tcpc, true);
if (ret < 0)
goto out_disable_mux;
/*
* USB Type-C specification, version 1.2,
* chapter 4.5.2.2.8.1 (Attached.SRC Requirements)
* Enable VCONN only if the non-RD port is set to RA.
*/
if ((polarity == TYPEC_POLARITY_CC1 && port->cc2 == TYPEC_CC_RA) ||
(polarity == TYPEC_POLARITY_CC2 && port->cc1 == TYPEC_CC_RA)) {
ret = tcpm_set_vconn(port, true);
if (ret < 0)
goto out_disable_pd;
}
ret = tcpm_set_vbus(port, true);
if (ret < 0)
goto out_disable_vconn;
port->pd_capable = false;
port->partner = NULL;
port->attached = true;
port->debouncing = false;
//port->send_discover = true;
return 0;
out_disable_vconn:
tcpm_set_vconn(port, false);
out_disable_pd:
port->tcpc->set_pd_rx(port->tcpc, false);
out_disable_mux:
printf("CC connected in %s as DFP\n",
polarity ? "CC2" : "CC1");
return 0;
}
static void tcpm_typec_disconnect(struct tcpm_port *port)
{
if (port->connected) {
port->partner = NULL;
port->connected = false;
}
}
static void tcpm_reset_port(struct tcpm_port *port)
{
tcpm_timer_uninit(port);
tcpm_typec_disconnect(port);
port->poll_event_cnt = 0;
port->wait_dr_swap_Message = false;
port->attached = false;
port->pd_capable = false;
port->pps_data.supported = false;
/*
* First Rx ID should be 0; set this to a sentinel of -1 so that
* we can check tcpm_pd_rx_handler() if we had seen it before.
*/
port->rx_msgid = -1;
port->tcpc->set_pd_rx(port->tcpc, false);
tcpm_init_vbus(port); /* also disables charging */
tcpm_init_vconn(port);
tcpm_set_current_limit(port, 0, 0);
tcpm_set_polarity(port, TYPEC_POLARITY_CC1);
tcpm_set_attached_state(port, false);
port->usb_type = POWER_SUPPLY_USB_TYPE_C;
port->nr_sink_caps = 0;
port->sink_cap_done = false;
}
static void tcpm_detach(struct tcpm_port *port)
{
if (tcpm_port_is_disconnected(port))
port->hard_reset_count = 0;
if (!port->attached)
return;
tcpm_reset_port(port);
}
static void tcpm_src_detach(struct tcpm_port *port)
{
tcpm_detach(port);
}
static int tcpm_snk_attach(struct tcpm_port *port)
{
int ret;
if (port->attached)
return 0;
ret = tcpm_set_polarity(port, port->cc2 != TYPEC_CC_OPEN ?
TYPEC_POLARITY_CC2 : TYPEC_POLARITY_CC1);
if (ret < 0)
return ret;
ret = tcpm_set_roles(port, true, TYPEC_SINK, TYPEC_DEVICE);
if (ret < 0)
return ret;
port->pd_capable = false;
port->partner = NULL;
port->attached = true;
port->debouncing = false;
printf("CC connected in %s as UFP\n",
port->cc1 != TYPEC_CC_OPEN ? "CC1" : "CC2");
return 0;
}
static void tcpm_snk_detach(struct tcpm_port *port)
{
tcpm_detach(port);
}
static int tcpm_acc_attach(struct tcpm_port *port)
{
int ret;
if (port->attached)
return 0;
ret = tcpm_set_roles(port, true, TYPEC_SOURCE, TYPEC_HOST);
if (ret < 0)
return ret;
port->partner = NULL;
tcpm_typec_connect(port);
port->attached = true;
dev_info(port->dev, "CC connected as Audio Accessory\n");
return 0;
}
static void tcpm_acc_detach(struct tcpm_port *port)
{
tcpm_detach(port);
}
static inline enum tcpm_state hard_reset_state(struct tcpm_port *port)
{
if (port->hard_reset_count < PD_N_HARD_RESET_COUNT)
return HARD_RESET_SEND;
if (port->pd_capable)
return ERROR_RECOVERY;
if (port->pwr_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
if (port->state == SNK_WAIT_CAPABILITIES)
return SNK_READY;
return SNK_UNATTACHED;
}
static inline enum tcpm_state unattached_state(struct tcpm_port *port)
{
if (port->port_type == TYPEC_PORT_DRP) {
if (port->pwr_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
else
return SNK_UNATTACHED;
} else if (port->port_type == TYPEC_PORT_SRC) {
return SRC_UNATTACHED;
}
return SNK_UNATTACHED;
}
bool tcpm_is_toggling(struct tcpm_port *port)
{
if (port->port_type == TYPEC_PORT_DRP)
return port->state == SRC_UNATTACHED || port->state == SNK_UNATTACHED ||
port->state == TOGGLING;
return false;
}
EXPORT_SYMBOL_GPL(tcpm_is_toggling);
static void run_state_machine(struct tcpm_port *port)
{
int ret;
port->enter_state = port->state;
switch (port->state) {
case TOGGLING:
break;
/* SRC states */
case SRC_UNATTACHED:
tcpm_src_detach(port);
if (tcpm_start_toggling(port, tcpm_rp_cc(port))) {
tcpm_set_state(port, TOGGLING, 0);
break;
}
tcpm_set_cc(port, tcpm_rp_cc(port));
if (port->port_type == TYPEC_PORT_DRP)
tcpm_set_state(port, SNK_UNATTACHED, PD_T_DRP_SNK);
break;
case SRC_ATTACH_WAIT:
if (tcpm_port_is_debug(port))
tcpm_set_state(port, DEBUG_ACC_ATTACHED,
PD_T_CC_DEBOUNCE);
else if (tcpm_port_is_audio(port))
tcpm_set_state(port, AUDIO_ACC_ATTACHED,
PD_T_CC_DEBOUNCE);
else if (tcpm_port_is_source(port))
tcpm_set_state(port, SRC_ATTACHED, PD_T_CC_DEBOUNCE);
break;
case SRC_ATTACHED:
ret = tcpm_src_attach(port);
/*
* Currently, vbus control is not implemented,
* and the SRC detection process cannot be fully implemented.
*/
tcpm_set_state(port, SRC_READY, 0);
#if 0
tcpm_set_state(port, SRC_UNATTACHED,
ret < 0 ? 0 : PD_T_PS_SOURCE_ON);
#endif
break;
case SRC_STARTUP:
port->caps_count = 0;
port->negotiated_rev = PD_MAX_REV;
port->message_id = 0;
port->rx_msgid = -1;
port->explicit_contract = false;
tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0);
break;
case SRC_SEND_CAPABILITIES:
port->caps_count++;
if (port->caps_count > PD_N_CAPS_COUNT) {
tcpm_set_state(port, SRC_READY, 0);
break;
}
ret = tcpm_pd_send_source_caps(port);
if (ret < 0) {
tcpm_set_state(port, SRC_SEND_CAPABILITIES,
PD_T_SEND_SOURCE_CAP);
} else {
/*
* Per standard, we should clear the reset counter here.
* However, that can result in state machine hang-ups.
* Reset it only in READY state to improve stability.
*/
/* port->hard_reset_count = 0; */
port->caps_count = 0;
port->pd_capable = true;
tcpm_set_state_cond(port, SRC_SEND_CAPABILITIES_TIMEOUT,
PD_T_SEND_SOURCE_CAP);
}
break;
case SRC_SEND_CAPABILITIES_TIMEOUT:
/*
* Error recovery for a PD_DATA_SOURCE_CAP reply timeout.
*
* PD 2.0 sinks are supposed to accept src-capabilities with a
* 3.0 header and simply ignore any src PDOs which the sink does
* not understand such as PPS but some 2.0 sinks instead ignore
* the entire PD_DATA_SOURCE_CAP message, causing contract
* negotiation to fail.
*
* After PD_N_HARD_RESET_COUNT hard-reset attempts, we try
* sending src-capabilities with a lower PD revision to
* make these broken sinks work.
*/
if (port->hard_reset_count < PD_N_HARD_RESET_COUNT) {
tcpm_set_state(port, HARD_RESET_SEND, 0);
} else if (port->negotiated_rev > PD_REV20) {
port->negotiated_rev--;
port->hard_reset_count = 0;
tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0);
} else {
tcpm_set_state(port, hard_reset_state(port), 0);
}
break;
case SRC_NEGOTIATE_CAPABILITIES:
ret = tcpm_pd_check_request(port);
if (ret < 0) {
tcpm_pd_send_control(port, PD_CTRL_REJECT);
if (!port->explicit_contract) {
tcpm_set_state(port,
SRC_WAIT_NEW_CAPABILITIES, 0);
} else {
tcpm_set_state(port, SRC_READY, 0);
}
} else {
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
tcpm_set_state(port, SRC_TRANSITION_SUPPLY,
PD_T_SRC_TRANSITION);
}
break;
case SRC_TRANSITION_SUPPLY:
/* XXX: regulator_set_voltage(vbus, ...) */
tcpm_pd_send_control(port, PD_CTRL_PS_RDY);
port->explicit_contract = true;
tcpm_set_state_cond(port, SRC_READY, 0);
break;
case SRC_READY:
#if 1
port->hard_reset_count = 0;
#endif
port->try_src_count = 0;
tcpm_typec_connect(port);
break;
case SRC_WAIT_NEW_CAPABILITIES:
/* Nothing to do... */
break;
/* SNK states */
case SNK_UNATTACHED:
tcpm_snk_detach(port);
if (tcpm_start_toggling(port, TYPEC_CC_RD)) {
tcpm_set_state(port, TOGGLING, 0);
break;
}
tcpm_set_cc(port, TYPEC_CC_RD);
if (port->port_type == TYPEC_PORT_DRP)
tcpm_set_state(port, SRC_UNATTACHED, PD_T_DRP_SRC);
break;
case SNK_ATTACH_WAIT:
if ((port->cc1 == TYPEC_CC_OPEN &&
port->cc2 != TYPEC_CC_OPEN) ||
(port->cc1 != TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN))
tcpm_set_state(port, SNK_DEBOUNCED,
PD_T_CC_DEBOUNCE);
else if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, SNK_UNATTACHED,
PD_T_CC_DEBOUNCE);
break;
case SNK_DEBOUNCED:
if (tcpm_port_is_disconnected(port)) {
tcpm_set_state(port, SNK_UNATTACHED,
PD_T_PD_DEBOUNCE);
} else if (port->vbus_present)
tcpm_set_state(port, SNK_ATTACHED, 0);
else
/* Wait for VBUS, but not forever */
tcpm_set_state(port, PORT_RESET, PD_T_PS_SOURCE_ON);
break;
case SNK_ATTACHED:
ret = tcpm_snk_attach(port);
if (ret < 0)
tcpm_set_state(port, SNK_UNATTACHED, 0);
else
tcpm_set_state(port, SNK_STARTUP, 0);
break;
case SNK_STARTUP:
port->negotiated_rev = PD_MAX_REV;
port->message_id = 0;
port->rx_msgid = -1;
port->explicit_contract = false;
tcpm_set_state(port, SNK_DISCOVERY, 0);
break;
case SNK_DISCOVERY:
if (port->vbus_present) {
tcpm_set_current_limit(port,
tcpm_get_current_limit(port),
5000);
tcpm_set_charge(port, true);
tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0);
break;
}
/*
* For DRP, timeouts differ. Also, handling is supposed to be
* different and much more complex (dead battery detection;
* see USB power delivery specification, section 8.3.3.6.1.5.1).
*/
tcpm_set_state(port, hard_reset_state(port),
port->port_type == TYPEC_PORT_DRP ?
PD_T_DB_DETECT : PD_T_NO_RESPONSE);
break;
case SNK_DISCOVERY_DEBOUNCE:
tcpm_set_state(port, SNK_DISCOVERY_DEBOUNCE_DONE,
PD_T_CC_DEBOUNCE);
break;
case SNK_DISCOVERY_DEBOUNCE_DONE:
#if 0
if (!tcpm_port_is_disconnected(port) &&
tcpm_port_is_sink(port) &&
ktime_after(port->delayed_runtime, ktime_get())) {
tcpm_set_state(port, SNK_DISCOVERY,
ktime_to_ms(ktime_sub(port->delayed_runtime, ktime_get())));
break;
}
#endif
tcpm_set_state(port, unattached_state(port), 0);
break;
case SNK_WAIT_CAPABILITIES:
ret = port->tcpc->set_pd_rx(port->tcpc, true);
if (ret < 0) {
tcpm_set_state(port, SNK_READY, 0);
break;
}
/*
* If VBUS has never been low, and we time out waiting
* for source cap, try a soft reset first, in case we
* were already in a stable contract before this boot.
* Do this only once.
*/
if (port->vbus_never_low) {
port->vbus_never_low = false;
tcpm_set_state(port, SOFT_RESET_SEND,
PD_T_SINK_WAIT_CAP);
} else {
tcpm_set_state(port, hard_reset_state(port),
PD_T_SINK_WAIT_CAP);
}
break;
case SNK_NEGOTIATE_CAPABILITIES:
port->pd_capable = true;
port->hard_reset_count = 0;
ret = tcpm_pd_send_request(port);
if (ret < 0) {
/* Let the Source send capabilities again. */
tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0);
} else {
tcpm_set_state_cond(port, hard_reset_state(port),
PD_T_SENDER_RESPONSE);
}
break;
case SNK_NEGOTIATE_PPS_CAPABILITIES:
ret = tcpm_pd_send_pps_request(port);
if (ret < 0) {
port->pps_status = ret;
/*
* If this was called due to updates to sink
* capabilities, and pps is no longer valid, we should
* safely fall back to a standard PDO.
*/
if (port->update_sink_caps)
tcpm_set_state(port, SNK_NEGOTIATE_CAPABILITIES, 0);
else
tcpm_set_state(port, SNK_READY, 0);
} else {
tcpm_set_state_cond(port, hard_reset_state(port),
PD_T_SENDER_RESPONSE);
}
break;
case SNK_TRANSITION_SINK:
case SNK_TRANSITION_SINK_VBUS:
tcpm_set_state(port, hard_reset_state(port),
PD_T_PS_TRANSITION);
break;
case SNK_READY:
port->try_snk_count = 0;
port->update_sink_caps = false;
tcpm_typec_connect(port);
/*
* Here poll_event_cnt is cleared, waiting for self-powered Type-C devices
* to send DR_swap Messge until 1s (TCPM_POLL_EVENT_TIME_OUT * 500us)timeout
*/
if (port->wait_dr_swap_Message)
port->poll_event_cnt = 0;
break;
/* Accessory states */
case ACC_UNATTACHED:
tcpm_acc_detach(port);
tcpm_set_state(port, SRC_UNATTACHED, 0);
break;
case DEBUG_ACC_ATTACHED:
case AUDIO_ACC_ATTACHED:
ret = tcpm_acc_attach(port);
if (ret < 0)
tcpm_set_state(port, ACC_UNATTACHED, 0);
break;
case AUDIO_ACC_DEBOUNCE:
tcpm_set_state(port, ACC_UNATTACHED, PD_T_CC_DEBOUNCE);
break;
/* Hard_Reset states */
case HARD_RESET_SEND:
tcpm_pd_transmit(port, TCPC_TX_HARD_RESET, NULL);
tcpm_set_state(port, HARD_RESET_START, 0);
port->wait_dr_swap_Message = false;
break;
case HARD_RESET_START:
port->hard_reset_count++;
port->tcpc->set_pd_rx(port->tcpc, false);
port->nr_sink_caps = 0;
port->send_discover = true;
if (port->pwr_role == TYPEC_SOURCE)
tcpm_set_state(port, SRC_HARD_RESET_VBUS_OFF,
PD_T_PS_HARD_RESET);
else
tcpm_set_state(port, SNK_HARD_RESET_SINK_OFF, 0);
break;
case SRC_HARD_RESET_VBUS_OFF:
tcpm_set_vconn(port, true);
tcpm_set_vbus(port, false);
tcpm_set_roles(port, port->self_powered, TYPEC_SOURCE,
TYPEC_HOST);
tcpm_set_state(port, SRC_HARD_RESET_VBUS_ON, PD_T_SRC_RECOVER);
break;
case SRC_HARD_RESET_VBUS_ON:
tcpm_set_vconn(port, true);
tcpm_set_vbus(port, true);
port->tcpc->set_pd_rx(port->tcpc, true);
tcpm_set_attached_state(port, true);
tcpm_set_state(port, SRC_UNATTACHED, PD_T_PS_SOURCE_ON);
break;
case SNK_HARD_RESET_SINK_OFF:
memset(&port->pps_data, 0, sizeof(port->pps_data));
tcpm_set_vconn(port, false);
if (port->pd_capable)
tcpm_set_charge(port, false);
tcpm_set_roles(port, port->self_powered, TYPEC_SINK,
TYPEC_DEVICE);
/*
* VBUS may or may not toggle, depending on the adapter.
* If it doesn't toggle, transition to SNK_HARD_RESET_SINK_ON
* directly after timeout.
*/
tcpm_set_state(port, SNK_HARD_RESET_SINK_ON, PD_T_SAFE_0V);
break;
case SNK_HARD_RESET_WAIT_VBUS:
/* Assume we're disconnected if VBUS doesn't come back. */
tcpm_set_state(port, SNK_UNATTACHED,
PD_T_SRC_RECOVER_MAX + PD_T_SRC_TURN_ON);
break;
case SNK_HARD_RESET_SINK_ON:
/* Note: There is no guarantee that VBUS is on in this state */
/*
* XXX:
* The specification suggests that dual mode ports in sink
* mode should transition to state PE_SRC_Transition_to_default.
* See USB power delivery specification chapter 8.3.3.6.1.3.
* This would mean to to
* - turn off VCONN, reset power supply
* - request hardware reset
* - turn on VCONN
* - Transition to state PE_Src_Startup
* SNK only ports shall transition to state Snk_Startup
* (see chapter 8.3.3.3.8).
* Similar, dual-mode ports in source mode should transition
* to PE_SNK_Transition_to_default.
*/
if (port->pd_capable) {
tcpm_set_current_limit(port,
tcpm_get_current_limit(port),
5000);
tcpm_set_charge(port, true);
}
tcpm_set_attached_state(port, true);
tcpm_set_state(port, SNK_STARTUP, 0);
break;
/* Soft_Reset states */
case SOFT_RESET:
port->message_id = 0;
port->rx_msgid = -1;
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
if (port->pwr_role == TYPEC_SOURCE) {
tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0);
} else {
tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0);
}
break;
case SOFT_RESET_SEND:
port->message_id = 0;
port->rx_msgid = -1;
if (tcpm_pd_send_control(port, PD_CTRL_SOFT_RESET))
tcpm_set_state_cond(port, hard_reset_state(port), 0);
else
tcpm_set_state_cond(port, hard_reset_state(port),
PD_T_SENDER_RESPONSE);
break;
/* DR_Swap states */
case DR_SWAP_SEND:
tcpm_pd_send_control(port, PD_CTRL_DR_SWAP);
tcpm_set_state_cond(port, DR_SWAP_SEND_TIMEOUT,
PD_T_SENDER_RESPONSE);
break;
case DR_SWAP_ACCEPT:
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
#if 0
/* Set VDM state machine running flag ASAP */
if (port->data_role == TYPEC_DEVICE && port->send_discover)
port->vdm_sm_running = true;
#endif
tcpm_set_state_cond(port, DR_SWAP_CHANGE_DR, 0);
break;
case DR_SWAP_SEND_TIMEOUT:
//tcpm_swap_complete(port, -ETIMEDOUT);
tcpm_set_state(port, ready_state(port), 0);
break;
case DR_SWAP_CHANGE_DR:
if (port->data_role == TYPEC_HOST) {
//tcpm_unregister_altmodes(port);
tcpm_set_roles(port, true, port->pwr_role,
TYPEC_DEVICE);
} else {
tcpm_set_roles(port, true, port->pwr_role,
TYPEC_HOST);
//port->send_discover = true;
}
/* DR_swap process complete, wait_dr_swap_Message is cleared */
port->wait_dr_swap_Message = false;
tcpm_set_state(port, ready_state(port), 0);
break;
#if 0
/* PR_Swap states */
case PR_SWAP_ACCEPT:
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
tcpm_set_state(port, PR_SWAP_START, 0);
break;
case PR_SWAP_SEND:
tcpm_pd_send_control(port, PD_CTRL_PR_SWAP);
tcpm_set_state_cond(port, PR_SWAP_SEND_TIMEOUT,
PD_T_SENDER_RESPONSE);
break;
case PR_SWAP_SEND_TIMEOUT:
tcpm_set_state(port, ready_state(port), 0);
break;
case PR_SWAP_START:
tcpm_apply_rc(port);
if (port->pwr_role == TYPEC_SOURCE)
tcpm_set_state(port, PR_SWAP_SRC_SNK_TRANSITION_OFF,
PD_T_SRC_TRANSITION);
else
tcpm_set_state(port, PR_SWAP_SNK_SRC_SINK_OFF, 0);
break;
case PR_SWAP_SRC_SNK_TRANSITION_OFF:
/*
* Prevent vbus discharge circuit from turning on during PR_SWAP
* as this is not a disconnect.
*/
tcpm_set_vbus(port, false);
port->explicit_contract = false;
/* allow time for Vbus discharge, must be < tSrcSwapStdby */
tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF,
PD_T_SRCSWAPSTDBY);
break;
case PR_SWAP_SRC_SNK_SOURCE_OFF:
timer_val_msecs = PD_T_CC_DEBOUNCE;
trace_android_vh_typec_tcpm_get_timer(tcpm_states[PR_SWAP_SRC_SNK_SOURCE_OFF],
CC_DEBOUNCE, &timer_val_msecs);
tcpm_set_cc(port, TYPEC_CC_RD);
/* allow CC debounce */
tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED,
timer_val_msecs);
break;
case PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED:
/*
* USB-PD standard, 6.2.1.4, Port Power Role:
* "During the Power Role Swap Sequence, for the initial Source
* Port, the Port Power Role field shall be set to Sink in the
* PS_RDY Message indicating that the initial Source’s power
* supply is turned off"
*/
tcpm_set_pwr_role(port, TYPEC_SINK);
if (tcpm_pd_send_control(port, PD_CTRL_PS_RDY)) {
tcpm_set_state(port, ERROR_RECOVERY, 0);
break;
}
tcpm_set_state(port, ERROR_RECOVERY, PD_T_PS_SOURCE_ON_PRS);
break;
case PR_SWAP_SRC_SNK_SINK_ON:
tcpm_enable_auto_vbus_discharge(port, true);
/* Set the vbus disconnect threshold for implicit contract */
tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_USB, false, VSAFE5V);
tcpm_set_state(port, SNK_STARTUP, 0);
break;
case PR_SWAP_SNK_SRC_SINK_OFF:
timer_val_msecs = PD_T_PS_SOURCE_OFF;
trace_android_vh_typec_tcpm_get_timer(tcpm_states[PR_SWAP_SNK_SRC_SINK_OFF],
SOURCE_OFF, &timer_val_msecs);
/*
* Prevent vbus discharge circuit from turning on during PR_SWAP
* as this is not a disconnect.
*/
tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_USB,
port->pps_data.active, 0);
tcpm_set_charge(port, false);
tcpm_set_state(port, hard_reset_state(port), timer_val_msecs);
break;
case PR_SWAP_SNK_SRC_SOURCE_ON:
tcpm_enable_auto_vbus_discharge(port, true);
tcpm_set_cc(port, tcpm_rp_cc(port));
tcpm_set_vbus(port, true);
/*
* allow time VBUS ramp-up, must be < tNewSrc
* Also, this window overlaps with CC debounce as well.
* So, Wait for the max of two which is PD_T_NEWSRC
*/
tcpm_set_state(port, PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP,
PD_T_NEWSRC);
break;
case PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP:
/*
* USB PD standard, 6.2.1.4:
* "Subsequent Messages initiated by the Policy Engine,
* such as the PS_RDY Message sent to indicate that Vbus
* is ready, will have the Port Power Role field set to
* Source."
*/
tcpm_set_pwr_role(port, TYPEC_SOURCE);
tcpm_pd_send_control(port, PD_CTRL_PS_RDY);
tcpm_set_state(port, SRC_STARTUP, PD_T_SWAP_SRC_START);
break;
#endif
case GET_STATUS_SEND:
tcpm_pd_send_control(port, PD_CTRL_GET_STATUS);
tcpm_set_state(port, GET_STATUS_SEND_TIMEOUT,
PD_T_SENDER_RESPONSE);
break;
case GET_STATUS_SEND_TIMEOUT:
tcpm_set_state(port, ready_state(port), 0);
break;
case GET_PPS_STATUS_SEND:
tcpm_pd_send_control(port, PD_CTRL_GET_PPS_STATUS);
tcpm_set_state(port, GET_PPS_STATUS_SEND_TIMEOUT,
PD_T_SENDER_RESPONSE);
break;
case GET_PPS_STATUS_SEND_TIMEOUT:
tcpm_set_state(port, ready_state(port), 0);
break;
case GET_SINK_CAP:
tcpm_pd_send_control(port, PD_CTRL_GET_SINK_CAP);
tcpm_set_state(port, GET_SINK_CAP_TIMEOUT, PD_T_SENDER_RESPONSE);
break;
case GET_SINK_CAP_TIMEOUT:
tcpm_set_state(port, ready_state(port), 0);
break;
case ERROR_RECOVERY:
tcpm_set_state(port, PORT_RESET, 0);
break;
case PORT_RESET:
tcpm_reset_port(port);
tcpm_set_cc(port, TYPEC_CC_OPEN);
tcpm_set_state(port, PORT_RESET_WAIT_OFF,
PD_T_ERROR_RECOVERY);
break;
case PORT_RESET_WAIT_OFF:
tcpm_set_state(port,
tcpm_default_state(port),
port->vbus_present ? PD_T_PS_SOURCE_OFF : 0);
break;
default:
printf("Unexpected port state %d\n", port->state);
break;
}
}
static void tcpm_state_machine(struct tcpm_port *port)
{
enum tcpm_state prev_state;
mutex_lock(&port->lock);
port->state_machine_running = true;
if (port->queued_message && tcpm_send_queued_message(port))
goto done;
/* If we were queued due to a delayed state change, update it now */
if (port->delayed_state) {
debug("state change %s -> %s [delayed %ld ms]\n",
tcpm_states[port->state],
tcpm_states[port->delayed_state], port->delay_ms);
port->prev_state = port->state;
port->state = port->delayed_state;
port->delayed_state = INVALID_STATE;
}
/*
* Continue running as long as we have (non-delayed) state changes
* to make.
*/
do {
prev_state = port->state;
run_state_machine(port);
if (port->queued_message)
tcpm_send_queued_message(port);
} while (port->state != prev_state && !port->delayed_state);
done:
port->state_machine_running = false;
mutex_unlock(&port->lock);
}
static void _tcpm_cc_change(struct tcpm_port *port, enum typec_cc_status cc1,
enum typec_cc_status cc2)
{
enum typec_cc_status old_cc1, old_cc2;
enum tcpm_state new_state;
old_cc1 = port->cc1;
old_cc2 = port->cc2;
port->cc1 = cc1;
port->cc2 = cc2;
debug("CC1: %u -> %u, CC2: %u -> %u [state %s, polarity %d, %s]\n",
old_cc1, cc1, old_cc2, cc2, tcpm_states[port->state],
port->polarity,
tcpm_port_is_disconnected(port) ? "disconnected" : "connected");
switch (port->state) {
case TOGGLING:
if (tcpm_port_is_debug(port) || tcpm_port_is_audio(port) ||
tcpm_port_is_source(port))
tcpm_set_state(port, SRC_ATTACH_WAIT, 0);
else if (tcpm_port_is_sink(port))
tcpm_set_state(port, SNK_ATTACH_WAIT, 0);
break;
case SRC_UNATTACHED:
case ACC_UNATTACHED:
if (tcpm_port_is_debug(port) || tcpm_port_is_audio(port) ||
tcpm_port_is_source(port))
tcpm_set_state(port, SRC_ATTACH_WAIT, 0);
break;
case SRC_ATTACH_WAIT:
if (tcpm_port_is_disconnected(port) ||
tcpm_port_is_audio_detached(port))
tcpm_set_state(port, SRC_UNATTACHED, 0);
else if (cc1 != old_cc1 || cc2 != old_cc2)
tcpm_set_state(port, SRC_ATTACH_WAIT, 0);
break;
case SRC_ATTACHED:
case SRC_SEND_CAPABILITIES:
case SRC_READY:
if (tcpm_port_is_disconnected(port) ||
!tcpm_port_is_source(port))
tcpm_set_state(port, SRC_UNATTACHED, 0);
break;
case SNK_UNATTACHED:
if (tcpm_port_is_sink(port))
tcpm_set_state(port, SNK_ATTACH_WAIT, 0);
break;
case SNK_ATTACH_WAIT:
if ((port->cc1 == TYPEC_CC_OPEN &&
port->cc2 != TYPEC_CC_OPEN) ||
(port->cc1 != TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN))
new_state = SNK_DEBOUNCED;
else if (tcpm_port_is_disconnected(port))
new_state = SNK_UNATTACHED;
else
break;
if (new_state != port->delayed_state)
tcpm_set_state(port, SNK_ATTACH_WAIT, 0);
break;
case SNK_DEBOUNCED:
if (tcpm_port_is_disconnected(port))
new_state = SNK_UNATTACHED;
else if (port->vbus_present)
new_state = tcpm_try_src(port) ? SRC_TRY : SNK_ATTACHED;
else
new_state = SNK_UNATTACHED;
if (new_state != port->delayed_state)
tcpm_set_state(port, SNK_DEBOUNCED, 0);
break;
case SNK_READY:
if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, unattached_state(port), 0);
else if (!port->pd_capable &&
(cc1 != old_cc1 || cc2 != old_cc2))
tcpm_set_current_limit(port,
tcpm_get_current_limit(port),
5000);
break;
case AUDIO_ACC_ATTACHED:
if (cc1 == TYPEC_CC_OPEN || cc2 == TYPEC_CC_OPEN)
tcpm_set_state(port, AUDIO_ACC_DEBOUNCE, 0);
break;
case AUDIO_ACC_DEBOUNCE:
if (tcpm_port_is_audio(port))
tcpm_set_state(port, AUDIO_ACC_ATTACHED, 0);
break;
case DEBUG_ACC_ATTACHED:
if (cc1 == TYPEC_CC_OPEN || cc2 == TYPEC_CC_OPEN)
tcpm_set_state(port, ACC_UNATTACHED, 0);
break;
case SNK_TRY:
/* Do nothing, waiting for timeout */
break;
case SNK_DISCOVERY:
/* CC line is unstable, wait for debounce */
if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, SNK_DISCOVERY_DEBOUNCE, 0);
break;
case SNK_DISCOVERY_DEBOUNCE:
break;
case SRC_TRYWAIT:
/* Hand over to state machine if needed */
if (!port->vbus_present && tcpm_port_is_source(port))
tcpm_set_state(port, SRC_TRYWAIT_DEBOUNCE, 0);
break;
case SRC_TRYWAIT_DEBOUNCE:
if (port->vbus_present || !tcpm_port_is_source(port))
tcpm_set_state(port, SRC_TRYWAIT, 0);
break;
case SNK_TRY_WAIT_DEBOUNCE:
if (!tcpm_port_is_sink(port)) {
port->max_wait = 0;
tcpm_set_state(port, SRC_TRYWAIT, 0);
}
break;
case SRC_TRY_WAIT:
if (tcpm_port_is_source(port))
tcpm_set_state(port, SRC_TRY_DEBOUNCE, 0);
break;
case SRC_TRY_DEBOUNCE:
tcpm_set_state(port, SRC_TRY_WAIT, 0);
break;
case SNK_TRYWAIT_DEBOUNCE:
if (tcpm_port_is_sink(port))
tcpm_set_state(port, SNK_TRYWAIT_VBUS, 0);
break;
case SNK_TRYWAIT_VBUS:
if (!tcpm_port_is_sink(port))
tcpm_set_state(port, SNK_TRYWAIT_DEBOUNCE, 0);
break;
case SNK_TRYWAIT:
/* Do nothing, waiting for tCCDebounce */
break;
case PR_SWAP_SNK_SRC_SINK_OFF:
case PR_SWAP_SRC_SNK_TRANSITION_OFF:
case PR_SWAP_SRC_SNK_SOURCE_OFF:
case PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED:
case PR_SWAP_SNK_SRC_SOURCE_ON:
/*
* CC state change is expected in PR_SWAP
* Ignore it.
*/
break;
case PORT_RESET:
case PORT_RESET_WAIT_OFF:
/*
* State set back to default mode once the timer completes.
* Ignore CC changes here.
*/
break;
default:
/*
* While acting as sink and auto vbus discharge is enabled, Allow disconnect
* to be driven by vbus disconnect.
*/
if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, unattached_state(port), 0);
break;
}
}
static void _tcpm_pd_vbus_on(struct tcpm_port *port)
{
debug("%s: VBUS on\n", __func__);
port->vbus_present = true;
/*
* When vbus_present is true i.e. Voltage at VBUS is greater than VSAFE5V implicitly
* states that vbus is not at VSAFE0V, hence clear the vbus_vsafe0v flag here.
*/
port->vbus_vsafe0v = false;
switch (port->state) {
case SNK_TRANSITION_SINK_VBUS:
port->explicit_contract = true;
tcpm_set_state(port, SNK_READY, 0);
break;
case SNK_DISCOVERY:
tcpm_set_state(port, SNK_DISCOVERY, 0);
break;
case SNK_DEBOUNCED:
tcpm_set_state(port, SNK_ATTACHED, 0);
break;
case SNK_HARD_RESET_WAIT_VBUS:
tcpm_set_state(port, SNK_HARD_RESET_SINK_ON, 0);
break;
case SRC_ATTACHED:
tcpm_set_state(port, SRC_STARTUP, 0);
break;
case SRC_HARD_RESET_VBUS_ON:
tcpm_set_state(port, SRC_STARTUP, 0);
break;
case SNK_TRY:
/* Do nothing, waiting for timeout */
break;
case SRC_TRYWAIT:
/* Do nothing, Waiting for Rd to be detected */
break;
case SRC_TRYWAIT_DEBOUNCE:
tcpm_set_state(port, SRC_TRYWAIT, 0);
break;
case SNK_TRY_WAIT_DEBOUNCE:
/* Do nothing, waiting for PD_DEBOUNCE to do be done */
break;
case SNK_TRYWAIT:
/* Do nothing, waiting for tCCDebounce */
break;
case SNK_TRYWAIT_VBUS:
if (tcpm_port_is_sink(port))
tcpm_set_state(port, SNK_ATTACHED, 0);
break;
case SNK_TRYWAIT_DEBOUNCE:
/* Do nothing, waiting for Rp */
break;
case SRC_TRY_WAIT:
case SRC_TRY_DEBOUNCE:
/* Do nothing, waiting for sink detection */
break;
case PORT_RESET:
case PORT_RESET_WAIT_OFF:
/*
* State set back to default mode once the timer completes.
* Ignore vbus changes here.
*/
break;
default:
break;
}
}
static void _tcpm_pd_vbus_off(struct tcpm_port *port)
{
debug("%s: VBUS off\n", __func__);
port->vbus_present = false;
port->vbus_never_low = false;
switch (port->state) {
case SNK_HARD_RESET_SINK_OFF:
tcpm_set_state(port, SNK_HARD_RESET_WAIT_VBUS, 0);
break;
case HARD_RESET_SEND:
break;
case SNK_TRY:
/* Do nothing, waiting for timeout */
break;
case SRC_TRYWAIT:
/* Hand over to state machine if needed */
if (tcpm_port_is_source(port))
tcpm_set_state(port, SRC_TRYWAIT_DEBOUNCE, 0);
break;
case SNK_TRY_WAIT_DEBOUNCE:
/* Do nothing, waiting for PD_DEBOUNCE to do be done */
break;
case SNK_TRYWAIT:
case SNK_TRYWAIT_VBUS:
case SNK_TRYWAIT_DEBOUNCE:
break;
case SNK_ATTACH_WAIT:
port->debouncing = false;
tcpm_set_state(port, SNK_UNATTACHED, 0);
break;
case SNK_NEGOTIATE_CAPABILITIES:
break;
case PR_SWAP_SRC_SNK_TRANSITION_OFF:
tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF, 0);
break;
case PR_SWAP_SNK_SRC_SINK_OFF:
/* Do nothing, expected */
break;
case PR_SWAP_SNK_SRC_SOURCE_ON:
/*
* Do nothing when vbus off notification is received.
* TCPM can wait for PD_T_NEWSRC in PR_SWAP_SNK_SRC_SOURCE_ON
* for the vbus source to ramp up.
*/
break;
case PORT_RESET_WAIT_OFF:
tcpm_set_state(port, tcpm_default_state(port), 0);
break;
case SRC_TRY_WAIT:
case SRC_TRY_DEBOUNCE:
/* Do nothing, waiting for sink detection */
break;
case PORT_RESET:
/*
* State set back to default mode once the timer completes.
* Ignore vbus changes here.
*/
break;
default:
if (port->pwr_role == TYPEC_SINK && port->attached)
tcpm_set_state(port, SNK_UNATTACHED, 0);
break;
}
}
static void _tcpm_pd_hard_reset(struct tcpm_port *port)
{
debug("Received hard reset\n");
port->poll_event_cnt = 0;
/* If a hard reset message is received during the port reset process,
* we should ignore it, that is, do not set port->state to HARD_RESET_START.
*/
if (port->state == PORT_RESET || port->state == PORT_RESET_WAIT_OFF)
return ;
/*
* If we keep receiving hard reset requests, executing the hard reset
* must have failed. Revert to error recovery if that happens.
*/
tcpm_set_state(port,
port->hard_reset_count < PD_N_HARD_RESET_COUNT ?
HARD_RESET_START : ERROR_RECOVERY,
0);
}
#if 0
static void tcpm_pd_event_handler(struct tcpm_port *port)
{
u32 events;
while (port->pd_events) {
events = port->pd_events;
port->pd_events = 0;
if (events & TCPM_RESET_EVENT)
_tcpm_pd_hard_reset(port);
if (events & TCPM_VBUS_EVENT) {
bool vbus;
vbus = port->tcpc->get_vbus(port->tcpc);
if (vbus) {
_tcpm_pd_vbus_on(port);
} else {
_tcpm_pd_vbus_off(port);
/*
* When TCPC does not support detecting vsafe0v voltage level,
* treat vbus absent as vsafe0v. Else invoke is_vbus_vsafe0v
* to see if vbus has discharge to VSAFE0V.
*/
if (!port->tcpc->is_vbus_vsafe0v ||
port->tcpc->is_vbus_vsafe0v(port->tcpc))
_tcpm_pd_vbus_vsafe0v(port);
}
}
if (events & TCPM_CC_EVENT) {
enum typec_cc_status cc1, cc2;
if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0)
_tcpm_cc_change(port, cc1, cc2);
}
if (events & TCPM_FRS_EVENT) {
if (port->state == SNK_READY) {
int ret;
port->upcoming_state = FR_SWAP_SEND;
ret = tcpm_ams_start(port, FAST_ROLE_SWAP);
if (ret == -EAGAIN)
port->upcoming_state = INVALID_STATE;
} else {
tcpm_log(port, "Discarding FRS_SIGNAL! Not in sink ready");
}
}
if (events & TCPM_SOURCING_VBUS) {
tcpm_log(port, "sourcing vbus");
/*
* In fast role swap case TCPC autonomously sources vbus. Set vbus_source
* true as TCPM wouldn't have called tcpm_set_vbus.
*
* When vbus is sourced on the command on TCPM i.e. TCPM called
* tcpm_set_vbus to source vbus, vbus_source would already be true.
*/
port->vbus_source = true;
_tcpm_pd_vbus_on(port);
}
}
}
#endif
void tcpm_cc_change(struct tcpm_port *port)
{
enum typec_cc_status cc1, cc2;
port->poll_event_cnt = 0;
if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0)
_tcpm_cc_change(port, cc1, cc2);
}
EXPORT_SYMBOL_GPL(tcpm_cc_change);
void tcpm_vbus_change(struct tcpm_port *port)
{
bool vbus;
port->poll_event_cnt = 0;
vbus = port->tcpc->get_vbus(port->tcpc);
if (vbus)
_tcpm_pd_vbus_on(port);
else
_tcpm_pd_vbus_off(port);
}
EXPORT_SYMBOL_GPL(tcpm_vbus_change);
void tcpm_pd_hard_reset(struct tcpm_port *port)
{
port->poll_event_cnt = 0;
_tcpm_pd_hard_reset(port);
}
EXPORT_SYMBOL_GPL(tcpm_pd_hard_reset);
static void tcpm_init(struct tcpm_port *port)
{
enum typec_cc_status cc1, cc2;
port->tcpc->init(port->tcpc);
tcpm_reset_port(port);
/*
* XXX
* Should possibly wait for VBUS to settle if it was enabled locally
* since tcpm_reset_port() will disable VBUS.
*/
port->vbus_present = port->tcpc->get_vbus(port->tcpc);
if (port->vbus_present)
port->vbus_never_low = true;
/*
* 1. When vbus_present is true, voltage on VBUS is already at VSAFE5V.
* So implicitly vbus_vsafe0v = false.
*
* 2. When vbus_present is false and TCPC does NOT support querying
* vsafe0v status, then, it's best to assume vbus is at VSAFE0V i.e.
* vbus_vsafe0v is true.
*
* 3. When vbus_present is false and TCPC does support querying vsafe0v,
* then, query tcpc for vsafe0v status.
*/
if (port->vbus_present)
port->vbus_vsafe0v = false;
else if (!port->tcpc->is_vbus_vsafe0v)
port->vbus_vsafe0v = true;
else
port->vbus_vsafe0v = port->tcpc->is_vbus_vsafe0v(port->tcpc);
tcpm_set_state(port, tcpm_default_state(port), 0);
if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0)
_tcpm_cc_change(port, cc1, cc2);
}
void tcpm_tcpc_reset(struct tcpm_port *port)
{
mutex_lock(&port->lock);
/* XXX: Maintain PD connection if possible? */
tcpm_init(port);
mutex_unlock(&port->lock);
}
EXPORT_SYMBOL_GPL(tcpm_tcpc_reset);
static int tcpm_fw_get_caps(struct tcpm_port *port)
{
const char *cap_str;
ofnode node = port->tcpc->connector_node;
int ret;
u32 mw, frs_current;
#if 0
/* USB data support is optional */
cap_str = ofnode_read_string(node, "data-role");
if (cap_str) {
ret = typec_find_port_data_role(cap_str);
if (ret < 0)
return ret;
port->typec_caps.data = ret;
}
#endif
cap_str = ofnode_read_string(node, "power-role");
if (!cap_str) {
return -EINVAL;
} else {
if (!strcmp("dual", cap_str))
port->typec_caps.type = TYPEC_PORT_DRP;
else if (!strcmp("source", cap_str))
port->typec_caps.type = TYPEC_PORT_SRC;
else if (!strcmp("sink", cap_str))
port->typec_caps.type = TYPEC_PORT_SNK;
else
return EINVAL;
}
port->port_type = port->typec_caps.type;
port->slow_charger_loop = ofnode_read_bool(node, "slow-charger-loop");
if (port->port_type == TYPEC_PORT_SNK)
goto sink;
/* Get source pdos */
ret = ofnode_read_size(node, "source-pdos") / sizeof(u32);
if (ret <= 0)
return -EINVAL;
port->nr_src_pdo = min(ret, PDO_MAX_OBJECTS);
ret = ofnode_read_u32_array(node, "source-pdos",
port->src_pdo, port->nr_src_pdo);
if (ret || tcpm_validate_caps(port, port->src_pdo,
port->nr_src_pdo))
return -EINVAL;
if (port->port_type == TYPEC_PORT_SRC)
return 0;
/* Get the preferred power role for DRP */
cap_str = ofnode_read_string(node, "try-power-role");
if (!cap_str) {
return -EINVAL;
} else {
if (!strcmp("sink", cap_str))
port->typec_caps.prefer_role = TYPEC_SINK;
else if (!strcmp("source", cap_str))
port->typec_caps.prefer_role = TYPEC_SOURCE;
else
return -EINVAL;
}
if (port->typec_caps.prefer_role < 0)
return -EINVAL;
sink:
/* Get sink pdos */
ret = ofnode_read_size(node, "sink-pdos") / sizeof(u32);
if (ret <= 0)
return -EINVAL;
port->nr_snk_pdo = min(ret, PDO_MAX_OBJECTS);
ret = ofnode_read_u32_array(node, "sink-pdos",
port->snk_pdo, port->nr_snk_pdo);
if (ret || tcpm_validate_caps(port, port->snk_pdo,
port->nr_snk_pdo))
return -EINVAL;
if (ofnode_read_u32_array(node, "op-sink-microwatt", &mw, 1))
return -EINVAL;
port->operating_snk_mw = mw / 1000;
port->self_powered = ofnode_read_bool(node, "self-powered");
/* FRS can only be supported by DRP ports */
if (port->port_type == TYPEC_PORT_DRP) {
ret = ofnode_read_u32_array(node, "new-source-frs-typec-current",
&frs_current, 1);
if (ret >= 0 && frs_current <= FRS_5V_3A)
port->new_source_frs_current = frs_current;
}
/* sink-vdos is optional */
ret = ofnode_read_size(node, "sink-vdos") / sizeof(u32);
if (ret < 0)
ret = 0;
port->nr_snk_vdo = min(ret, VDO_MAX_OBJECTS);
if (port->nr_snk_vdo) {
ret = ofnode_read_u32_array(node, "sink-vdos",
port->snk_vdo, port->nr_snk_vdo);
if (ret)
return ret;
}
/* If sink-vdos is found, sink-vdos-v1 is expected for backward compatibility. */
if (port->nr_snk_vdo) {
ret = ofnode_read_size(node, "sink-vdos-v1") / sizeof(u32);
if (ret < 0)
return ret;
else if (ret == 0)
return -ENODATA;
port->nr_snk_vdo_v1 = min(ret, VDO_MAX_OBJECTS);
ret = ofnode_read_u32_array(node, "sink-vdos-v1",
port->snk_vdo_v1,
port->nr_snk_vdo_v1);
if (ret)
return ret;
}
return 0;
}
struct tcpm_port *tcpm_port_init(struct udevice *dev, struct tcpc_dev *tcpc)
{
struct tcpm_port *port;
int err;
if (!dev || !tcpc ||
!tcpc->get_vbus || !tcpc->set_cc || !tcpc->get_cc ||
!tcpc->set_polarity || !tcpc->set_vconn || !tcpc->set_vbus ||
!tcpc->set_pd_rx || !tcpc->set_roles || !tcpc->pd_transmit)
return ERR_PTR(-EINVAL);
port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL);
if (!port)
return ERR_PTR(-ENOMEM);
port->dev = dev;
port->tcpc = tcpc;
err = tcpm_fw_get_caps(port);
if (err < 0) {
printf("%s: please check the dts config of %s node(%d)\n",
__func__, dev_read_name(dev), err);
return ERR_PTR(err);
}
port->try_role = port->typec_caps.prefer_role;
port->typec_caps.revision = 0x0120; /* Type-C spec release 1.2 */
port->typec_caps.pd_revision = 0x0300; /* USB-PD spec release 3.0 */
port->typec_caps.svdm_version = SVDM_VER_2_0;
port->typec_caps.driver_data = port;
port->typec_caps.orientation_aware = 1;
port->port_type = port->typec_caps.type;
tcpm_init(port);
printf("%s: init finished\n", dev_read_name(dev));
return port;
}
EXPORT_SYMBOL_GPL(tcpm_port_init);
void tcpm_poll_event(struct tcpm_port *port)
{
if (!port->tcpc->get_vbus(port->tcpc))
return ;
while (port->poll_event_cnt < TCPM_POLL_EVENT_TIME_OUT) {
if (!port->wait_dr_swap_Message &&
((port->state == SNK_READY) ||
(port->state == SRC_READY) ||
(port->state == DEBUG_ACC_ATTACHED) ||
(port->state == AUDIO_ACC_ATTACHED)))
break;
port->tcpc->poll_event(port->tcpc);
port->poll_event_cnt++;
udelay(500);
}
/*
* At this time, call the callback function of the respective pd chip
* to enter the low-power mode. In order to reduce the time spent on
* the PD chip driver as much as possible, the tcpm framework does not
* fully process the communication initiated by the device,so it should
* be noted that we can disable the internal oscillator, etc., but do
* not turn off the power of the transceiver module, otherwise the
* self-powered Type-C device will initiate a Message(eg: self-powered
* Type-C hub initiates a SINK capability request(PD_CTRL_GET_SINK_CAP))
* and the pd chip cannot reply to GoodCRC, causing the self-powered Type-C
* device to switch vbus to vSafe5v, or even turn off vbus.
*/
if (port->tcpc->enter_low_power_mode) {
if (port->tcpc->enter_low_power_mode(port->tcpc,
port->attached,
port->pd_capable))
printf("failed to enter low power\n");
else
printf("PD chip enter low power mode\n");
}
}
EXPORT_SYMBOL_GPL(tcpm_poll_event);
int tcpm_get_voltage(struct tcpm_port *port)
{
return port->supply_voltage * 1000;
}
EXPORT_SYMBOL_GPL(tcpm_get_voltage);
int tcpm_get_current(struct tcpm_port *port)
{
return port->current_limit * 1000;
}
EXPORT_SYMBOL_GPL(tcpm_get_voltage);
int tcpm_get_online(struct tcpm_port *port)
{
if (port->state == SNK_READY)
return 1;
else
return 0;
}
EXPORT_SYMBOL_GPL(tcpm_get_online);
void tcpm_uninit_port(struct tcpm_port *port)
{
tcpm_reset_port(port);
}
EXPORT_SYMBOL_GPL(tcpm_unregister_port);